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A stress-displacement solution for a pressure tunnel with im-
permeable liner in elastic porous media

Abstract

Considering the effects of the changes of the pore water

pressure around the opening, the construction sequence of

the tunnel and the interaction between the liner and the

surrounding geomaterial on the mechanical response of the

tunnel and in conjunction with the analyses of the continuity

and boundary conditions for the stress and displacement and

hydraulic conditions, the elastic problem for a deep pressure

tunnel with impermeable liner in a saturated elastic porous

media that obeys Terzaghi’s effective stress principle is in-

vestigated. The influences of the relative liner thickness and

rigidity and the relative distance of the point under inves-

tigation to the tunnel axis on the stress-displacement fields

for various combinations of the mechanical and geometric

parameters are evaluated and discussed.
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1 INTRODUCTION

With the development and upgrade of infrastructures, the demand for tunnel construction is

increasing all over the world. Therefore, an extensive amount work has been done on the

geomaterial-liner interaction of the tunnel based on elastic theory [7, 15].

When a tunnel is excavated under water-bearing geomaterial, seepage toward the tunnel

takes place and the hydraulic head distributions around the tunnel are changed. Water inflow

and water pressure controls are needed in the design, construction and exploitation of tunnels.

Uncontrolled water behaviour may cause additional loads on the liner, mechanical instability,

discomfort and adverse environmental impacts. Consequently, the loads imposed by the sur-

rounding geomaterial, the fluid pressure inside the tunnel, and the changes in pore pressure

in the surrounding geomaterial due to any leaks through the liner should be adequately con-

sidered in the liner design of a pressure tunnel. In addition, it is well-known that the internal

pressure in tunnel results in an expansion of the liner which then transfers part of the load

to the surrounding geomaterial. The pore water pressure in the surrounding geomaterial has

a double effect: first it counteracts the expansion of the liner caused by the inside pressure,
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and second it can change the stress field in the surrounding geomaterial around the tunnel

decreasing effective stresses. Even though some of the effects of pore water pressure on tunnel

support have been investigated [1, 3–6, 12–14, 16, 17], there are many aspects that require

further scrutiny; in particular a criterion for tunnel support is needed where groundwater flow

conditions are included.

One of the most important problems associated with tunneling is to determine the defor-

mation produced by tunnel excavation. Even though this is a key aspect of tunneling, due to

many complex factors affecting the solution, there are still a limited number of closed-form

solutions than can be used to predict the deformation produced by tunnel excavation. Em-

pirical or quasi-empirical methods are usually available. However, Chou and Bobet [8] note

explicitly in their paper that empirical methods have significant shortcomings: (1) they have

been developed or have been validated from a limited number of cases; (2) they should be

applied only to tunnels that fall within the scope of the cases from which the method was

developed; (3) only few soil and geometry parameters are taken into account; (4) they do not

consider construction methods; and (5) they cannot give the complete solution of a tunnel

with liner.

The present paper proposes an elastic stress-displacement solution for a deep pressure

tunnel with impermeable liner excavated in a saturated elastic porous geomaterial that obeys

Terzaghi’s effective stress principle [2, 18], as shown in Fig. 1. In all the analyses the following

assumptions are made:(1) the geomaterial and the liner are always elastic; (2) the permeability

of the geomaterial is homogeneous and isotropic; (3) the groundwater field is a steady-flow

seepage field; (3) the cross-section of the tunnel is circular; (4) plane strain conditions are

applicable at any cross-section of the tunnel; (5) the tunnel is deep enough so that the stress

distribution before excavation is homogeneous. Even though some assumptions may be too

restrictive, the method has the following advantages: (1) it is simple to use; (2) it can properly

model the tunnel construction sequence; (3) it can be used for preliminary design, which

facilitates a more advanced or detailed modeling of the tunnel.

2 PROBLEM STATEMENT

Consider an infinite elastic plane oxy (geomaterial made in elastic porous material, or Region

1) that is homogeneous, except for the presence of a deep circular lined tunnel subjected to

uniform internal pressure −qo (with qo a positive number and tensile stresses are considered as

positive in the work), or Region 2 (see Fig. 1). The elastic constants of the geomaterial are

denoted by G1 (shear modulus) and γ1 (Poisson’s ratio), and the polar coordinates in the oxy

plane by r and θ. It is assumed that the tunnel-axis is aligned with the direction of the third

out-of-plane z -axis. The inner and outer radii of the liner are denoted by a and t, respectively,

and its elastic constants by G2 and γ2. Axi-symmetry conditions for geometry and loading

will be assumed (i.e., gravity will be disregarded), so the problem in Fig.1 is representative of

the case of a deep tunnel excavated in elastic geomaterial subject to uniform initial stresses.

Here, we define t/a as the relative thickness of the liner and the relative rigidity of the liner,
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Figure 1 Lined circular tunnel subjected to total stresses (including in situ stress and water pore pressure).

which is defined as

Γ = G2

G1
(1)

In addition, as discussed in the main text, a dimensionless variable β is defined in terms of

the outer radius of the liner t and the radial distance r to the tunnel axis, as follows

β = t

r
(2)

Also, the solution is expressed in terms of the two Lame’s elastic parameters, λ and G

respectively, that are related to the Young’s modulus E and the Poisson’s ratio γ of the liner

and the geomaterial as follows

G = E

2(1 + γ)
(3)

and

λ = Eγ

(1 + γ)(1 − 2γ)
(4)

Prior to excavation, the total stresses and the pore water pressure in the geomaterial are

uniform and equal to −σo and −qow, respectively. The tunnel is then excavated and water is

drained from inside the tunnel, leading to the non-uniform pore water pressure distribution

shown in Fig.1, where qw = −qtw at the outer boundary of the liner and qw = −qow at and beyond

the radial distance r = r∗. The pore water pressure distribution is depicted by Regions I and

II in Fig.1, respectively. By using Terzaghi’s effective stress principle, the total stress can be

decomposed into effective stresses and pore water pressure and the equation can be written in

matrix notation as

σ = σ
′
+ qw (5)
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where σ represents a component of total normal stress, σ
′
the corresponding component of

effective normal stress, and qw the pore water pressure.

3 THE CLOSED-FORM FULL FIELD ELASTIC SOLUTION

According to Eq.(2), the radial distance r can therefore be expressed as follows

r = t

β
(6)

In view of the relationship (6), the first derivation of an arbitrary function with respect to

the variable r, can be equally expresssed in terms of the derivative of the same function with

respect to the variable β, i.e.,

d( )
dr
= −β

2

t

d( )
dβ

(7)

similarly, the second derivative of an arbitrary function with respect to the variable r results

d2( )
dr2

= 2β3

t2
d( )
dβ
+ β4

t2
d2( )
dβ2

(8)

Firstly, the solution for pore water pressure is discussed. The differential equation in a

steady flow field can be expressed in terms of the pore water pressure qw and the radial

distance r as follows [10]

d2qw
dr2

+ 1

r

dqw
dr
= 0 (9)

In view of the transformation (6), Eq.(9) can be equally expressed in terms of β as follows

d2qw
dβ2

+ 1

β

dqw
dβ
= 0 (10)

The general solution of Eq.(10) is obtained as follows

qw(β) = A1 +A2 lnβ (11)

where A1 and A2 are integration constants.

In reference to Fig.1, the values of the pore water pressure at the distances r = t (or β = 1)
and r = r∗ are as follows, respectively

qw = −qtw β = 1 (12)

and

qw = −qow β = β∗ (13)

By substituting Eqs.(12) and (13) into Eq.(11), the coefficients A1 and A2 in Eq.(11) are

determined as
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A1 = −qtw (14)

and

A2 =
qtw − qow
lnβ∗

(15)

Consequently, the solutions for the pore water pressure in Regions I and II result in as

follows, respectively

qIw(β) = −qtw + (qtw − qow)
lnβ

lnβ∗
β∗ ≤ β ≤ 1 (16)

and

qIIw (β) = −qow 0 ≤ β ≤ β∗ (17)

Next, we discuss the derivation of the solution for displacements and stresses. Considering

Eqs.(6) and (7), the differential equation of equilibrium for the axisymmetric problem can be

expressed as

dσr

dβ
− σr − σθ

β
= 0 (18)

In addition, the radial strain ϵr and ϵθ can be equally expressed in terms of the radial

displacement ur and the variable β as follows, respectively

εr = −
β2

t

dur

dβ
(19)

and

εθ =
β

a
ur (20)

According to Terzaghi’s effective stress principle, only the effective components of normal

stresses induce mechanical deformation, therefore, the elastic stress-strain relationships, as

defined by the theory of elasticity, may be revised as

ε1r =
1

E
{(σr − qw) − γ[(σθ − qw) + (σz − qw)]} (21)

ε1θ =
1

E
{(σθ − qw) − γ[(σr − qw) + (σz − qw)]} (22)

ε1z =
1

E
{(σz − qw) − γ[(σθ − qw) + (σr − qw)]} (23)

where, ε1r, ε
1
θ and ε1z denote the total strains including the components prior to excavation.

Similarly, prior to excavation, between the strains, defined by εor, ε
o
θ and εoz, and the stresses

by σo
r , σ

o
θ and σo

z , the following relationships yield

εor =
1

E
{(σo

r + qow) − γ [(σo
θ + qow) + (σo

z + qow)]} (24)
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εoθ =
1

E
{(σo

θ + qow) − γ [(σo
r + qow) + (σo

z + qow)]} (25)

εoz =
1

E
{(σo

z + qow) − γ [(σo
θ + qow) + (σo

r + qow)]} (26)

Hence, the incremental strains εr, εθ and εz may be obtained as follows

εr= ε1r − εor

= 1

E
{(σr − qw) − (σo

r + qow) − γ[(σθ − qw) − (σo
θ + qow) + (σz − qw) − (σo

z + qow)]}
(27)

εθ= ε1θ − εoθ

= 1

E
{(σθ − qw) − (σo

θ + qow) − γ[(σr − qw) − (σo
r + qow) + (σz − qw) − (σo

z + qow)]}
(28)

εz= ε1z − εoz

= 1

E
{(σz − qw) − (σo

z + qow) − γ[(σθ − qw) − (σo
θ + qow) + (σr − qw) − (σo

r + qow)]}
(29)

In terms of Eqs.(27)-(29), for the special case of plane strain, i.e., εz = 0, the following

expressions results in

(σr − qw) + (σo − qow) = (λ + 2G)εr + λεθ (30)

(σθ − qw) + (σo − qow) = (λ + 2G)εθ + λεr (31)

(σz − qw) + (σo − qow) = λ(εr + εθ) (32)

wherein, σr − qw, σθ − qw and σz − qw represent the effective components of radial, tangential

and axial stresses, respectively, while σo − qow represent the initial effective in situ stress.

By substituting Eqs.(30) and (31) together with Eqs.(19) and (20) into Eq.(18), the follow-

ing differential equation representing the equilibrium condition in terms of the displacements

is obtained

β2d
2ur1

dβ2
+ βdur1

dβ
− ur1 −

t

λ1 + 2G1

dqw
dβ
= 0 (33)

where, the second subscripts 1 is related to the components in the surrounding geomaterial.

For region I, noting Eq.(16), the solution of Eq.(33) gives the following expression for the radial

displacement

uI
r1 (β) =

AI
1

β
+AI

2β +
t (qow − qtw)
2 (λ1 + 2G1)

lnβ

β lnβ∗
(34)

where, the superscript I is related to the components in the region I of the surrounding geoma-

terial. In addition, based on Eqs.(30) and (31), the radial and tangential stresses are obtained

as, respectively
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σI
r1 (β) = −σo + (qow − qtw) +

2 (λ1 +G1)
t

AI
1 −

2G1

t
β2AI

2 −
qow − qtw
2 lnβ∗

(1 + 2G1

λ1 + 2G1
lnβ) (35)

and
σI
θ1 (β) = −σo + (qow − qtw) +

2(λ1+G1)
t

AI
1 + 2G1

t
β2AI

2

−qow−q
t
w

2 lnβ∗
( λ1

λ1+2G1
+ 2G1

λ1+2G1
lnβ)

(36)

As for region II, noting Eq.(17), the following expressions for the displacement and stresses

result in

uII
r1 (β) =

AII
1

β
+AII

2 β (37)

σII
r1 (β) = −σo + (qow − qtw) +

2 (λ1 +G1)
t

AII
1 −

2G1

t
β2AII

2 (38)

σB
θ1 (β) = −σo + (qow − qtw) +

2 (λ1 +G1)
t

AII
1 +

2G1

t
β2AII

2 (39)

where, the superscript II is related to the components in the region II of the surrounding

geomaterial.

In reference to Fig.1, the boundary or continuity conditions at the distances r = t (or β = 1),
r →∞ (or β → 0) and r = r∗ (or β = β∗) are summarized as

σI
r1 = − (qs + qtw) β = 1 (40)

σII
r1 = −σo β = 0 (41)

σI
r1 = σII

r1 β = β∗ (42)

uI
r1 = uII

r1 β = β∗ (43)

where, qs denotes the normal pressure along the interface between the liner and the surrounding

geomaterial for the case that the liner is impermeable. Eqs.(40) through (43) – with σI
r1, σ

II
r1 ,

uI
r1 and uII

r1 defined by Eqs.(35), (38), (34) and (37), respectively – conform a system of four

algebraic equations to solve four unknowns, the variables AI
1, A

I
2, A

II
1 and AII

2 , as follows

AI
1 =

t

2 (λ1 + 2G1)
(qtw − qow)(1 −

1

2 lnβ∗
) (44)

AI
2 =

t

2G1

(qs + qtw − σo) +
t

2 (λ1 + 2G1)
(qtw − qow) (

1

2 lnβ∗
− 1) (45)

AII
1 = 0 (46)

AII
2 =

t

2G1

(qs + qtw − σo) +
t

2 (λ1 + 2G1)
(qtw − qow) [

1

2 lnβ∗
− 1 − 1

2 (β∗)2 lnβ∗
] (47)

Latin American Journal of Solids and Structures 9(2012) 95 – 110



102 M.B. Wang et al / A stress-displacement solution for a pressure tunnel with impermeable liner in elastic porous media

In summary, substituting Eqs.(44) and (45) into Eqs.(34)-(36) and Eqs.(46) and (47) into

Eqs.(37)-(39), respectively, the final expressions for the displacements and stresses for regions

I and II are obtained as follows

uI
r1 (β) =

t

2G1

(qs + qtw − σo)β −
t

4 (λ1 + 2G1)
qtw − qow
β lnβ∗

[2 lnβ + (1 − β2) (1 − 2 lnβ∗)] (48)

σI
r1 (β) = −σo − (qs + qtw − σo)β2 + 2G1

4 (λ1 + 2G1)
qtw − qow
lnβ∗

[2 lnβ + (1 − β2) (1 − 2 lnβ∗)] (49)

σI
θ1 (β) = −σo + (qs + qtw − σo)β2 + 2G1

4 (λ1 + 2G1)
qtw − qow
lnβ∗

[2 lnβ − 2 + (1 + β2) (1 − 2 lnβ∗)] (50)

uII
r1 (β) =

t

2G1

(qs + qtw − σo)β −
t

4 (λ1 + 2G1)
qtw − qow
(β∗)2 lnβ∗

β [1 − (β∗)2 + 2 (β∗)2 lnβ∗] (51)

σII
r1 (β) = −σo − (qs + qtw − σo)β2 + 2G1

4 (λ1 + 2G1)
qtw − qow
(β∗)2 lnβ∗

β2 [1 − (β∗)2 + 2 (β∗)2 lnβ∗] (52)

σII
θ1 (β) = −σo + (qs + qtw − σo)β2 − 2G1

4 (λ1 + 2G1)
qtw − qow
(β∗)2 lnβ∗

β2 [1 − (β∗)2 + 2 (β∗)2 lnβ∗] (53)

The above expressions for radial and tangential stresses correspond to total stresses. Ac-

cording to Terzaghi’s effective stress principle (Eq.(5)), the effective radial and tangential

stresses for regions I and II, are computed as follows

σ′r(β) = σr(β) − qw(β) (54)

σ′θ(β) = σθ(β) − qw(β) (55)

By making qtw = qow = 0 in Eqs.(48)-(53), the classical Lamé’s solution can be recovered. In

this case, the total and effective stresses are the same and the solution for radial displacement,

radial stress and tangential stress, result to be, respectively

ur1 (β) =
t

2G1
(qs − σo)β (56)

σr1 (β) = −σo − (qs − σo)β2 (57)

σθ1 (β) = −σo + (qs − σo)β2 (58)

For another special case that the pore water pressure distribution in the surrounding ge-

omaterial is uniform, by considering qtw = qow in Eqs.(48)-(53), the following expressions for

displacement and stresses are obtained

ur1 (β) =
t

2G1
(qs + qow − σo)β (59)
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σr1 (β) = −σo − (qs + qow − σo)β2 (60)

σθ1 (β) = −σo + (qs + qow − σo)β2 (61)

For this case there is no distinction between regions I and II, in terms of Eqs.(16) and (17),

the solution for the pore water pressure is

qw(β) = qIw(β) = qIIw (β) = −qow (62)

Figure 2 Model for tunnel construction.

Finally, the solution for the support pressure qs is discussed below. It is assumed that the

radii of the opening immediately after excavation, after the elastic deformation finishes and

before the liner is installed, are t
′′′
, t

′′
and t

′
, respectively. The construction sequence of the

tunnel is modeled with regard to Fig.2. Then, we define

η = t
′
− t

′′

t′
(63)

as the relative radius misfit between the surrounding geomaterial and the liner. This misfit is

assumed of the order of the admissible strains in linear elasticity.

Based on Kirsch’s solution [11] and Eq.(48), t
′′
is expressed as follows

t
′′
= t

′′′
[1 − σo

2G1
] (64)

The case of η = 0 means that the liner is installed after the elastic deformation finishes,

and η = ηmax means that the region of r ≤ t
′′′

in the surrounding geomaterial is replaced by

the liner. Thus, ηmax can be written in the following form

ηmax =
t
′′′
− t

′′

t′′′
= σo

2G1
(65)

Substituting (65) into (64) yields the following relation

t
′′
= (1 − ηmax) t

′′′
(66)
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Next, the elastic deformation rate of the surrounding geomaterial is defined by

δ = t
′′′
− t

′

t′′′ − t′′
× 100% (67)

Taking advantage of Eq.(66), δ can be rewritten

δ = 1

ηmax
(1 − t

′

t′′′
) × 100% (68)

Inserting Eqs.(65), (66) and (68) into Eq.(63) gives

η = (1 − δ)ηmax

1 − δηmax
(69)

Figure 3 Mechanical model for the liner.

In terms of the Lamé’s solution and Eq.(6), the stresses and displacement in the liner may

be equally written as follows (see Fig.3)

σ
′

r2 (β) = σr2 (β) = −
β2 − 1
t2

a2 − 1
qo −

1 − a2

t2
β2

1 − a2

t2

qs (70)

σ
′

θ2 (β) = σθ2 (β) =
β2 + 1
t2

a2 − 1
qo −

1 + a2

t2
β2

1 − a2

t2

qs (71)

ur2 (β) =
1

2G2

β

t

⎡⎢⎢⎢⎢⎣

(1 − 2γ2) a2

β2 + a2

1 − a2

t2

qo −
(1 − 2γ2) t2

β2 + a2

1 − a2

t2

qs

⎤⎥⎥⎥⎥⎦
(72)

Furthermore, it is noted that the liner will be installed when the tunnel partially deforms.

Hence, the following relationship results in

uI
r1 (1)∣σo=0

= ur2 (1) + ηt (73)

By substituting Eqs.(48) and (72) into Eq.(73), the expression of qs is obtained
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qs =
2 (1 − γ2)a2qo + (2ηG2 − Γqtw) (t2 − a2)

(1 − 2γ2 + Γ) t2 + (1 − Γ)a2
(74)

In terms of Eq.(48), the displacement along the interface between the liner and the sur-

rounding geomaterial may also be written in a explicit form as follows

uI
r1 (1) =

ηtΓ(t2−a2)
(1−2γ2+Γ)t2+(1−Γ)a2 + t

2G1

(1−2γ2)a2+a2

(1−2γ2+Γ)t2+(1−Γ)a2 qo

+ t
2G1

(1−2γ2)t2+a2

(1−2γ2+Γ)t2+(1−Γ)a2 q
t
w − t

2G1
σo

(75)

where and hereafter, uI
r1(1) denotes the support displacement corresponding to the case that

the liner is impermeable.

In terms of Eqs.(74) and (75), it may be found that the pore water pressure distribution in

the surrounding geomaterial has significant influences on the support pressure qs and displace-

ment uI
r1(1). The support pressure qs and displacement uI

r1(1) may decrease with increasing

the pore water pressure qtw along the outer boundary of the liner and the reverse trend may

occur if to decrease the pore water pressure qtw. As for the internal water pressure qo, it may

be found that the support pressure qs increases with increasing the internal water pressure

qo. However, the support displacement uI
r1(1) decreases with increasing the internal water

pressure qo.

4 NUMERICAL RESULTS AND DISCUSSIONS

In this Section, in order to illustrate the appllication of the obtained solution, we take γ1 =
γ2 = 0.3, δ = 0, G1/σo = 103, qow = 0.5σo, q

t
w = 0.025σo, qo = 0.05σo and r∗ = 5a2/t.

The variations of the normalized support pressure (qs/σo) and displacement (G1u
Ir1(1)/(σoa))

with relative liner rigidity for various relative liner thicknesses are depicted in Figs.4 and 5. It

is seen that in general the varying trend of the support pressure with respect to relative liner

rigidity for various liner thicknesses is similar to that of the support displacement. Namely,

both of the support pressure and displacement monotonically increase with increasing liner

rigidity and thickness. From Figs.4 and 5, it is further seen that in the range of 1 ≤ Γ ≤ 200,
the influences of the liner rigidity and thickness on the support pressure and displacement are

significant. However, in the range of 200 < Γ ≤ 800, the variations of the support pressure and

displacement with various values of Γ or t/a become insignificant. Finally, when 800 < Γ, the
variations of the support pressure and displacement are almost independent of the values of Γ

and t/a.
In Figs.6 and 7, we illustrate the variations of the normalized effective stresses in the liner

and the surrounding geomaterial with relative liner thickness (t/a) and distance to the tunnel

axis (r/a) when Γ = 10 [9, 15]. It is found from Fig.6 that at first the effective radial stress

increases with increasing distance to the tunnel axis and then holds a maximum value when the

distance to the tunnel axis reaches a certain magnitude for a specific liner thickness. Moreover,

it is observed that with increasing relative liner thickness these aforementioned maximum
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Figure 4 Variations of the normalized support
pressure (qs/σo) with the relative
liner rigidity (Γ) for various relative
liner thicknesses (t/a).

Figure 5 Variations of the normalized support
displacement (G1u

I
r1(1)/(σoa))

with the relative liner rigidity (Γ)
for various relative liner thicknesses
(t/a).

values of σ
′

r increases and the corresponding position of the points holding a maximum value

in the surrounding geomaterial gradually approaches to the outer boundary of the liner. When

the distance to the tunnel is further increased, σ
′

r may also gain a minimum value when those

points under investigation in the surrounding geomaterial reach the position of r∗ (or β∗).

Figure 6 Variations of normalized radial

stress (σ
′
r/(σo)) with relative dis-

tance to the tunnel axis (r/a)
for various relative liner thicknesses
(t/a) when Γ = 10.

Figure 7 Variations of normalized tangen-

tial stress (σ
′
θ/(σo)) with relative

distance to the tunnel axis (r/a)
for various relative liner thicknesses
(t/a) when Γ = 10.

The variations of the normalized tangential stress σ
′

θ/σo versus the relative distance to

the tunnel axis with different relative liner thicknesses when Γ = 10 are shown in Fig.7. In

contrast to the varying trend of the normalized radial stress, it is found that at first in the

liner the normalized tangential stress decreases with increasing the relative distance to the

tunnel axis and then along the interface between the liner and the surrounding geomaterial

there is a jump or discontinuity in the tangential stress, i.e., the tangential stress in the liner
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is much higher than that in the surrounding geomaterial. And the jump values decrease with

increasing relative liner thickness. As for the tangential stress in the surrounding geomaterial,

it is found that σ
′

θ/σo also decreases with increasing r/a and t/a. In addition, compared with

the variation of the radial stress at r = r∗, it may be observed that the tangential stress does

not exist extremum property at r = r∗.
By comparing Figs.8 and 9 with Figs.6 and 7, an interesting phenomenon is observed that

the variations of the normalized effective stresses with relative liner rigidity are similar to those

with relative liner thickness. Moreover, it may be found from Figs. 6 and 8 that around the

position of r∗ the fluctuation range of the minimum value of σ
′

r with relative liner rigidity

compared with relative liner thickness is large, and that for a certain liner rigidity the distance

to the tunnel axis of those points holding a minimum value of σ
′

r decreases with increasing the

liner thickness. However, for a certain liner thickness the position of those points holding a

minimum value of σ
′

r is almost fixed.

Figure 8 Variations of normalized radial

stress (σ
′
r(σo)) with relative dis-

tance to the tunnel axis (r/a) for
various relative liner rigidities (Γ)
when t/a = 1.10.

Figure 9 Variations of normalized tangen-

tial stress (σ
′
θ/(σo)) with relative

distance to the tunnel axis (r/a)
for various relative liner rigidities
(Γ) when t/a = 1.10.

It is also seen from Figs.6-9 that in a range about 1 ≤ r/a ≤ r∗/a the influences of the liner

thickness and rigidity and the distance to the tunnel axis on the stress fields are significant

and when r∗/a < r/a ≤ 8 the influences become trivial. As for r/a > 8, the variations of the

stress fields are almost independent of the values of r/a, t/a and Γ.

The variations of the normalized radial displacement with relative liner thickness and dis-

tance to the tunnel axis when Γ = 10 are depicted in Fig.10. It is seen that in general the

normalized radial displacement decreases monotonically with increasing relative liner thickness

and distance to the tunnel axis. However, when the relative liner thickness is larger than a cer-

tain value, i.e., t/a ≥ 1.2 and those points under investigation are in a range about 1 < r/a ≤ 1.5
or 2 < r/a ≤ 3.5, a maximum or minimum value of the radial displacement will occur when

the distance to the tunnel axis reaches a certain magnitude for a given liner thickness (see

Fig.10(a).
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(a) (b)

Figure 10 Variations of normalized radial displacement (G1ur/(σoa)) with relative distance to the tunnel axis
(r/a) for various relative liner thicknesses (t/a) when Γ = 10.

Figure 11 Variations of normalized radial displacement (G1ur/(σoa)) with relative distance to the tunnel axis
(r/a) for various relative liner rigidities (Γ) when t/a = 1.10.

Fig.11 illustrates the variations of the normalized radial displacement with relative liner

rigidity and distance to the tunnel axis when t/a = 1.10. It may be found that, when Γ < 20,
yr decreases monotonically with increasing r/a and t/a. However, if the relative liner rigidity

Γ ≥ 20 as shown in Fig.11, the varying trend of ur is non-monotonic and ur may obtain a

negative maximum value when the distance to the tunnel axis reaches a certain value for a

specific liner rigidity. It also be noted that, when Γ ≥ 50, the radial displacement occurring at

the inner boundary of the liner trends to 0.

Furthermore, it may be found from Figs.10 and 11 that in a range about 1 ≤ r/a ≤ 5

the influences of the liner thickness and rigidity and the distance to the tunnel axis on the

radial displacement are significant and when 20 < r/a the influences become insignificant. As

for r/a > 50, Figs.10 and 11 indicate that the variations of the displacement field are almost

independent of the values of r/a, t/a and Γ.
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In Section 1 in the paper, the pressure tunnel is assumed that it is deep enough. However,

Figs.6-9 indicate that, when those points under investigation are in the range of r/a > 8, the
influence of tunnel excavation upon them is almost trivial. Thus, a conclusion may be drawn

that, when the ratio between the embedded depth of a pressure tunnel and the outer radius

of the liner is larger than 8, the results about the stress field in the paper are applicable for

the stress analysis of the present tunnel. In addition, by comparing Figs.6-9 with Figs.10 and

11, it may be found that the influence of the tunnel excavation upon the displacement field is

significantly larger than upon the stress field and only when the ratio between the embedded

depth of a tunnel under investigation and the outer radius of the liner is larger than 50 the

results about the displacement field in the paper are applicable for the displacement analysis

of the tunnel.

5 CONCLUSIONS

In the present paper, an elastic stress-displacement solution for a deep pressure tunnel with

impermeable liner in a saturated elastic porous geomaterial that obeys Terzaghi’s effective

stress principle is derived. The proposed solution considers the effects of the changes of the pore

water pressure around the opening, the construction sequence of the tunnel and the interaction

between the liner and the surrounding geomaterial on the mechanical response of the tunnel.

Finally, the influences of the relative liner thickness and rigidity and the relative distance of

the point under investigation to the tunnel axis on the stress-displacement fields for various

combinations of the mechanical and geometric parameters are demonstrated numerically.
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