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Abstract 
This paper investigates the dynamic response of rectangular pre-
stressed membrane subjected to concentrated impact load based on 
multiple scale perturbation method. The governing equations of 
motion of nonlinear vibration are derived based on the Föppl large 
deflection theory and Galerkin method. By introducing different 
time scales to consider the process of vibration, the results of dy-
namic response are obtained by applying the multiple scale pertur-
bation method. Furthermore, the effects of pretension force, veloci-
ty of load and dimension of membrane on the dynamic response of 
membrane are discussed. The present work studies the problem of 
the dynamic response of prestressed membrane subjected to con-
centrated impact load in different time scales, and provides a more 
accurate theoretical model for design of membrane structure. 
 
Keywords 
Membrane structure; dynamic response; nonlinear vibration; multi-
ple scale perturbation method. 
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1 INTRODUCTION 

Membrane structures have been widely applied to construction engineering, aerospace engineering, 
mechanical engineering and other fields. In all of these engineering fields, it is inevitable to solve the 
vibration problems of membrane structures, especially for the case subjected to impact load such as 
hailstone, falling object and rainstorm, in which case the membrane structure may fail to perform 
the basic function, even structural destruction (Young et. al, 2005; Balkan and Mecitoglu, 2014). 
Thus, it is necessary to study the dynamic response of membrane structure under impact load. 
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In recent decades, the dynamic response of membrane structure under impact load has been 
widely investigated. Hallquist and Feng (1975) investigated the dynamic response of a uniform cir-
cular membrane subjected to a step pressure loading. The nonlinear second-order ordinary differen-
tial equations were established by applying the principle of virtual work, and sought by the Ray-
leigh-Ritz method. The results are solved by an implicit Newmark time integration scheme with the 
Newton-Raphson iterative technique. K. Nagaya (1978) treated the problem of finding the response 
to dynamic loads of a membrane with arbitrary shape. The boundary condition was expanded into 
a Fourier series, and the general solution of motion equation was obtained by the Laplace transform. 
Haddow et al. (1992) considered the finite amplitude wave propagation in a circular isotropic mem-
brane under a suddenly applied pressure. The governing equations in Lagrangian form were sought 
by the method of characteristics and a finite difference scheme. Kapoor et al. (2006) developed a 
finite element model of the flexible membrane structures to blast loads. Transient analysis was per-
formed based on the Newmark method and Newton-Raphson method. Consequently, the displace-
ment time histories and dynamic stresses were computed. Zheng et al. (2012) established the gov-
erning equations of vibration for orthotropic membrane under impact load based on the Föppl large 
deflection. The complex factors such as the geometrical nonlinearities, air damping and orthotropic 
property of material were considered. The equations were solved by applying the power series meth-
od and L-P/KBM perturbation method, and the results such as frequency and displacement time 
histories were obtained. Yang and Sultan (2016) introduced tensegrity-membrane systems, which 
were composed of bars, tendons and membranes, and studied the system dynamics based on the 
nonlinear finite element method. Simulations based on the dynamic relaxation technique were pre-
sented to understand the membrane behavior.  

In a word, a variety of methods, such as point collocation method (Kolsti and Kunz, 2013), fi-
nite element method (Chakravarty, 2012; Aksoylar et. al, 2012), variation principle (Eshmatov, 
2007), Rayleigh-Ritz (Belytschko and Lu, 1994), and perturbation method have been applied to 
investigate the problem of dynamic response of membrane structure under impact load (Liu et. al, 
2010). These methods are all derived and applied based on a single time scale, which can be used to 
describe the progress of vibration in the faster time scale such as 1s, 2s, … However, the interaction 
time between the impact load and membrane is remarkably short, and it has a difficulty in evaluat-
ing the vibration during interaction using only one time scale. Thus, another time scale is needed to 
introduce to describe the progress of vibration during impact progress in the lower time scale such 
as 0.001s, 0.002s… Then, the analytical result obtained can achieve higher accuracy, and the im-
proved algorithm can be applied in the field of design and maintenance (Greschik and Mikulas, 
2012). 

In this paper, the objectives are to study the dynamic response of the orthotropic membrane 
subjected to impact load using two time scales, and to propose a more accurate prediction method 
for estimating the dynamic behavior of membrane under impact load. The governing equations of 
motion are established based on the Föppl large deflection theory, and uncoupled by the Galerkin 
method. Then, the multiple scale perturbation method is applied to solve the uncoupled equations. 
Consequently, the analytical results of dynamic response are obtained. By comparing the theoretical 
results and experimental value, the theoretical model is validated. Furthermore, the effects of pa-
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rameters such as pretension force, velocity of load and dimensions of membrane on the dynamic 
response are discussed. 
 
2 THEORETICAL STUDY 

2.1 Formulation of the Problem 

The loading configuration is illustrated in Fig. 1. The x -axis and y -axis are along the in-plane 

directions and z-axis is along the thickness direction. An orthotropic rectangular membrane of 
thickness h and area with the length of a  and the width of b  is prestressed bi-axially normal to 
each edge. The pretension force along the directions of x  and y  is 0xN  and 0yN , respectively. 

Then, the stretched membrane is subjected to uniform impact load. The impact load is represented 
by a pellet, which has the velocity of 0v  and the mass of M . 

 

 

Figure 1: The rectangular membrane impact model. 

 
The position of impact load is located at the point 0 0( , )x y , and it can be expressed as : 

 

0 0( , , ) ( ) ( )( )p x y t F t x x y yd= - -  (1)
 

where: ( )F t  denotes the impact load; ( )xd  is the Dirac function. 

The simply supported boundary can be described as: 
 

( )
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w a y t w x b t

ì ìï ïï ïï ïí íï ïï ïï ïî î

= =
= =

 (2a,b)

 

where: w  is the deformation of out-plane on membrane; t  is the time of dynamic response. 
The membrane remains a plane before the impact load contacts. After the impact load contacts 

the membrane, the system formed by the load and membrane starts to move together. Therefore, 
the following initial conditions for the membrane: 
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According to the momentum theorem, the relation between impact load and deformation of 
membrane can be expressed as: 
 

2
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¶
 (4) 

 
2.2 Dynamic Governing Equations 

According to the Föppl large deflection theory and D’s Alembert’s principle, the damped forced 
vibration motion equation and consistency equation of orthotropic membrane can be derived as: 
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where: 1E  and 2E  are Young’s modulus in x  and y  direction, respectively; 0xN  and 0yN  are 

initial tension in x  and y  direction, respectively; xN  and yN  are additional tension in x  and y  

direction, respectively; r  is the aerial density of membrane; c  is coefficient of damping; j  is the 

stress function. 
The stress functions are introduced as followings: 
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The functions that satisfy the boundary conditions Eq. (2) are as (Eshmatov, 2007): 
 

1 1
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and 
 

2

1 1
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where: ( , )mnW x y  is the mode shape function; ( , )mn x yf  and ( )mnT t  are undetermined functions. 

The mode shape function can be assumed as: 
 

( , ) sin sinmn
m x n y

W x y
a b

p p
=  (9) 



1494     Z. L. Zheng et al. / Dynamic Response of Orthotropic Membrane Structure under Impact Load based on Multiple Scale Perturbation Method 

Latin American Journal of Solids and Structures 14 (2017) 1490-1505 

where: m  and n  are integer, and denote the sine half-wave number in x  and y , respectively. 

By substituting Eqs. (7-9) into Eq. (5b), one obtains: 
 

4 4 2 2 4

4 4 2 2
1 2

1 1 2 2
(cos cos )

2

m n m x n y
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f f p p p¶ ¶
+ = +

¶ ¶
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Assume the solution of Eq. (10) as followings: 
 

（ , y) = cos 3 2 3 2
1 2 3 4

2 2
x cos

m x n y
x x y y
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p p
f a b g g g g+ + + + +  (11)

 

By substituting Eq. (11) into Eqs. (2) and (10), one can obtain: 
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By substituting Eqs. (7-8) into Eq. (5a), the expression according to the Galerkin method (Liu 
et. al, 2013) can be obtained as: 
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The Eq. (12) can be handled as: 
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By substituting Eq. (4) into Eq. (13), one can introduce the little parameter 
2 / 1h h abe e= =   and replace ( )T t  with ( )y t . The simplified expression is obtained as follow-

ing: 
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2.3 Solutions of Governing Equations 

Different from the only one time scale such as 1s, 2s, …, applied to solve the vibration problem 
(Nayfeh, 1981), this paper introduces another slower time scale such as 0.001s, 0.002s, …, and uti-
lizes two time scales to solve the vibration problem based on the multiple scale perturbation meth-
od (Belytschko and Lu, 1994). The complex vibration problem can be handled more accurately by 
means of selecting two time scales. Besides the original scale 0T t= , the other slower scale 

1T te=  is introduced. Thus, the corresponding derivative can be obtained as: 
 

0 1

2
2
0 0 12

..., (a)

2 ... (b)
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dt
d
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e
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 (15a,b)

 

Expand ( )T t  in terms of e  as: 
 

0 0 1 1 0 1( ) ( ) ( , ) ( , )T t u T u T T u T Te= = +  (16)
 

By submitting Eq. (16) into Eq. (14), one can obtain: 
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Collect the same power of Eq. (17), and the simultaneous equations can be obtained as follows: 
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The general solution of Eq. (18a) can be solved as followings: 
 

0 0 0 0
0 1 1( ) ( )iT w iT wu AT e AT e-= +  (19)

 

where: 
1

2
iA De b= . 

By submitting Eq. (19) into Eq. (18b), one can obtain: 
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where: cc  stands for the conjugate complex. 
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The Eq. (18b) belongs to a linear equation of forced vibration. Thus, the general solution of cor-
responding homogeneous equation is assumed as: 
 

0 0 0 0
1

iT w iT wu Ae Ae-= +  (21)
 

In order to eliminate the singularity of equation, the general solution term and force term have 
to be orthogonal, namely, 
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Furthermore, one can obtain as follows: 
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Make the real and imaginary part be zero, respectively, and one can obtain: 
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The solutions of Eq. (24) are as follows: 
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Then, the solution of 1u  is as follows: 
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By submitting Eqs. (19) and (26) into Eq. (16), the displacement function is obtained as: 
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Consider the initial condition as follows: 
 

0 0 0 0
( )

( ) ,t t
du t

u t b v
dt= = ¢= =  (28)

 

where: 0b  and 0v ¢  are initial displacement and velocity, respectively. 

Based on the initial condition Eq. (28), one can obtain: 
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By submitting Eq. (29) into Eq. (27), the displacement function varying with time is obtained 
as follows: 
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By submitting Eq. (30) into Eq. (7), the displacement function varying with time and space is 
obtained: 
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The Eq. (31) presents the displacement-time relationship at any point during free vibration. By 
taking the first and second derivative of Eq. (31), the corresponding velocity and acceleration can 
be obtained. 
 
3 VERIFICATION WITH AN EXISTING MEMBRANE EXPERIMENT 

The experiment (Guo et. al, 2015) can be used to validate the analytical result. investigated the 
vibration of orthotropic rectangle membrane under impact load. The rectangle membrane, which 
has the plane dimension 1200 mm×1200 mm, was prestressed by the biaxial tensile stent. The ten-
sion in both directions was equal. The pretension force in the experimental scheme was divided into 
eight grades, followed by 1 kN, 2 kN, 3 kN, 4 kN, 5 kN, 6 kN, 7 kN and 8 kN. The Heytex mem-
brane as a brand of membrane building material is selected. The density of the membrane is 0.95 
kg/m2, and the thickness of the membrane is 0.8 mm. The material property of the membrane is 
orthotropic, which has the elastic modulus of 1720 Mpa along the warp direction and the elastic 
modulus of 1490 Mpa along the zonal direction. The impact load was simulated by a pellet. The 
radius of the pellet was 2.5 mm, and the mass of the pellet was 0.88 g. The vibration of membrane 
was collected and tracked by the noncontact laser displacement.  

The comparison of displacement histories curves obtained from theory with that obtained from 
experiment was presented in Fig. 2.The vibration condition was that the membrane was subjected 
to the pellet with 10 m/s velocity as the pretension force was 1 kN, 3 kN, 5 kN and 7kN. It can be 
seen that the process of vibration calculated from the proposed theoretical model shows good con-
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sistence with that obtained from experimental measurement, which means that the theoretical mod-
el can describe the process of vibration accurately. In addition, Fig. 3 shows theoretical results and 
experimental data on the maximal amplitude of membrane under the pretension force of 3 kN. 
Compared with the theoretical results using single time scale (Liu et. al, 2013), namely KBM per-
turbation method, the theoretical results using two time scales in this paper, namely multiple scale 
perturbation method matches better with that obtained from experiment. As is expected, the re-
sults in zero order can achieve a high precision. 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2: Comparison of the displacement histogram between theoretical  

and experimental results: (a) 1kN; (b) 3kN; (c) 5kN; (d) 7kN. 



Z. L. Zheng et al. / Dynamic Response of Orthotropic Membrane Structure under Impact Load based on Multiple Scale Perturbation Method     1499 

Latin American Journal of Solids and Structures 14 (2017) 1490-1505 

 

Figure 3: Comparison of the maximal amplitude between theoretical and experimental results. 

 
4 RESULTS AND DISCUSSION 

4.1 Effects of Pretension Force on Dynamic Response 

4.1.1 Effect of Pretension Force on Maximal Amplitude of Vibration 

Fig. 4 presents the relationship between maximal amplitude and pretension force. It can be found that 
the theoretical results fit well with experimental data. As is shown, the maximal amplitude increases 
significantly with the pretension force increasing within the range of 4 kN pretension force. When the 
pretension force varies over 4kN pretension force, the maximal amplitude tends to stable, and the 
influence of pretension force on maximal amplitude becomes little. The reason for this phenomenon is 
that the rigidity of outside plane is provided by the pretension force on the boundary (Jenkins and 
Korde, 2006). The rigidity of outside plane increases with the pretension force increasing. Thus, the 
dynamic response of membrane including the maximal amplitude decreases accordingly. 
 

 

Figure 4: Maximal amplitude of vibration at center point curves versus  

pretension force with different velocity of impact load. 
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4.1.2 Effect of Pretension Force on Maximal Velocity of Vibration 

Fig. 5 presents the relationship between maximal amplitude and pretension force. It can be found 
that the theoretical results fit well with experimental data. As is shown, the maximal amplitude 
increases significantly with the pretension force increasing within the range of 4 kN pretension force. 
When the pretension force varies over 4kN pretension force, the maximal amplitude tends to stable, 
and the influence of pretension force on maximal amplitude becomes little. The reason for this phe-
nomenon is that the rigidity of outside plane is provided by the pretension force on the boundary. 
The rigidity of outside plane increases with the pretension force increasing. Thus, the dynamic re-
sponse of membrane including the maximal amplitude decreases accordingly. 
 
 

 

Figure 5: Maximal velocity of vibration at center point curves versus  

pretension force with different velocity of impact load. 

 
 
4.1.3 Effect of Pretension Force on Maximal Acceleration of Vibration 

Table 1 lists the maximal acceleration at center point with different pretension force. By taking the 
second-order derivative of the Eq. (47), the theoretical result of acceleration can be obtained. Unlike 
the rules of velocity, the maximal acceleration increases obviously with the pretension force increas-
ing. This can be explained that, the increasing pretension force leads to more and more localized 
vibration, which brings out the increasing maximal acceleration. Nevertheless, the increasing trend 
becomes slow gradually until stable. When the pretension force varies within 4 kN, the growth am-
plitude of maximal acceleration can reach 18.82 % averagely. Then, the growth amplitude drops 
into 8.54 % averagely with the pretension force over 4 kN. As a result, the dynamic response of 
membrane is more significant when the pretension force is in higher levels. 
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V 
(m/s) 

Pretension force (kN) 

 1  2  3  4  5  6  7  8  

5 

Theory(m/s2) 52.37 79.68 93.78 106.05 117.63 128.35 138.43 147.88 

Exp.(m/s2) 54.25 82.65 95.28 110.32 124.32 135.65 156.20 156.95 

Error(%) 3.59 3.73 1.60 4.03 5.69 5.69 12.84 6.13 

∆a/a(%) - 52.15 17.70 13.08 10.92 9.11 7.85 6.83 

10 

Theory(m/s2) 126.05 161.37 188.65 213.07 235.83 257.14 277.27 296.12 

Exp.(m/s2) 130.22 165.95 195.23 220.74 228.25 260.22 298.54 300.24 

Error(%) 3.31 2.84 3.49 3.60 -3.21 1.20 7.67 1.39 

∆a/a(%) - 28.02 16.91 12.94 10.68 9.04 7.83 6.80 

15 

Theory(m/s2) 197.87 246.65 286.21 322.00 354.99 386.72 416.87 445.00 

Exp.(m/s2) 205.84 249.32 300.24 330.55 386.54 400.21 450.28 450.32 

Error(%) 4.03 1.08 4.90 2.66 8.89 3.49 8.01 1.20 

∆a/a(%) - 24.65 16.04 12.50 10.25 8.94 7.80 6.75 

Note: aD  denotes the difference of theoretical acceleration value between two adjacent pretension force, namely 

1i ia F Fa a
+

D = - ; /a aD  denotes the amplitude of theoretical acceleration value between two adjacent pretension force, 

namely 
1

/ ( ) /
i i ia F F Fa a a a
+

D = - . 

Table 1: Verification in acceleration with different pretension force. 

 
4.2 Effects of Velocity of Impact Load on Dynamic Response 

4.2.1 Effect of Velocity of Impact Load on Maximal Amplitude of Vibration 

Fig. 4 shows the maximal amplitude at center point under impact load with different velocity. The 
maximal amplitude increases about 64.6 % when the velocity of impact load rises from 5 m/s to 10 
m/s. Then, the growth amplitude reaches about 200.1 % when the velocity of impact load rises 
from 5 m/s to 15 m/s. It is obvious that the effect of velocity of impact load on maximal amplitude 
is considerable. 
 
4.2.2 Effect of Velocity of Impact Load on Maximal Velocity of Vibration 

Fig. 5 compares the maximal velocity during vibration when the impact load is different. It can be 
found that the maximal velocity of vibration increases nearly linearly with the velocity of impact 
load becoming larger. This demonstrates that the velocity of impact load is the key factor on the 
maximal velocity of vibration. 
 
4.2.3 Effect of Velocity of Impact Load on Maximal Acceleration of Vibration 

Table 1 presents the maximal acceleration under impact load with different velocity. Similar to the 
rules of maximal velocity, the maximal acceleration increases almost linearly when the velocity of 
impact load becomes larger. The growth amplitude of acceleration between two adjacent pretension 
forces tends to be stable when the velocity of impact load is large. 
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4.3 Effects of Dimension on Dynamic Response 

4.3.1 Effect of Dimension on Maximal Amplitude of Vibration 

Fig. 6 compares the maximal amplitude of membrane with different dimension at center point. It 
can be seen that the maximal amplitude for square membrane with the dimension of 1200 
mm×1200 mm is smaller than that for rectangle membrane with the dimension of 1200 mm×800 
mm. In this occasion, the area is reduced about 33 %, and the growth amplitude of maximal ampli-
tude of vibration is averagely 35.7 %. This is because the membrane impacted by impact load starts 
to vibrate. Meanwhile, the kinetic energy of impact load is transformed into potential energy of 
membrane by means of the deformation on outside surface. Then, the vibration continues for some 
time, and ends at last due to the damping. During this time, the transformation between kinetic 
energy and potential energy in membrane repeats along with process of vibration. The amplitude of 
vibration represents the potential energy. Consequently, when the vibration area of membrane is 
larger in same occasion, the potential energy per area is less, and the amplitude of vibration be-
comes smaller. 
 

 

Figure 6: Maximal amplitude of vibration at center point curves versus dimension of membrane. 

 
4.3.2 Effect of Dimension on Maximal Velocity of Vibration 

Fig. 7 shows the maximal velocity of vibration at center point with different dimension. The maxi-
mal velocity of vibration increases obviously with the dimension reduces. The dimension of mem-
brane reduces from 1200 mm×1200 mm to 1200 mm×800 mm, and the maximal velocity increases 
averagely 52.17 %. Similar to with the rules of amplitude, the reduction of vibration area causes the 
increase of potential energy per area and velocity during vibration. 
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Figure 7: Maximal velocity of vibration at center point curves versus dimension of membrane. 

 
 
4.3.3 Effect of Dimension on Maximal Acceleration of Vibration 

Fig. 8 shows the maximal acceleration of vibration at center point with different dimension. The 
maximal acceleration increases averagely 106.5 % along with the reduction of area, which reduces to 
1200 mm×800 mm from 1200 mm×1200 mm. The growth amplitude is significant. This can demon-
strate that the dimension of membrane affects the dynamic response rather obviously. 
 
 

 

Figure 8: Maximal acceleration of vibration at center point curves versus dimension of membrane. 
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5 CONCLUSIONS 

In this research, the dynamic response of membrane subjected to the impact load was studied. The 
vibration governing equations were derived by the Föppl large deflection theory, and simplified by 
the Galerkin method. Then, the multiple-scale perturbation method is applied to solve the simpli-
fied vibration equations by introducing different time scales. Consequently, the analytical solutions 
of dynamic response parameters, such as maximal displacement, amplitude, velocity, acceleration, 
were obtained. Some significant conclusions can be drawn as following: 

 •The theoretical model proposed can predict the dynamic response of the rectangular pre-
stressed membrane subjected to concentrated impact load accurately. 

 •When the pretension force varies within 4kN, the maximal amplitude of vibration reduces 
obviously with the pretension force increasing. However, when the pretension force exceeds 
over 4kN, the maximal amplitude tends to be stable with the increase of pretension force. 
Moreover, the increase of pretension force can lead to the local vibration. Thus, the maximal 
acceleration increases obviously. 

 •The dynamic response of membrane is affected significantly by velocity of impact load. Each 
parameter increases almost linearly along with the increase of velocity of impact load. In ad-
dition, the reduction of dimension of membrane can increase the dynamic response rather ob-
viously. 
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