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Abstract 
For studying the stress-strain state at singular points and their 
neighborhoods new concept is proposed. A singular point is identified 
with an elementary volume that has a characteristic size of the real 
body representative volume. This makes it possible to set and study 
the restrictions at that point. It is shown that problems with singular 
points turn out to be ambiguous, their formulation depends on the 
combination of the material and geometric parameters of the inves-
tigated body. Number of constraints in a singular point is redundant 
compared to the usual point of the boundary (it makes singular point 
unique, exclusive). This circumstance determines the non-classical 
problem formulation for bodies containing singular points. The for-
mulation of a non-classical problem is given, the uniqueness of its 
solution is proved (under the condition of existence), the algorithm 
of the iterative-analytical decision method is described. Restrictions 
on the state parameters at the composite wedge vertex, one genera-
trix of which is in non-friction contact with a rigid surface are studied 
under temperature and strength loading. 
The proposed approach allows to identify critical combinations of 
material and geometric parameters that define the singularity of 
stress and strain fields close to singular representative volumes. The 
constraints on load components needed to solution existence are es-
tablished. An example of a numerical analysis of the state parameters 
at the wedge vertex and its neighborhood is considered. Solutions 
built on the basis of a new concept, directly in a singular point, and 
its small neighborhood differ significantly from the solutions made 
with asymptotic methods. Beyond a small neighborhood of a singular 
point the solutions obtained on the basis of different concepts coin-
cide. 
 
Keywords 
Composite structures; non-classical tasks; singular points; material 
point, representative volume. 
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1 INTRODUCTION 

Singular points of elastic bodies are vertexes of cracks, wedges, cones, pyramids, lines of surface 
generatrix crossing (ribs), line (surface) of edge points of the composite structural elements connec-
tions, etc. Singular points are potential stress concentrators, contribute to premature failure of the 
structure.  

The research of the state parameters (stresses, strains) of deformable bodies in the singularity 
vicinity attracts a great interest from the authors, whose studies are divided into two approaches. 

1. The classical (asymptotic) approach. This approach includes methods of the operational calcu-
lus are used in Bogy(1971) and Sinclear (2004), complex-variable functions in Parton and Perlin 
(1981), Airy functions in Chobanyan(1987), integral equations in Uflyand (1967) and Andreev (2013), 
separation of variables in Aksentyan (1967), series expansion by different functions in Kovalenko 
(2011), He and Kotousov (2016), etc. Authors of numerical approaches realize the asymptotic idea 
through unlimited grid model refinement of the area close to the singular point. Also there are studies 
by finite element method in Koguchia and Muramoto (2000), Xu and Tong(2016)), method of bound-
ary elements in Mittelstedt (2005), Koguchi (2010), method of boundary conditions in Ryazantseva 
(2015). Mathematical problems, concerning the justification of asymptotic methods for studying of 
mechanics problems of a deformable solid body with singular points, were considered and successfully 
resolved in studies Kondratiev (1967), Mazya(1976). 

However, the classical approach does not guarantee the reliability of the research results in a 
small neighborhood of the singular point. Indeed, in the classical approach, the corresponding values 
for the state parameters at a singular point are taken as limit ones. It means that a singular point in 
the classical approach is considered as a mathematical point (with zero volume), because in the limit 
transition to a singular point distance to this point tends to zero.  

Models of real bodies are studied in solid mechanics (SM). The model is a continuum whose 
physic-mechanical properties are determined by the properties of the representative volume of the 
real body. A representative volume has a linear scale (characteristic size). This scale of the repre-
sentative volume is also a characteristic dimension of the elementary volume of the continuum, to 
which the stresses and strains obtained in the solution should be referred. This means that at a 
mathematical point (a point with zero volume) the notion of stresses and strains has no mechanical 
content. No constraints (for example, boundary conditions) can be imposed on the state parameters 
at such a point. The absence of a mechanical content in the solution for a singular point does not 
allow us to use the asymptotic approach with respect to real bodies in a small neighborhood of this 
point. Our studies show that the characteristic size of such a neighborhood turns out to be equal to 
5-7 characteristic dimensions of the representative volume of body material. 

2. The non-classical approach to the study of the state parameters directly at special points and 
their vicinity is being developed by the authors of this article (2015). The approach is based on the 
concept of a singular point as an elementary volume (material point) with a characteristic size of the 
representative volume of a real body. In the new approach it is possible to determine state parameters 
at the singular point and to formulate the constraints at them. 

Such restrictions are a system of algebraic equations. The study of these equations shows that the 
formulation of the solid mechanics problem for a body with a singular point is ambiguous. It is 
determined by a combination of material characteristics and geometric parameters of the object under 
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consideration. Originality (uniqueness) of the singular point is manifested in the redundancy (in com-
parison with the boundary point of the classical problem) of the constraints given in it. This feature 
makes the solid mechanics problem for a body with a singular point a non-classical. 

The non-classical approach was used by the authors of (2013–2017) to study the stress-strain 
state in homogeneous planar and composite wedges, composite spatial ribs, and internal singular 
points of plane structural elements. In this paper we give a general formulation of the non-classical 
(in the sense indicated above) problem for deformable solid body with singular points, and prove the 
uniqueness of its solution (under the condition of its existence). The features of stress distribution 
near and directly at the tip of a composite wedge, one of the sides of which slides without friction 
along a rigid surface under the thermal or force load are studied.  
 
2 PROBLEM STATEMENT 

A part of the considered structure element represents a wedge composed of two isotropic linearly 
elastic elements 1, 2. Side of the wedge element 1 is oriented by the unit vector n. The unit vector 

'n  is orthogonal n  and directed along the side, which can be loaded with the surface forces with 

the density 'n n np p n nt= + . Side of the wedge element 2 is oriented by the unit vector m . The 

unit vector 'm  is orthogonal to the unit vector m  and directed along the side, which slides without 
friction along the rigid surface (Figure 1). 
 

n

m 1x

2x


n

m



nP


 

Figure 1: Composite wedge 

 
Angles ,a b  of elements, constituting a wedge, are subject to the conditions 

 

0 2 0 2 2a p b p a b p< < < < + £  (1)
 

In accordance with the accepted concept, representative volumes of attached bodies 1,2, which 

are located at A vertex of the wedge, are singular points. Accepted designations: ( ) ( ),k k
ij ijs e - components 

of stresses and strains, correspondingly; , , ,k k k kE G n w  – Young's modulus, shear modulus, Poisson's 

ratio and linear coefficient of thermal expansion in k-th (k = 1,2) wedge constituent element; ns , 'nt , 



2070     V. Pestrenin et al. / Stress State at the Vertex of a Composite Wedge, One Side of Which Slides Without Friction Along a Rigid Surface 

Latin American Journal of Solids and Structures 14 (2017) 2067-2088 

ms , 'mt  – normal and shear stresses on wedge sides oriented by unit vectors n, m ; TD – temper-

ature increment. It is also accepted that the structural element under consideration is in a generalized 
plane stressed state. At the point A (wedge vertex) the orthonormal Cartesian coordinate system 
1 2,x x is introduced. Axis 1x  directed tangential to the connection line of elements constituting 

wedge. At the wedge vertex state parameters (stresses, strains, displacements) of representative vol-
umes (singular points) are subject to the following restrictions: 

а) at the area element with the normal n are set normal and tangential stresses 

 

'n n n nps t t= =  (2) 
 

b) at the area element with the normal m  the tangential stress vanishes  
 

' 0mt =  (3)
 

and the projection value of the displacement vector u to the direction m  

 

0u m⋅ = (4)
 

c) the following is performed on the line of elements 1,2 connection 
1) stress continuity condition  

 

(1) (2)
12 12 12s s s= =     (1) (2)

22 22 22s s s= =  (5)
 

2) strain continuity condition (the equality of relative extensions of linear elements directed along 
the connection line) 
 

(1) (2)
11 11e e=  (6)

 

3) displacement continuity condition. 
Conditions (2), (3), (5), (6) are recorded by the system of linear inhomogeneous equations rela-

tively to the parameters (1) (2)
11 11 12 22, , ,s s s s  

 

(1) 2 2
11 12 22sin 2 sin cos cos nps a s a a s a+ + =  

(1) 2 2
11 12 22sin cos (cos sin ) sin cos ns a a s a a s a a t- - - + =  

(2)
11 12 22sin cos cos2 sin cos 0s b b s b s b b- - =  

(1) (2) 1 2
11 11 22 2 1

1 2 1 2

1 1
( ) ( ) T

E E E E

n n
s s s w w- - - = - D  

(7)

 

The matrix determinant of the system of equations (7) can be written by the equation 
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1 2

1 2 2

1 2

1 1
cos2 sin cos cos2 sin cos

1 1
sin sin cos

E E

E E

a b b b a a

n n
a b b

é
êD = - + +ê
êë

æ ö ù- - ÷ç ú÷+ -ç ÷ç ú÷çè ø û

 (8)

 

The task is to find possible variants of equation system (7) solutions, depending on the load, as 
well as geometry and material parameters of the connected elements. Such solutions are specified 
constraints on parameters of the state in representative volumes adjoining the wedge vertex. In each 
variant to determine the type (classical, non-classical) of the respective SM task. 
 
3 THERMAL LOADING OF THE STRUCTURAL MEMBER 

In this item, it is accepted that parameters ,n np t  vanish in the column of free members of the 

equation system (7). 
 
3.1 Research of Solutions of Equations (7), Depending on the Rank of the Augmented Matrix 

Determinants iD  (i=1–4), obtained through sequential substitution of matrix columns of the equa-

tions system (7) by the free members column, have the values 
 

2
1 2 1

2 2 1

3 2 1

2
4 2 1

( ) cos sin cos

( ) sin (cos2 cos sin cos sin )

0.25( ) sin2 sin2

( ) sin cos sin

T

T

T

T

w w a b b

w w a b a b b a

w w a b

w w b b a

D = - - D

D = - D -

D = - D

D = - - D

 (9)

 

The analysis of equations (9) shows that there are five variants of wedge elements connections, 
in which all the determinants (9) vanish: 
 

1) / 2 / 2a p b p= =  2) / 2a p b p= =  3) / 2 3 / 2a p b p= =  

4) a p b p= =       5) 3 / 2 / 2a p b p= =  
(10)

 

At these values ,a b  the determinant D  (8) vanishes too. Let us note that determinants iD  (i 

= 1-4) (9) simultaneously vanish only at points (10). At the same time, the determinant (8) can 
vanish not only at these points. In this connection, such variants of the behavior of solutions of 
equations (7) are possible. 

1. Parameters ,a b  do not fall within the group (10), and the determinant (8) vanishes. The matrix 

rank of the equations system (7) does not coincide with the rank of the augmented matrix, equations 
are incompatible. In the present case, vanishing of the determinant (8) is a critical condition in the 
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following sense. When the combination of material and geometrical parameters included in the formula 
(8) is aimed at vanishing of the determinant, stresses in singular points increase with no limit. 

2. Parameters ,a b  do not fall within the group (10), the determinant (8) does not vanish, the 

system of equations (7) has the single solution: 
 

(1) (2)1 2 3 4
11 11 12 22s s s sD D D D= = = =

D D D D  
 

In this case, three components of the stress tensor (typically, two are set) and condition (4) turn 
to be set in the singular points for each element constituting the wedge. The number of defined 
conditions is redundant, the problem is non-classical. 

Parameters ,a b  fall within the group (10), determinants (8) and iD  (i=1–4) vanish. The fol-

lowing restrictions on state parameters in singular points correspond to each of variants (10): 
1) / 2, / 2a p b p= = . Ranks of the matrix and the augmented matrix are equal to three. From 

the equations (7) follow dependences 
 

(1) (2) 1 2
11 12 11 22 2 1

2 1 2

1
0 0 ( ) T

E E E

n n
s s s s w w

æ ö÷ç ÷= = - - - = - Dç ÷ç ÷çè ø
 (11)

 

Due to the fact that the equation (5) is true, conditions (11) represent five restrictions in singular, 
one more restriction (4). Set number of restrictions is redundant. Therefore, the problem under con-
sideration is non-classical. In the particular case, when between material parameters there is a de-
pendence  
 

2 1 1 2E En n=  (12)
 

the number of set restrictions in the singular point is reduced to five, nevertheless, the problem 
remains to be non-classical. 

2) / 2a p b p= =  The matrix rank of the equations system (7) coincides with the rank of the 

augmented matrix and is equal three. Dependencies between the stresses coincide with (11). Therefore, 
results of the preceding item are true. 

3) / 2 3 / 2a p b p= =  The matrix ranks of the equations system (7) and its augmented 

matrix coincide and are equal three. Restrictions on stress components at a singular point are repre-
sented by equations (11), therefore the results, given in item 1, are true for this case too. 

4) a p b p= =  The matrix rank of the equations system (7) is equal to three and is equal to 

the augmented matrix rank. Restrictions on the stress components derived from the equations (7) are 
written by equations 
 

(1) (2)
22 12 11 11 2 1

1 2

1 1
0 0 ( ) T

E E
s s s s w w= = - = - D  (13)

 

Taking into account equations (4), (5), the number of set independent restrictions on stress com-
ponents in singular points is redundant, the task is non-classical. 
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5) 3 / 2 / 2a p b p= =  The matrix rank of the equations system (7) and its augmented matrix 

coincide and are equal to three. Restrictions on the state parameters in singular points are set by 
equations (11), therefore analysis results of the solution of equations (7) are the same as  
in the item 1. 
 
3.2 Particular Cases of Bonding Elements of the Wedge 

It is preferable to carry out the analysis of conditions of vanishing determinant (8) numerically, due 
to a significant number of parameters determining it. At the same time, the analytical method effec-
tive in the often met in the practice cases of bonding elements 1, 2 of the wedge (Figure 1).  

Realized below approach to the analysis of solution of equations (7) can be used to detect the 
combination of critical parameters of the wedge elements connection and in other cases. 

1) =α β.  

Determinant (8) becomes 
 

1 2 2

1 2 1 2

1 11 1
cos2 sin sin cos

E E E E

n n
a a a a

éæ ö æ ö ù- -÷ ÷ç çê ú÷ ÷D=- + + -ç ç÷ ÷ç çê ú÷ ÷ç çè ø è øë û
 (14)

 

Two equations follow from the equation 0D =  
 

sin cos 0a a= (15)
 

1 2 2

1 2 1 2

1 11 1
cos2 sin 0

E E E E

n n
a a

æ ö æ ö- -÷ ÷ç ç÷ ÷+ + - =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (16) 

 

Within the area of admissible values a(0 a p< £ ) the equation (15) has roots 
 

/ 2a p a p= = (17)
 

The solution of equations (7) at such angles a is considered in the item 2.1. 
Equation (16) within the area of admissible values a has two roots determined by equations 

 

1

2
1 2

1 2
1 2 1 2 2 1

sin sin
3 ( )

E E

E E E E
a a

n n

ì ü+ï ïï ï= = í ýï ï+ + -ï ïî þ
 

1

2
1 1 2 2 1

1 2
1 2 1 2 2 1

2 ( )
cos cos

3 ( )

E E E

E E E E

n n
a a

n n

ì ü+ -ï ïï ï= - = í ýï ï+ + -ï ïî þ
 

(18) 

 

If 1 2( ) 0Tw w- D ¹ , angles (18) of the wedge bonding are to be considered critical, since in this 

case the matrix rank of the equations system (7) turns out to be less than the rank of the the aug-
mented matrix. Therefore, when a jointing members material parameters combination approach to 

the equations performing (18), the solution of equations (7) increases with no limit. But if 1 2( )w w=  
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or 0TD = , the system of equations (7) turns to be homogeneous, its rank at angles (18) is equal to 
three and, hence, three components of stresses can be expressed through the fourth, for example, so  
 

(1) (2)2 2
11 22 11 22 12 22( 2)i i ictg ctg ctgs a s s a s s a s= = - - = - (i=1,2) (19)

 

Conditions (19), (4) and (5) at the wedge vertex represent six independent restrictions on the 
state parameters. This task is classical. If in the case under consideration (a b= ), the angle a is not 

determined by equations (17), (18), the matrix rank of the equation system (7) is equal to four. 

Therefore, (in the case 1 2( )w w=  or 0TD = ) this system has zero solution only. 
 

(1) (2)
11 11 12 220 0 0 0s s s s= = = =  (20)

 

Equations (20) jointly with (4) and (5) impose seven restrictions on the state parameters at the 
singular point. The number of restrictions exceeds the number of restrictions set in the classical case, 
which is equal to six. 

2) + =α β π / 2 .  

Determinant (8) becomes 
 

1 2 2

2 1 1 2

1 11 1
cos2 sin sin cos

E E E E

n n
a a a a

éæ ö æ ö ù- -÷ ÷ç çê ú÷ ÷D = - - -ç ç÷ ÷ç çê ú÷ ÷ç çè ø è øë û
 (21)

 

The equation 0D =  falls into two 
 

sin cos 0a a= (22)
 

1 2 2

2 1 1 2

1 11 1
cos2 sin 0

E E E E

n n
a a

æ ö æ ö- -÷ ÷ç ç÷ ÷- - - =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (23) 

 

Equation (22) in the variation range (0 / 2)a a p< <
 has no roots. From the equation (23) 

follows 
 

2

2 1

1
sin

(1 ) (1 )

k
a

k n n
-

=
+ - +

 1

2

E
E

   (24)

 

The solution of the equation (24) exists under the condition (taking into account the variation 
range a ) 
 

2 1

1
0 1

(1 ) (1 )

k
k n n

-
< <

+ - +
 (25)

 

Inequality (25) is performed if all conditions from any one of the following groups are true: 
 

1 1

2 2

1
1

1

n n
k k k

n n
+

> > >
+

 (26)
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1 1

2 2

1
1

1

n n
k k k

n n
+

< < <
+

 (27)

 

At fulfillment of conditions (26) or (27) the equation (24) has one root within the area of admis-
sible values a . This root determines the critical value of the angle of wedge bonding elements 1, 2, 

in the case when 1 2( ) 0Tw w- D ¹ , as at the combination of material parameters, tending to fulfill 

the equality (24), the solution of equations (7) tends to infinity. If 1 2( ) 0Tw w- D = , from the equa-

tion (7) follows the dependence between components of stresses 
 

(1) (2) 2
11 11 22 12 22ctg ctgs s as s as= = = -  (28) 

 

Equations (28) jointly with (4) and (5) impose six restrictions on components of stresses and 
displacements at the singular point. The same number of restrictions corresponds to the classical case. 

3) + =α β π.  

The determinant (8) in this case coincides up to a sign with the determinant (21). Equation 
0D =  is equivalent to relations (22), (23). Equation (22) within the area of admissible values 

(0 )a a p< <  has the single root / 2a p= , therefore, / 2b p= . Such a case of the wedge elements 

connection is considered in item 2.1. Equation (23) reduces to the equation (24), which has real 
solutions under restrictions on parameters (26) or (27). In the case under consideration of parameter 

a critical values, determining the singular behavior of the solution at 1 2( ) 0Tw w- D ¹  in the sin-

gular point, turns to be two: 
 

1/2

1 2
2 1

1/2
2 1

1 2
2 1

1
sin sin

(1 ) (1 )

cos cos
(1 ) (1 )

k
a a

k n n

kn n
a a

k n n

ì üï ï-ï ï= = í ýï ï+ - +ï ïî þ
ì ü-ï ïï ï= - = í ýï ï+ - +ï ïî þ

 (29) 

 

In the case, when 1 2( ) 0Tw w- D = , from equations (7) follows the dependences between stresses 

at the points ( 1,2)i ia a= = : 
 

(1) (2) 2
11 11 22 12 22i ictg ctgs s a s s a s= = = -  (30) 

 

Dependences (30) jointly with (4) and (5) determine the restrictions on the state parameters at 
singular points. The number of restrictions is equal to six, that coincides with the number of re-
strictions in the classical problem.  

4) + =α β 2π .  

The determinant (8) coincides with the expression (21). The condition of equality to zero of this 
determinant reduces to equations (22), (24). Equations (22) in the range (0 2 )a a p< < have roots.  
 

/ 2 3 / 2a p a p a p= = = (31)
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All these cases are considered in the item 2.1. The equation (24) at fulfillment of conditions (26) 
or (27) within the area of admissible values a has four roots, to which suit four pairs of angle values 

,a b  
 

1/2

1 2 3 4
2 1

1/2
2 1

1 2 3 4
2 1

1
sin sin sin sin

(1 ) (1 )

cos cos cos cos
(1 ) (1 )

k
a a a a

k n n

kn n
a a a a

k n n

ì üï ï-ï ï= = - = - = í ýï ï+ - +ï ïî þ
ì ü-ï ïï ï= - = - = = í ýï ï+ - +ï ïî þ

 (32)

 

In points ia (i=1,2,3,4) (32) determinants (9) at 1 2( ) 0Tw w- D ¹  are different from zero. There-

fore, the rank of the augmented matrix of the equation system (7) turns to be greater than the rank 
of the system. There is no solution of equations. Each of points (32) turns to be critical. 

If condition 1 2( ) 0Tw w- D =  is performed, equations (7) turn to be compatible. Dependences (30), 

where (i = 1,2,3,4), are true between stresses at points (32). The number of restrictions on parameters 
( ),kij kus  at the singular points is equal to six, which meets the classical case.  

 
4 LOADING OF THE STRUCTURAL MEMBER WITH SURFACE FORCES 

In the case under consideration there is no thermal load, therefore, in the column of free terms of the 

equation system (7) expressions containing the multiplier TD  vanish. Determinants ( 1,2,3,4)i iD = , 

obtained through sequential substitution of matrix columns of the equation system (7) by the free 
term column, are determined by expressions 
 

1 2
1

2 21

1 2 2

2 21

1 1
cos2 sin cos cos2 sin cos

1 1
2 sin cos sin cos cos2 cos

n

n

P
E EE

E EE

n n
a b b b a a

n n
t a a b b b a

éæ ö ù- ÷çê ú÷çD = - - + -÷çê ú÷ç ÷è øê úë û
é æ ö ù- ÷çê ú÷ç- - -÷çê ú÷ç ÷è øê úë û

 

1 2
2

2 11

1 2 2 2

2 11

1
cos2 sin cos (cos2 sin cos cos2 sin cos )

1
2 sin cos2 (sin2 sin cos cos2 cos )

n

n

P
E EE

E EE

n n
b a a a b b b a a

n n
t a b a b b b a

éæ ö ù÷çê ú÷çD = - - - + +÷çê ú÷ç ÷è øê úë û
é æ ö ù÷çê ú÷ç+ - - -÷çê ú÷ç ÷è øê úë û

 

1 2
3

21

1 2 2

2 11

1 1
sin cos sin cos

1 1 1
sin sin cos cos cos

n

n

P
EE

E EE

n n
a a b b

n n
t a b b b b

æ ö- - ÷ç ÷çD = - - -÷ç ÷ç ÷è ø
éæ ö ù- - ÷çê ú÷ç- - -÷çê ú÷ç ÷è øê úë û

 

(33) 
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4
21

2

21

1 1
cos2 sin cos cos2 sin cos

1 1
sin2 sin cos cos2 sin

n

n

P
EE

EE

a b b b a a

t a b b b a

æ ö÷ç ÷çD = - + -÷ç ÷ç ÷è ø
æ ö÷ç ÷ç- + ÷ç ÷ç ÷è ø

 

 

Below is given the study of possible restrictions on state parameters at the wedge vertex for 
considered in the previous item cases of its elements connection. 
 
4.1 Research of Solutions of Equations (7) in Cases when a b,  is Determined by Equations (10) 

At points , ( 1 – 5)i i ia b = , determined by equations (10), the matrix determinant (8) of the equation 

system (7) vanishes. Equations (7) will be compatible in each of points (10), if the load np  is restricted 

by the condition 
 

0nt =  (34)
 

Restriction (34) is due to the requirement of the stress tensor symmetry. In violation of the 
restriction (34) the matrix ranks of the equation system (7) and its augmented matrix in points (10) 
are different, so these points are points of the singular solution behavior. Further in this item the 
restrictions are built on state parameters at the wedge vertex under fulfillment restriction condition 
(34). 

1. ( / 2, / 2)a p b p= = . 

The matrix rank of system (7) and its augmented matrix is equal to three. Between stresses at 
the wedge vertex the following dependences are true 
 

(1) (2) 2 1 2
11 11 2 22 12

1 1 2

0n n

E
p p E

E E E

n n
s s s s

æ ö÷ç ÷= = - - =ç ÷ç ÷çè ø
 (35)

 

Equations (35), (5) and (4) represent six restrictions on parameters in the singular points. This 
number of restrictions is redundant. Task is non-classical. 

2. Similar results are obtained for points ( / 2, )a p b p= = , ( / 2, 3 / 2)a p b p= = , 
( 3 / 2, / 2)a p b p= = . 

3. ( , )a p b p= = . 

The matrix rank of the equations system (7) and its augmented matrix are equal to three. Re-
strictions in the singular point on the stress tensor components take the form 
 

(1) (2) 1 2
11 11 22 12

1 2 1 2

1 1
0n np p

E E E E

n n
s s s s

æ ö÷ç ÷- = - = =ç ÷ç ÷çè ø
 

 

The total number of restrictions exceeds the number of restrictions considered in the classical 
approach. 
 



2078     V. Pestrenin et al. / Stress State at the Vertex of a Composite Wedge, One Side of Which Slides Without Friction Along a Rigid Surface 

Latin American Journal of Solids and Structures 14 (2017) 2067-2088 

4.2 Particular Cases of Bonding Elements of the Wedge 

In this item the restrictions on state parameters at the wedge vertex are proposed for considered in 
the item 2.2 cases of its elements connection. 

1. =α β .  

The determinant  of the equation system (7) reduces to the form (14) and vanishes in points 

(17), (18). Determinants ( 1,2,3,4)i iD = , corresponding to the augmented matrix of the equation 

system (7) are written in the form 
 

, ( 1,2,3,4)i n i n ip if t yD = + =  (36)
 

where  
 

2 2 1 2
1

2 1 2

2
sin cos (sin cos )

E E E

n n
f a a a a

é æ öù÷çê ú÷= - + -ç ÷çê ú÷çè øë û
 

2 2 1 2
2

1 2 1

2
sin cos (sin cos )

E E E

n n
f a a a a

éæ ö ù÷çê ú÷= - - - -ç ÷çê ú÷çè øë û
 

2 2 1 2
3

1 2

1 1
sin cos

E E

n n
f a a

é ù- -ê ú= - -ê ú
ë û

 

2 2
4

1 2

1 1
sin cos (sin cos )

E E
f a a a a

é ù
ê ú= - +ê ú
ë û

 

2 2 2 2 1 2 2
1

2 2 1 2

2 1
cos sin (sin cos ) 2 sin

E E E E

n n
y a a a a a

é æ ö ù÷çê ú÷= - + - + -ç ÷çê ú÷çè øë û
 

2 2 2 1 2 2 2 2 2 2
2

1 2 1 1

2 1
sin (sin cos ) sin cos cos (sin cos )

E E E E

n n
y a a a a a a a a

æ ö÷ç ÷=- - - - - -ç ÷ç ÷çè ø
 

1 2 2 2 2
3

1 2 1 2

1 1
sin cos sin cos sin

E E E E

n n
y a a a a a

éæ ö ù÷çê ú÷= - + +ç ÷çê ú÷çè øë û
 

2 2 2 2
4

2 1

1 2
sin (sin cos ) cos

E E
y a a a a

é ù
ê ú= - -ê ú
ë û

 

(37)

 

The following cases of the equation system (7) behavior are possible: 
а) If the determinant 0D¹ , the system of equations (7) has the single solution 

 

(1) (2)1 2 3 4
11 11 12 22s s s s

D D D D
= = = =

D D D D
 (38) 
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The number of independent restrictions (38), (5) and (4) on the components of stresses and 
displacements at the wedge vertex is equal to seven. In the classical approach - six. Non-classical task. 

b) Cases, when the angle a is determined by equations (17), are considered in the item 3.1. 
c) The angle a is determined by the equations (18). The augmented matrix rank of the equation 

system (7) will be equal to the matrix rank of the system (equal to three), when all the determinants 
(36) vanish, i.e. 
 

0 ( 1,2,3,4)n i n ip if t y+ = =  (39)
 

Equations (39) form the system of four linear uniform equations relatively to the components of 

the stress vector ,n np t . The matrix rank of this equation system at the values 1 2,a a , determined 

by relations (18), is equal to one.  
Hence, equations (39) in this case turn to be linearly dependent by pairs.  
Therefore, any of them can be considered as the restriction on the load stipulating the compati-

bility of equations (7). If this condition is performed, from equations (7) follow relationships between 
stress components at the wedge vertex  
 

(1) 2 2
11 22 22( cos )(1 ) 2( sin cos )n np ctg ctgs s a a t s a a a= - - - -  

(2) 2 2
11 22 22( cos )(1 ) 2( sin cos )( )n np ctg tg ctgs s a a t s a a a a=- - - - - -  

2
12 22 22( cos ) sin cosn np ctgs s a a t s a a= - + -  

(40) 

 

Dependences (40), (5) and (4) - six restrictions on stress components and displacements at singular 
points. This number of set restrictions corresponds to the classical case. If components of the stress 

vector do not perform the equations (39), the system of equations (7) at values 1 2,a a  is incompatible. 

These angles should be regarded as critical angles of bonding elements, as when material parameters 
tend to fulfillment of equations (18), stresses in representative volumes close to the wedge vertex 
increase with no limit. 

2. + =α β π / 2.   

The determinant (8) in this case is expressed by formula (21) and at the fulfillment of conditions 
(26) or (27) vanishes at the single value of the angle a , equal to *a , determined by the equation 

(24). Determinants ( 1,2,3,4)i iD = , obtained by the sequential substitution of columns of the matrix 

determinant of the equation system (7) by columns of its free members are represented by equations 

of the form (36), wherein parameters ,i if y  are determined according to formulas 
 

1 2
1

1 2

cos2 sin cos ,
E E

n n
f a a a

æ ö÷ç ÷=- -ç ÷ç ÷çè ø
      2 1 2 2

1
2 1 2

1
cos 2 sin

E E E

n n
y a a

é æ ö ù÷çê ú÷=- + -ç ÷çê ú÷çè øë û
 

2 1f f=                                         2 1 2 2
2

1 1 2

1
cos sin cos2

E E E

n n
y a a a

é æ ö ù÷çê ú÷=- + -ç ÷çê ú÷çè øë û
 

(41)
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1 2 2 2
3

1 2

1 1
sin cos ,

E E

n n
f a a

æ ö- - ÷ç ÷=- -ç ÷ç ÷çè ø
    1 2 2

3
1 2 1

1 1 1
sin cos sin

E E E

n n
y a a a

éæ ö ù- - ÷çê ú÷=- - -ç ÷çê ú÷çè øë û
 

4
1 2

1 1
cos2 sin cos ,

E E
f a a a

æ ö÷ç ÷=- -ç ÷ç ÷çè ø
      

2
2

4
1 2

2cos cos2
sin

E E

a a
y a

é ù
ê ú= - -ê úê úë û

 

 

The rank of the equation system (7) at the point *a  is equal to three. Hence, equations will be 

compatible at this a , if all the determinants iD  will vanish. That is equations (39) will be fulfilled, 

where ,i if y  are set by relations (41). Equations (39) represent the system of equations relatively to 

load parameters ,n np t . The matrix rank of this system at *a a=  is equal to one. Hence, equations 

(39) are in fact one condition imposed on parameters ,n np t , ensuring compatibility of equations (7) 

at the point *a . When fulfillment of conditions (39) between stresses at the singular point, the 
following dependences are performed 
 

(1) 2 2
11 22(1 ) 2n np ctg ctg ctgs a t a s a= - - +  

с с(2) 2 2
11 22(1 ) ( )n np ctg tg tg tgs a t a a s a= - - - +  

12 22n np ctg ctgs a t s= + -  

(42) 

 

The number of conditions (42), (5), (4) set at the singular point is equal to six, as in the classical 
task. If conditions (39) are not performed, equations (7) are incompatible. When material parameters 
of connected bodies lead to the fulfillment of the condition (24), stresses in adjacent to the wedge 
vertex representative volumes increase with no limit.  

3. + =α β π.   

The determinant (8) coincides up to a sign with the determinant (21). The condition 0D =  
falls into equations (22) and (23). Equation (22) within the area of admissible values a (0 )a p< <  

has the single root / 2a p= . Hence, the structure is set by angles / 2a p= , / 2b p= . Such a case 

of elements connection is considered in item 3.1. The equation (23) under restrictions on material 
parameters (26) or (27) has two roots, calculated according to the formulas (29). Determinants (33) 

are represented in the form (36), where functions ,i if y  in the considered case are set by expressions 
 

1 2
1

1 2

cos2 sin cos
E E

n n
f a a a

æ ö÷ç ÷= -ç ÷ç ÷çè ø
          2 1 2 2

1
2 1 2

1
cos 2 sin

E E E

n n
y a a

é æ ö ù÷çê ú÷= + -ç ÷çê ú÷çè øë û
 

2 1f f=                                           2 1 2 2
2

1 1 2

1
cos sin cos2

E E E

n n
y a a a

æ ö÷ç ÷= + -ç ÷ç ÷çè ø
 

1 2 2 2
3

1 2

1 1
sin cos ,

E E

n n
f a a

æ ö- - ÷ç ÷= -ç ÷ç ÷çè ø
      1 2 2

3
1 2 1

1 1 1
sin cos sin

E E E

n n
y a a a

éæ ö ù- - ÷çê ú÷= - -ç ÷çê ú÷çè øë û
 

(43) 
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4
1 2

1 1
cos2 sin cos

E E
f a a a

æ ö÷ç ÷= -ç ÷ç ÷çè ø
        

2
2

4
1 2

2cos cos2
sin

E E

a a
y a

é ù
ê ú= -ê úê úë û

 

 

At points 1 2,a a  (29) equations  
 

( ) ( ) 0 ( 1,2,3,4, 1,2)n i k n i kp i kf a t y a+ = = =  (44) 
 

represent the linearly dependent system of equations relative to parameters ,n np t . This means, that 

at each ( 1,2)k ka =  all the equations (44) are the same and represent restrictions on the load ,n np t , 

at which equations (7) are compatible. When fulfillment of such restriction between stresses at sin-
gular points, the following dependences (40) are performed.  

The number of restrictions on stresses at singular points corresponds to the classical case. If 

parameters of the load ,n np t  do not perform the restriction (44), points ( 1,2)k ka =  are critical. 

There is no solution of the equation system (7) in them. Components of stresses in the singular points 

at values a , tending to points ka , increase with no limit. 

4. + =α β 2π   

The determinant D  of the equation system (7) vanishes in points (31) and (32). Points a , 

which are on the list (31), are considered in item 3.1. Functions ,i if y  in representation of determi-

nants (33) in the form (36) coincide with expressions (43). In points ( 1,2,3,4)k ka = , determined by 

the equality (32), the system of equations (44) has the rank, equal to one. Therefore, in each of points 

( 1,2,3,4)k ka =  equations (44) turn to be one restriction on parameters ,n np t , ensuring the compat-

ibility of the equation system (7). When fulfillment of this restriction at points ( 1,2,3,4)k ka = , from 

equations (7) follow dependences between stresses (40). The number of restrictions (40), (5) and (4) 
corresponds to the classical case. If restriction (44) is not performed, equations (7) are incompatible 

at points ( 1,2,3,4)k ka = . In this case at a tending to ( 1,2,3,4)k ka = , stresses in the singular points 

tend to infinity. 
 
5 THE PROBLEM OF STATICS FOR THE COMPOSITE BODY COMPRISING SINGULAR POINTS, 

ITERATIVE METHOD OF ITS SOLUTION 

5.1 Statement of the Static Problem of Elasticity for a Body Comprising Singular Points. Uniqueness Theorem 

It was ascertained above that the task of SM comprising singular points becomes non-classical, when 
the number of restrictions on the state parameters in these points exceeds the number of restrictions 
prescribed by the classical statement. Here is given a formulation of the non-classical static problem 
for a linearly elastic body composed of two isotropic bodies by continuous bonding along the surface 

12S  (example Figure 1). Let V - volume of the composite body, S – its surface, *x  - set of singular 
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points. The body is subjected to mechanical and uniform thermal load. Mathematical model of this 
task includes: 
– equilibrium equations 
 

( ) 0 ( 1,2)k f k ⋅ S + = =  (45)
 

- dependences expressing the strain tensor through displacements  
 

( )( ) ( ) ( )1

2
k k k TE u u=  +   (46)

 

- physical equations of thermo elastic behavior 
 

( )( ) ( ) ( )2k k k
k k kE G T I Gw l m- D = + S  (47)

 

- boundary conditions in stresses 
 

( ) *k
nn p on x S if x xS⋅ S = Î ¹  (48)

 

- boundary conditions in displacements 
 

( )
0 * ,k

U Uu u on x S if x x where S S SS= Î ¹ È =  (49)
 

- conditions of the continuity of stresses and strains on the border 12S  of connected bodies 
 

0
12 * ( 1,2,..., )l lg g on x S if x x l L= Î ¹ =  (50) 

 

- restrictions on state parameters in singular points 
 

0 * ( 1,2,..., )m mh h on x x m M= = =  (51)
 

Designations: x  – radius-vector of body points;  – Hamiltonian operator; S  – tensor of 

stresses; I – the first invariant of the stress tensor; f  – density of the volumetric forces; ,k kl m  – 

material Lame's constants; np  – specified vector of stresses; 0u  – specified vector of displacements; 

,l mg h  – linear functions relative to state parameters; 0 0,l mg h  – constants, depending on the external 

impacts, L, M – the number of restrictions. It is required to determine the vector of displacements, 
tensors of stresses and strains performing relations (45) - (51). 

It is claimed that if the solution of the problem (45) - (51) exists, it is the only one. Indeed, let 
us assume that there are two different solutions performing all the equations of the task. For param-

eters, which are differences of these solutions ( ( ) ( ) ( ), ,k k kE uS   ), by subtracting equations (45) – (51) 

corresponding to different solutions, we obtain the relations 
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( ) 0k⋅S =
   

( )( ) ( ) ( )1

2
k k k TE u u=  +     

( ) ( ) ( )2k k k
k kE I Gl m= + S    

( ) 0 *kn in x S if x xS⋅ S = Î ¹  

( ) 0 *k
U Uu on x S if x x where S S SS= Î ¹ È =  

120 * ( 1,2,..., )lg on x S if x x l L= Î ¹ =  

0 * ( 1,2,..., )mh in x x m M= = =  

(52)

 

Equations (52) are equations of the elasticity problem for the composite body V, comprising a set 
of singular points *x . There is no external impacts in this problem, therefore the work of strains in 
the body V is equal to zero.  

Due to the positive determinateness of the quadratic form of the strain work, tensor components 
( )kE  vanish and according to physical equations tensor components ( )kS  are equal to zero. At that, 

all the function ,l mg h  vanishes too, since they are uniform within this problem. Thus, the problem 

(52) has only the zero solution, that proves the assertion. 
 
5.2 Algorithm of the Problem (45) – (51) Solution 

The fundamental difference of the problem (45) - (51) from problem for the elastic body with singular 
points in the classical setting lies in restrictions on state parameters (51). In the classical formulation 
the singular point it is not considered representative body volume, so any state parameters in it are 
not considered and, hence, restrictions for them can’t be formulated (equations of the form (51) do 
not take part in the formulation of the problem).  

Here the solution of the problem (45) - (51) for composite body V is constructed by iterative 
numerical-analytical method using mixed variation principle, wherein independent functions are dis-
placements and strains (suggested by authors in 2015). Displacements are searched in the class of 
continuous functions throughout the entire body V. Their first derivatives are continuous in members 
which constitute the body V. The null approximation is built by solving the problem with the finite 
element method in the classical formulation (restrictions (51) are not taken into account). On the 
specified finite element mesh the conditions (45) - (51) are represented by the equation 

=AU b (53)
 

where U– global vector of displacements, b– vector of the set constants. Displacements in nodes, 

where conditions (48) - (51) are set, form the vector PU . The vector U is represented by combination 

of smaller dimensionality vectors P l= ÈU U U . The matrix A is represented by the combination of 

two rectangular matrices P l= ÈA A A , in such a way, that the equation 
 

P P l l= -A U b AU  (54)
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becomes true. This equation is the base on which the iterative process ( ) ( 1)n n
P P l l

-= -A U b AU , 

n=1,2,… is organized. The matrix PA  of this system turns to be rectangular, the number of lines in 

it exceeds the number of columns, therefore, the solution of equations (54) exists only in the general-
ized sense (pseudo solution). At each step of successive approximations it is searched by the method 
of singular value decomposition (Forsythe.G.,1980). Under pseudo solution of equations (54) is un-
derstood either their single solution (if it exists), or a decision in the sense of the least mean square 

value of the residual vector ( )( )n -AU b . The vector ( )n
PU  is used as the boundary condition at building 

n-th approximation of the thermo elasticity problem solution. The decrease of the residual vector 
value in successive iterations is evidence of the iterative process convergence. The value of the residual 
vector characterizes the error of the fulfillment of set conditions in singular points. 
 
6 EXAMPLE. LOADING OF THE RECTANGULAR COMPOSITE PLATE 

The considered plate is composed of two isotropic elements 1,2 so that sum angles at the vertex A 
( / 2)a b p+ = . Side OA of the plate slides without friction along the rigid surface (Figure 2). Geo-

metric and material design parameters have the values: 1 1 .05 5 ,E e MPa=  2 0 .7 5 ,E e M P a=  1 0 .3,n =  

2 0 .4,n =  1
1 0.11 4 ,e cw -= -  1

2 0.85 5 ,e cw -= -  ОА=50 mm, 'AA  80 mm. The plate can be loaded 

by distributed forces with intensity of q=100 MPa on the upper side ' 'O A  ( 0TD = ) or subjected 
to the temperature change 100oTD = ( item 3.2, the case 2). 
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Figure 2: Composite plate. 

 
The critical value of the angle a , calculated according to the formula (24), is * 52.239oa = . 

When 0TD =  and *a a¹ , from equations (7) and conditions (5) follows the equality to zero of 
all stresses in singular points. In the classical approach, there is no such certainty, because the re-
striction (6) is not taken into account. The problem solution is constructed by the iterative numerical-
analytical method as described in item 5. Figures 3 – 5 show the calculation results. The largest 
normal stresses at the plate tension are realized in the vicinity of the vertex A on the side 'AA . These 
stresses for different angles a are shown in Figure 3. 
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When solving this problem by conventional methods, subjecting of the solution to all set re-
strictions fails. Figure 4 shows by the dashed line the solution obtained using the ANSYS package. It 
does not match restrictions which are imposed on state parameters in singular points. A significant 
difference of solutions is observed in the small neighborhoods of these points. Beyond small neighbor-
hoods the solution obtained by the iterative method, coincides with the classical one.  
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Figure 3: Normal stresses yy  on the side 'AA  

close to the point А at different α: 1– 40о; 

2 – 49 о; 3 – 64 о. q=100 MPa, 0T  . 

Figure 4: Normal stresses yy  on the side 'AA  close to 

the point А for α=40º: 1– solution by the iterative 

method; 2– solution in the classical setting. 

 
The degree of non-fulfillment of restrictions, set in singular points, is evaluated by the root-mean-

square deviation h of their values from the really set values. For the classical approach (FEM-AN-

SYS) this value was h =152.3% ( 0, 0q T¹ D = ), for the solution by the method of successive 

approximations – h =1.2%. Figure 5 shows at different values a stresses yys  nearby the point A on 

the side 'AA  at the thermal loading of the composite plate. 
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Figure 5: Normal stresses yys  on the side 'AA  close to the point А for different a :  

1– 40о, 2 – 49о, 3 – 51о,4– 53о, 5 – 55о, 6 – 64о. q=0, 100oT CD = . 
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It is seen that with the approach of the angle a to the critical value *a  stresses yys increase 

with no limit. In the case, if *a a= , 0q¹ , 0,TD =  the task becomes classical. Its solution can be 

built, for example, with the use of ANSYS engineering package.  

Figure 6a shows the surface of the stress yys level nearby the wedge vertex for this case. 

 
 

A
A

 

Figure 6: Surfaces of normal stresses yys  (MPa) in the neighborhood of the point А  

(wedge vertexes) ( 100 , 0q MPa T= D = ): а) *a a= ; b) *a a¹ (a = 40о). 

 
It is seen that there is no concentration of stresses in the neighborhood of the point A. For 

comparison, the solution for the case *a a¹ is given in the Figure 6b, when the stress concentration 
with the factor of 3 is realized in the neighborhood of the point A. 
 
7 CONCLUSIONS 

The new, consistent with postulates of continuum mechanics, the concept of SSS research nearby 
singular points is suggested. A singular point is interpreted as an elementary volume of a continuum 
with a characteristic size equal to the characteristic size of the real body representative volume. The 
feature of representative volumes shows itself in an excessive number (as compared to conventional 
boundary material points) of restrictions which are set in them. This circumstance makes tasks of 
mechanics for bodies with singular points non-classical. The formulation of the non-classical problem 
is given, the theorem of uniqueness of its solution is proved. The procedure of its numerical-analytical 
iterative solution is described. It is studied in detail the state parameters distribution nearby the 
plane wedge vertex, one of which sides slides without friction along the rigid surface. Combinations 
of material and geometric parameters, which meet the classical and non-classical settings of the prob-
lem, are detected. Criteria of the singular behavior of solutions in the neighborhood of the wedge 
vertex are formulated. The examples of SSS research in singular points and their vicinity of the 
rectangular composite wedge which is subjected to the thermal and mechanical load are showed.  
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Research results can be extended to other elements of constructs, containing singular points, and 
developed towards creating methods for solving non-classical tasks. Results of the study can be ex-
tended to other elements of the constructs containing the singular points, and advanced towards the 
establishment of methods for solving non-classical SM tasks.  

Calculations were carried out using the software package, implemented on the supercomputer 
Tesla-PSU (Research and Education Center of parallel and distributed computing, Perm State Na-
tional Research University). 
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