
1183 

Abstract 
In this study, the discrete-time Volterra series are used to update 
parameters in a nonlinear finite element model. The main idea of the 
Volterra series is to describe the discrete-time output of a nonlinear 
system using multidimensional convolutions between the Volterra 
kernels represented in a Kautz orthogonal basis and the excitations. 
A metric based on the residue between the experimental and the 
numerical Volterra kernels is used to identify the parameters of the 
numerical model. First, the identification of the linear parameters is 
performed using a metric based only on the first order Volterra ker-
nels. Then the nonlinear parameters are identified through a metric 
based on the higher-order kernels. The originality of this nonlinear 
updating method stems from the decoupling of linear and nonlinear 
parameters and the use of global nonlinear model. In order to put in 
light the applicability of this technique, this work focus on the iden-
tification of the parameters in a nonlinear finite element model of a 
beam that was preloaded by compression mechanism. This work 
shows that the updated numerical model was able to represent the 
behaviour observed in the experimental measurements. 
 
Keywords 
Discrete-time Volterra series, Kautz filters, model updating, nonlin-
ear finite element model, nonlinear identification, sensitivity. 
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1 INTRODUCTION 

In many cases, the dynamical behaviour is needed to design a mechanical system. Moreover, the 
knowledge of the dynamical behaviour of a structure is important to control its integrity and to 

Philippe Bussetta a 

Sidney Bruce Shiki b 
Samuel da Silva c 

 
a INEGI, Composite Materials and  
Structures Research, Institute of Me-
chanical Engineering and Industrial  
Management, Porto 4200-465, Portugal. 
pbussetta@inegi.up.pt 
b UFSCar - Federal University of São 
Carlos, Mechanical Engineering  
Department, Rodovia Washington Luís, 
km 235, Zip Code: 13565-905, São  
Carlos, SP, Brasil. bruce@ufscar.br 
cUniversidade Estadual Paulista - Unesp, 
Faculdade de Engenharia de Ilha 
Solteira, Departamento de Engenharia 
Mecânica, Av. Brasil, 56, Zip Code: 
15385-000, Ilha Solteira, SP, Brasil. 
samuel@dem.feis.unesp.br 

 
http://dx.doi.org/10.1590/1679-78253853 

 
Received 21.03.2017 
In revised form 21.04.2017 
Accepted 25.04.2017 
Available online 04.05.2017 



1184     P. Bussetta et al. / Updating of a Nonlinear Finite Element Model Using Discrete-Time Volterra Series 

Latin American Journal of Solids and Structures 14 (2017) 1183-1199 

predict its service life. In the practical systems, nonlinear effects due to large displacements, gaps, 
jumps, discontinuities, etc. are very common (e.g. Worden and Tomlinson (2001)). The nonlinear 
finite element method is a very powerful tool to study the nonlinear vibrations. Nevertheless, it is not 
easy to identify the parameters of the nonlinear model due to the uncertainties in the modelling of 
the experimental system (e.g. the mechanical properties, the boundary conditions). Despite of the 
important number of investigations, the nonlinear model updating techniques are not mature as the 
classical linear ones. 

A bibliography review on the state of the art nonlinear system identification techniques in 
structure dynamics is presented by Noël and Kerschen (2017). Furthermore, a bibliography review of 
the nonlinear updating methods is exposed by Bussetta et al. (2017). Generally, the updating methods 
are based on the minimisation of an objective function or a metric that represents the difference 
between the numerical results and the experimental data. This objective function can use data in the 
frequency domain or in the time domain. The Volterra series can be used to defined this objective 
function (e.g. Wu and Kareem (2014); Guo et al. (2013)). In the paper of Shiki et al. (2012) the 
authors made a numerical comparison of a nonlinear model updating technique based on Volterra 
series and proper orthogonal decomposition. The last technique showed severe limitations, especially 
when considering higher levels of excitation of a model with lumped polynomial stiffness while the 
Volterra series showed a better performance with higher levels of nonlinearity. Generally speaking, 
the updating methods are applied by assuming linear models of the structure with lumped non-
linearities, often assuming some kind of nonlinear springs as being the source of the nonlinear 
behaviour. Although this kind of model is able to reproduce the nonlinear phenomena (e.g. Kerschen 
et al. (2003)), it is actually a rough simplification of the structure. 
 
1.1 Originality of this Work 

The originality of this work stems from the updating of nonlinear finite element model of structures 
using the Volterra series, rather than using simplified linear elements with lumped nonlinearity. The 
dynamical behaviour of structure is modelled using nonlinear finite element model and experimental 
data are used to identify numerical parameters. These parameters are split in linear and nonlinear 
parameters. The value of the linear parameters is identified using linear error indicator which is 
computed with the linear response of Volterra series. The identification of nonlinear parameters is 
based on the full Volterra series. 
 
1.2 Outline 

This paper is organised in five sections. First, the experimental setup of a preloaded buckled beam is 
described (section 2). Then, the nonlinear finite element model is presented in the part 3. The section 
4 deals with the model updating based on the Volterra kernels expanded in a Kautz orthogonal basis. 
Finally, some remarks are summarised (section 5). 
 
2 EXPERIMENTAL SETUP 

This experimental setup was already used by Scussel and da Silva (2016) to experimentally identify 
the value of the first three Volterra kernels and by Shiki et al. (2014a) for damage detection. It has 
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been the subject of experimental study to identify cubic stiffness non-linearity of single degree-of-
freedom Duffing system Tang et al. (2015). The aim of this experimental setup is to study the vibra-
tion of a preloaded beam. The test structure is composed of a vertical aluminium beam with dimen-
sions of 460x18x2 mm (see figure 1). The bottom of the beam is clamped and a preload is applied on 
the top of the beam. The experimental setup has a screw in the top of the beam to apply an axial 
preload force. The preload was adjusted by trial and error until just before the buckling load of the 
beam Tang et al. (2015). This was done to obtain a stronger nonlinear effect since the linear stiffness 
is reduced by applying the preload Kovacic and Brennan (2011). The excitation of the beam is gen-
erated by an electrodynamic shaker attached at 65 mm from the bottom of the beam. A load cell is 
placed between the shaker and the beam to record the exciting force with an acquisition board system. 
The oscillation of the beam is measured using the velocity captured by a laser vibrometer in the 
middle of the beam. The sampling frequency is equal to 1024 Hz and 4096 samples are recorded at 
each experimental test. In previous papers, Scussel and da Silva (2016) and Shiki et al. (2014a) have 
demonstrated the nonlinear regime of vibration of this test bed using stepped sine test, FRFs and 
time-frequency plots. More details can be obtained in these references.  
 

 

 

(a) General view (b) Scheme 

Figure 1: Experimental setup. 

 
3 NONLINEAR FINITE ELEMENT MODEL 

The model of the preloaded buckled beam uses the classical updated Lagrangian formulation of the 
3D nonlinear finite element method. In each time step the displacement field is computed according 
to the momentum equation (see Wriggers (2008); Belytschko et al. (2014)): 
 

ρ
∂ଶܝ
∂tଶ

ൌ .׏	 ો ൅ ρ(1) ܊
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Where ܝ is the displacement, ρ is the mass density, ો is the Cauchy stress tensor and ܊ is the specific 
body forces. The material is modelled as visco-elastic using the Kelvin-Voigt law, then the value of 
the stress is given by:  
 

ો ൌ :ࡴ ઽ ൅ η ෡ (2)ࡰ
 

where ࡴ is the fourth-order tensor of the Hooke's law, ઽ the strain tensor, ࡰ෡ the deviatoric parts of 
the strain-rate tensor and η the coefficient of viscosity. Note that the evolution of the Cauchy stress 
tensor, ࣌, is computed thanks to the Jaumann's objective time derivative. The mesh used in this 
model is composed of linear hexahedral elements. The displacement fields is computed at each node 
of the elements. The deviatoric part of the Cauchy stress is evaluated using a 2x2x2 Gauss quadrature 
scheme. To overcome the locking phenomenon, the pressure is considered constant over the element 
and computed only at a central quadrature point. This is a so called selective reduced integration. 
After integration of the weak form of the equation (1) over the mesh, the system of equations becomes:  
 

ሷ࢛	ۻ ൅	ࡷሺ࢛, ሶ࢛ ሻ ᇣᇧᇧᇤᇧᇧᇥ࢛
ሶ࢛,࢛೔೙೟ሺࡲ ሻ

ൌ ۴ୣ୶୲ (3)
 

where ۻ is the mass matrix and ࡲ௜௡௧ and ۴ୣ୶୲ are the internal and external force vectors. ࡷ is the 
stiffness matrix. The dynamical behaviour is computed thanks to the generalised-ߙ method proposed 
by Chung and Hulbert (1993). With this time integration scheme, the unknowns are computed at the 
time ݐ ൅ Δݐ due to the value at the time ݐ. The equilibrium equation is rewritten pondering inertia 
forces by the parameter ߙெ, and internal and external forces by the parameter ߙி:  
 

ሺ1 െ α୑ሻۻ ሷ࢛ ௧ା୼௧ ൅ α୑ۻ ሷ࢛ ௧

൅ ሺ1 െ ிሻߙ ௜௡௧ࡲ
௧ା୼௧ ൅ ிߙ ௜௡௧ࡲ

௧

ൌ ሺ1 െ ிሻߙ ௘௫௧ࡲ
௧ା୼௧ ൅ ிߙ ௘௫௧ࡲ

௧

 (4)

 

Moreover, the relations between the displacements, the velocities and the accelerations are:  
 

௧ା୼௧࢛ ൌ ௧࢛ ൅ ሶ࢛		ݐ߂ ௧ ൅ Δtଶ ቆ൬
1
2
െ β൰ ሷ࢛ ࢚ ൅ β ሷ࢛  ቇ࢚ାઢ࢚

 
(5)

 

ሶ࢛ ௧ା୼௧ ൌ ሶ࢛ ௧ ൅ ሺሺ1	ݐ߂ െ γሻ ሷ࢛ ࢚ ൅ γ ሷ࢛ ࢚ାઢ࢚  (6)
 

Second order accuracy, unconditional stability and optimal numeric dissipation of high frequencies 
is obtained for:  
 

α୑ ൌ
2 ρஶ െ 1
ρஶ ൅ 1

 (7)
 

α୊ ൌ
ρஶ

ρஶ ൅ 1
 (8)

 

β ൌ
1

ሺρஶ ൅ 1ሻଶ
 (9)

 



P. Bussetta et al. / Updating of a Nonlinear Finite Element Model Using Discrete-Time Volterra Series     1187 

Latin American Journal of Solids and Structures 14 (2017) 1183-1199 

ߛ ൌ
1
2
3 െ ρஶ
ρஶ ൅ 1

 (10)
 

where ρஶ is approximately the percentage of numerical damping for the highest frequency of the 
structure.  
 
4 MODEL UPDATING 

Firstly, the test structure is submitted to a low level of amplitude force generated by the shaker in 
order to observe the linear response of the beam. Next, a larger amplitude force is used to study the 
nonlinear behaviour of the structure. The input used is a chirp signal sweeping up the frequency range 
from 20 to 50 Hz during the first half of the test (2 seconds). This frequency range comprises the first 
vibration mode which was considerably affected by the nonlinearity of the structure. During the 
second half of the test the shaker is turned off and the beam vibrates freely until it reaches the rest 
position. The low level of amplitude force and the high level one are respectively used to identify the 
first Volterra kernel and the higher-order Volterra kernels (i.e. the second and the third Volterra 
kernels). Both input signals are used to update the 3D nonlinear finite element model. Finally, a 
middle level of amplitude force generated by the chirp input signal as well as a low, a middle and a 
high level of a 35 Hz sinusoidal input signal1 are used to show that essentially the output signal from 
the updated nonlinear finite element model and the experimental one are similar. 

Figure 2 presents the scheme of the numerical model. This numerical model use the homemade 
code Metafor of the University of Liege (see the official website of Metafor 2017). Like the experi-
mental results, the solution of the numerical model is computed to the time of 4 seconds. In absence 
of any indication, the value of the numerical parameters are the following ones. The time step is 
1/1024 seconds, the percentage of numerical damping for the highest frequency, ρஶ, is 0.01. The mesh 
is composed of 9 600 hexahedral elements. The length, the width and the depth are respectively 
meshed with 300, 8 and 4 elements. The aluminium beam is modelled as visco-elastic material 
(Young's modulus: 58 GPa, Poisson's ratio: 0.33, density: 2 700 kg m-3, coefficient of viscosity: η ൌ 3 
MPa s). Unfortunately, an important unknown of this numerical model is the boundary condition on 
the top of the beam. Since in the used experimental setup it is not possible to identify the value of 
the preloaded force, it is assumed that the boundary conditions on the top of the beam are modelled 
with an constant force, F, a linear spring – with a stiffness noted ks – and a viscous damper – with a 
damping coefficient noted c (see figure 2). 
 

 

Figure 2: Scheme of the numerical model. 

 

                                                 
1 The aim of this signal is to excite essentially the first mode of the structure (experimentally identified around 37 Hz). 
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The constant force – F – is incorporated into the numerical model by a constant pressure apply 
on the boundary elements. The behaviour of the linear spring as well as the behaviour of the viscous 
damper are respectively modelled by linear spring and viscous damper elements connected to each 
node of this boundary. The value of the stiffness – kୱୣ – and the damping coefficient – cୣ – of these 
elements are divide by two if the connected node is on the edges and by four if it is on the corners. 
The stiffness and the damping coefficient of these elements are defined such as: ∑kୱୣ ൌ kୱ and ∑cୣ ൌ
c. 

The updating process will be dealt with these three parameters – F, ks and c – as well as the 
coefficient of viscosity –  η. These parameters can be split into the linear and the nonlinear parameters. 
The linear parameter – η – can be identified with only the linear behaviour of the structure. The 
nonlinear parameters – F, ks and c – have to be identified thanks to nonlinear vibration of the 
structure. 
 
4.1 Volterra Model 

The Volterra kernels are used to update the 3D nonlinear finite element model. The Volterra series 
are based on the fact that the output of a system (noted y) can be given by the sum of linear and 
nonlinear relations with the input (noted u). The output is described by:  
 

yሺkሻ ൌ yଵሺkሻ ൅ yଶሺkሻ ൅ yଷሺkሻ ൅ ⋯ (11)
 
where yଵሺkሻ is the linear term and y஗ሺkሻ with ߟ ൐ 1 are the nonlinear terms. Each term of the 

equation (11) can be written using the discrete-time Volterra series expansion:  
 

y஗ሺkሻ ൌ ෍ ⋯

୒భ

୬భୀ଴

	 ෍ ⋯,஗൫nଵࡴ , n஗൯

୒ಏ

୬ಏୀ଴

ෑuሺk െ n୧ሻ

஗

୧ୀଵ

 (12)

 
where ࡴ஗ is the ߟ-order Volterra kernel and N୨ with 1 ൑ 	j ൑ 	η are the size of this one. Problems of 

overparametrisation can appear due to the high numbers of unknowns (Nଵൈ⋯N୨ൈ⋯N஗) needed to 

represent the discrete Volterra kernels, ࡴ஗. To overcome the ill-posed and convergence problems, the 

Volterra kernel can be expanded in orthonormal basis. It means that each Volterra kernel can be 
approximated by it projection over an orthonormal basis. The ߟ-order Volterra kernel is written as a 
combination of orthonormal functions ߰஗,୧ౠ൫n୨൯ (see Marmarelis (2004)):  

 

⋯,஗൫nଵࡴ , n஗൯ ൎ ෍ ⋯

୎భ

୧భୀ଴

෍ ⋯,஗൫iଵ࡮ , i஗൯

୎ಏ

୧ಏୀ଴

ෑ߰஗,୧ౠ൫n୨൯

஗

୨ୀଵ

 (13)

 
where ࡮஗ is the projection of the ߟ-order Volterra kernel over this orthonormal basis. Obviously, the 

number of terms of the Volterra kernels, J୨, is smaller than the number of terms with the direct 

computation (N୨ in equation (12)). 
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In the case of nonlinear oscillating system, the orthonormal Kautz functions can be used Kautz 
(1954). These functions can be represented in the frequency domain by:  
 

Ψ஗,ଶ୥ሺzሻ ൌ
ටሺ1 െ d஗ଶሻሺ1 െ b஗ଶሻz

zଶ ൅ b஗ሺd஗ െ 1ሻz െ d஗
ቈ
െd஗zଶ ൅ b஗൫d஗ െ 1൯z ൅ 1
zଶ ൅ b஗ሺd஗ െ 1ሻz െ d஗

቉
௚ିଵ

Ψ஗,ଶ୥ିଵሺzሻ ൌ
z െ b஗

ට1 െ b஗ଶ
Ψ஗,ଶ୥ሺzሻ

 (14)

 

where z is the complex variable, g ∈ ۤ1,⋯ , J஗/2ۥ and ܾ஗ and ݀஗ are parameters defined thanks to the 

pair of conjugate poles of the Kautz function (ܼ஗ and ܼ̅஗). These poles are linked to the sampling 

frequency of the time-domain signal (Fs) and the continuous pole, ܵ஗ (i.e. the natural frequency ߱஗ 

and damping ratio ߞ஗).  
 

b஗ ൌ
Z஗ ൅ Zത஗
1 ൅ Z஗ Zത஗

d஗ ൌ െZ஗	Zത஗

Z஗
S஗

ൌ
ൌ

݁ୗಏ/ிೞ

െζ஗ω஗ ൅ jω஗ට1 െ ζ஗ଶ

 (15)

 

Generally, the values describing the pair of conjugate poles of the Kautz functions (i.e. ߱஗ and 

 ஗) are close to the values representing the linearised system (i.e. the natural frequency and dampingߞ

ratio). The value in the time domain of ߰஗,୧ౠ is obtained by an inverse Z-transform of Ψ஗,୧ౠ. 

Finally, the value of y஗ can be written as:  
 

y஗ሺkሻ ൌ ෍ ⋯

୎భ

୧భୀ଴

	 ෍ ⋯,஗൫iଵ࡮ , i஗൯

୎ಏ

୧ಏୀ୧ಏషభ

ෑl஗,୧ౠሺkሻ

஗

୨ୀଵ

 (16)

 

where ݈஗,୧ౠ is the input signal filtered by the orthonormal Kautz function ߰஗,୧ౠ (i.e. the convolution 

between the input signal and the Kautz function):  
 

݈஗,୧ౠሺkሻ ൌ ෍ ߰஗,୧ౠሺn୨ሻuሺk െ n୨ሻ

୒ౠ

୬ౠୀ଴

 (17)

 

Since the Volterra model is linear with respect to the parameters, the relationship between the 
input filtered by the orthonormal Kautz functions, the output and the Volterra kernels can be rewrit-
ten as a simple matrix equation:  
 

	ܡ ൌ ડ ઴ (18)
 

where ડ is the matrix of the input signal filtered by the orthonormal Kautz functions and ઴ is the 
vector with the Volterra kernels considered in the truncation of the model. The Volterra kernels can 
be evaluated by the classical least squares method:  
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઴ ൌ ሺડ୘ડሻିଵડ୘(19) ܡ
 

For more information about the evaluation of Volterra kernels see Shiki (2016); Shiki et al. 
(2014b). 
 
4.2 Identification of the First Volterra Kernel – Updating of Linear System 

The experimental data acquired during the test with the low level of chirp signal is used to identify 
the value of the parameters – the coefficient of the viscous damper c, the preloaded force F, the spring 
stiffness ks and the material damping coefficient ߟ. This level of amplitude force corresponds to a 
voltage of 0.01 V applied in the signal generator. Figure 3 shows the value of the exciting force 
recorded during the test and applied in the numerical model. Due to the low level of amplitude force, 
the response of the beam is linear. Then, the metric based on the first Volterra kernel is used (i.e. 
using the output corresponding to the first Volterra kernel, see equation (16)):  
 

e୪୧୬ሺF, kୱ, c, ηሻ ൌ
ฮyଵ

୰ୣ୤ െ yଵ
୫୭ୢሺF, kୱ, c, ηሻฮ

ฮyଵ
୰ୣ୤ฮ

 (20)

 

Where 	௥௘௙ and 	௠௢ௗ refer respectively to the experimental data and the numerical model. 
 

 

Figure 3: Value of the exciting force recorded during the test and applied  

in the numerical model (low level chirp input). 

 
Figure 4 presents the evolution of the linear error, e୪୧୬, versus the value of the preloaded force 

and the value of spring stiffness for different values of the coefficient of the viscous damper. This 
figure allows us to observe that the value of the preloaded force and the value of spring stiffness are 
linked. In addition, the value of the coefficient of the viscous damper, c, has only a weak influence 
over the value of the linear error. The minimal value of e୪୧୬ versus the value of the coefficient of the 
viscous damper and the corresponding value of the preloaded force and the spring stiffness are pre-
sented in table 1. The linear error is minimised by: c = 10 N s mm-1, F = 74 N and ks = 0 N/mm. 
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(a) For the coefficient of the viscous  
damper, c = 10 N s mm-1 

(b) For the coefficient of the viscous  
damper, c = 15 N s mm-1 

Figure 4: Value of the linear error, e୪୧୬, (i.e. based on the first order Volterra kernel) versus the value  

of the preloaded force and the value of spring stiffness, for the low level chirp input. 

 
 

c 
(in N s/mm) 

e୪୧୬ 
(in %) 

F 
(in N) 

ks 
(in N/mm) 

0 2.27 80.25 390 

5 1.76 82.75 540 

10 1.59 74.00 0 

15 1.61 77.00 180 

20 1.64 79.50 330 

25 1.67 81.50 450 

Table 1: The minimal value of the linear error, e୪୧୬ and the corresponding value of the preloaded force, F and the  
spring stiffness, ks versus the value of the coefficient of the viscous damper, c, for the low level chirp input. 

 
 

Figure 5 shows the evolution of the velocity measured by the laser vibrometer and the velocity 
computed at the same position by the updated numerical model (c = 10 N s mm-1, F = 74 N and ks 
= 0 N mm-1). The output of the updated model is near to the output of the experimental setup. 
Moreover, the output signal (figure 5) is quasi identical to the linear response of the Volterra model 
(figure 6) as far as the signal of the experimental setup and the numerical results are considered. The 
frequency response function (FRF) and the magnitude-squared coherence of both experimental setup 
and numerical model are presented in figure 7. In this figure, the output of the updated model and 
the output of the experimental setup are very similar. Consequentially, it is proved that with this 
input level, the system behaviour is essentially linear. 
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Figure 5: Response to the low level chirp excitation of the experimental setup and computed  

with the numerical model (F = 74 N, ks = 0 N mm-1 and c = 10 N s mm-1). 

 

 

Figure 6: Linear response of the Volterra model of system (y1) under the low level chirp  

excitation (F = 74 N, ks = 0 N mm-1 and c = 10 N s mm-1). 

 

 

(a) Frequency response function (FRF) (b) Magnitude-squared coherence 

Figure 7: Frequency response to the low level chirp excitation of the experimental setup and computed  

with the numerical model (F = 74 N, ks = 0 N mm-1 and c = 10 N s mm-1). 



P. Bussetta et al. / Updating of a Nonlinear Finite Element Model Using Discrete-Time Volterra Series     1193 

Latin American Journal of Solids and Structures 14 (2017) 1183-1199 

Finally, we considered that the value of the material damping coefficient is independent from the 
value of the others parameters. In this way, the value of the material damping coefficient is updated 
independently. Figure 8 presents the value of the linear error versus the value of the material damping 
coefficient. The linear metric is minimised for the value of the material damping coefficient of 3 MPa s. 
 

 

Figure 8: Value of the error based on the first Volterra kernel, e୪୧୬, versus the value of the  

material damping coefficient, for the low level chirp input. 

 
4.3 Identification of the Second and the Third Volterra Kernels – Updating of Nonlinear System 

The system is excited by higher level chirp signal to put in light its nonlinear behaviour. This signal 
corresponds to 0.1 V applied in the signal generator. Figure 9 presents the evolution of the value of 
the exciting force. 
 

 

Figure 9: Value of the exciting force recorded during the test and applied in the  

numerical model (high level chirp input). 

 
Another metric based on the second and the third Volterra kernels is defined to update the 

nonlinear model (i.e. using the output corresponding to the second and the third Volterra kernels):  
 

e୬୪୧୬ሺF, kୱ, cሻ ൌ
ฮyଶାଷ

୰ୣ୤ െ yଶାଷ
୫୭ୢሺF, kୱ, cሻฮ

ฮyଶାଷ
୰ୣ୤ ฮ

 (21)
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with yଶାଷ
∗ ൌ yଶ

∗ ൅ yଷ
∗. The minimum of this nonlinear error is different from the minimum of the linear 

error, ݁௟௜௡. The difference between both error functions can be explained by the fact that the value of 
these parameters – F, ks and c – have an influence on the linearised response as well as the nonlinear 
one. A new objective function is built to take into consideration the nonlinear behaviour of the struc-
ture as well as linear part:  
 

e୪୧୬ା୬୪୧୬ ൌ e୪୧୬ ൅ e୬୪୧୬ (22)
 

The minimum value of e୪୧୬ା୬୪୧୬ as well as the corresponding value of F and ks are presented in 
table 2 versus c. The minimum value is obtained for: c = 15 N s mm-1, F = 77 N and ks = 180 N/mm. 
 

c 
(in N s/mm) 

e୪୧୬ା୬୪୧୬ 
(in %) 

F 
(in N) 

ks 
(in N/mm) 

0 55.92 80.75 420 
5 18.44 82.75 540 
10 16.71 83.00 540 
15 16.67 77.00 180 
20 16.77 74.25 0 
25 19.16 74.25 0 

Table 2: The minimal value of e୪୧୬ା୬୪୧୬ and the corresponding value of the preloaded force, F and the spring  
stiffness, ks versus the value of the coefficient of the viscous damper, c, for the high level chirp input. 

 
Figure 10 presents the value of the velocity recorded by the laser vibrometer and the velocity 

computed by the updated numerical model. The output of the updated model is very similar to the 
output of the experimental setup. In addition, with this model updated thanks to e୪୧୬ା୬୪୧୬, the linear 
error, e୪୧୬ computed under the excitation of the low level chirp signal is close to the minimal value 
(see table 1). The FRF and the magnitude-squared coherence (figure 11) let us see that the numerical 
solution and the experimental data are close in the frequency domain. Moreover, the structure exhibit 
clearly a nonlinear behaviour. It can be verified that the components of both Volterra models (base 
on experimental data and using the updated numerical model) are also close (see figure 12). The 
nonlinear part of the Volterra model (yଶ and yଷ) is higher than the linear one (yଵ). This is a clear 
demonstration that under the high level chirp excitation the system exhibits a nonlinear behaviour. 
 

 

Figure 10: Response to the high level chirp excitation of the experimental setup and computed  

with the numerical model (F = 77 N, ks = 180 N mm-1 and c = 15 N s mm-1). 
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(a) Frequency response function (FRF) (b) Magnitude-squared coherence 

Figure 11: Frequency response to the high level chirp excitation of the experimental setup and computed  

with the numerical model (F = 77 N, ks = 180 N mm-1 and c = 15 N s mm-1). The FRF distortions  

of the plot indicate a nonlinear behaviour of the system. 

 

  

(a) y1 (b) y2 

(c) y3 

Figure 12: Output of the Volterra Model computed with the experimental data and to the updated numerical  

model (F = 77 N, ks = 180 N mm-1 and c = 15 N s mm-1), under the high level chirp excitation. 
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To put in a nutshell, the updating of the nonlinear finite element model is effected in two steps. 
First, the all parameters is evaluated thanks to the minimisation of the linear error (objective function 
using the first Volterra kernel). Then, only the nonlinear parameters are corrected by the minimisation 
of an objective function considering the three first Volterra kernels. The table 3 resume the value of 
the parameters identified versus the updating process and the objective function. 
 

updating process linear updating nonlinear updating 
objective function e୪୧୬ e୪୧୬ା୬୪୧୬ 

parameters 
 ߟ

(in MPa s) 
c 

(in N s/mm) 
F 

(in N) 
ks 

(in N/mm) 
value 3 15 77.00 180 

Table 3: Value of the parameters identified versus the updating process and the objective function. 

 
4.4 Validation of the Nonlinear Finite Element Model 

To validate the updated nonlinear finite element model, a medium level chirp input is used. This 
signal is generated by 0.05 V applied in the signal generator. Figure 13(a) presents the value of the 
exciting force. Figure 13(b) allows us to verify that the velocity computed by the updated nonlinear 
model is near to the one recorded by the laser vibrometer. 
 

(a) Value of the exciting force recorded during the test 
and applied in the numerical model 

(b) Value of the velocity recorded by the laser vibrometer 
and computed by the nonlinear finite element model 

Figure 13: Exciting force generated by the medium level chirp input and normal velocity in the middle  

of the beam recorded with the experimental setup and computed thanks to the numerical model. 

 
Another kind of signal is used to validate the updated nonlinear model. Three levels of 35 Hz 

sinusoidal signal are used – low, medium and high level. These input signals correspond respectively 
to 0.01, 0.05 and 0.1 V applied in the signal generator. The power spectral density (PSD) of both 
experimental and numerical data are presented in figure 14. These results show that the nonlinear 
finite element model is able to represent all harmonics in this range of frequencies (between 0 and 140 
Hz). The comparisons of PSDs of experimental data and PSDs of numerical results validate the 
updated nonlinear model. In the same way, this results prove that the model updating method based 
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on the Volterra kernels can be used for nonlinear finite element models with large number of degree 
of freedom. 
 

  

(a) Low level (b) Medium level 

(c) High level 

Figure 14: Power spectral density (PSD) of the experimental setup and computed thanks to the numerical model. 

 
5 FINAL REMARKS 

In this paper, a model updating method using the Volterra series is proposed for nonlinear finite 
element model with large number of degree of freedom. One of the main advantages of the Volterra 
series is that the relationship between the input ant the output can be split into a linear response and 
a nonlinear one. This model updating method make use of the Volterra series to simplify the proce-
dure. Consequently, this updating method is split in two parts. First, the linearised system (i.e. the 
nonlinear system under low amplitude of vibrations) is used to update the numerical model using the 
first order Volterra kernel. Then, the nonlinear parameters are updated using a high amplitude of 
vibrations and the higher-order Volterra kernels. This process is used to update nonlinear finite ele-
ment model of preloaded buckled beam thanks to data of experimental setup. Chirp input signals 
with low and high level of vibration are used to update the nonlinear finite element model. The 
updated nonlinear model is validated with a medium level chirp input and with three levels of sinus-
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oidal signal. These examples show that the updated nonlinear finite element model essentially repro-
duce the output of the experimental setup in the frequency range next to the first vibration mode 
which was strongly affected by the nonlinearity. In the way of reducing the computation time, the 
future study will be focused on the computation of the first Volterra kernel using the linearised 
numerical finite element model. 
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