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Multi‐objective	optimization	of	a	parallel	manipulator	for	the	
design	of	a	prosthetic	arm	using	genetic	algorithms	

Abstract	
This	 paper	 presents	 a	 synthesis	 of	 a	 spherical	 parallel	manipulator	 for	 a	
shoulder	 of	 a	 seven‐degrees‐of‐freedom	 prosthetic	 human	 arm	 using	 a	
multi‐objective	 optimization.	 Three	 design	 objectives	 are	 considered,	
namely	the	workspace,	the	dexterity,	and	the	actuators	torques.	The	parallel	
manipulator	is	modelled	considering	13	design	parameters	in	an	optimiza‐
tion	procedure.	Due	to	the	non‐linearity	of	the	design	problem,	genetic	algo‐
rithms	are	implemented.	The	outcomes	show	that	a	suitable	performance	of	
the	manipulator	is	achieved	using	the	proposed	optimization.	
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Prosthetic	 arm,	 Biomechanics,	Multi‐objective	 optimization,	 Genetic	 algo‐
rithms.	
	
	
	
	
	
	
	
	
	
	
	
	

1	INTRODUCTION	

The	success	of	a	prosthetic	human	arm	design	can	be	evaluated	mainly	 in	 terms	of	 the	 functionality	of	 the	
design	and	its	cost.	For	these	reasons	the	design	of	the	mechanism	that	performs	the	movement	of	the	prosthesis	
is	an	issue	that	impacts	greatly	in	the	final	product.	Upper	limb	disarticulation	is	one	of	the	cases	with	less	inci‐
dences,	therefore	the	people	with	this	disability	have	fewer	options	of	prostheses	available	 Dillingham	et	al.,	2002 .	
One	of	the	most	advanced	prosthetic	arm	can	be	found	in	 Johannes	et	al.,	2011 	that	is	a	prosthetic	arm	with	2	DOF	
at	the	shoulder,	a	humeral	rotator,	elbow	and	three	DOF	at	wrist.	This	device	can	be	used	for	different	levels	of	
amputation.	In	 Resnik	et	al.,	2014 	the	Deka	arm	is	presented,	which	is	a	prosthetic	arm	with	6	DOF	at	the	arm	and	
4	at	hand	and	a	weight	of	4.45	kg.	He	et	al.	 2014 	presented	a	prosthetic	arm	with	7	DOF	that	uses	underactuated	
mechanisms	and	weighs	4.45	kg.	Most	of	these	solutions	are	based	on	serial	kinematic	chain	configurations.	In	this	
work,	a	parallel	configuration	is	addressed	for	a	novel	design.	

Main	advantages	of	parallel	manipulators	are	that	the	payload	is	shared	between	the	actuators,	the	actuators	
are	located	in	the	base	so	that	the	inertia	is	reduced	and	parallel	manipulators	exhibit	stiff	behavior.	Disadvantages	
of	the	parallel	manipulators	are	the	small	workspace	and	limited	dexterity	as	compared	to	the	serial	manipulators	
Ceccarelli,	2004 .	

For	 the	design	of	a	prosthetic	arm,	design	criteria	can	be	considered	 in	workspace,	stiffness,	and	dexterity	
among	others	that	are	used	also	in	design	procedures	of	manipulators.	

Many	authors	have	investigated	the	optimization	of	mechanisms	using	different	techniques.	In	 Boudreau	and	
Turkkan,	1996 	the	forward	kinematics	of	three	different	planar	parallel	manipulators	are	solved	using	a	genetic	
algorithm	 GA .	The	optimization	of	two	different	parallel	planar	manipulators	is	achieved	as	well	using	a	genetic	
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algorithm	in	 Boudrear	and	Gosselin,	1999 	where	the	objective	function	is	formulated	to	get	a	workspace	as	close	
as	possible	to	a	predefined	one.	In	Cabrera	et	al.	 2002 	the	path	synthesis	of	a	four‐bar	mechanism	is	worked	out	
using	genetic	algorithms.	Ceccarelli	and	Lanni	 2004 	worked	out	the	optimization	of	the	workspace	and	the	di‐
mensions	of	general	three	revolute	joints	manipulator	using	sequential	quadratic	programming.	In	 Hernandez	et	
al.,	2015 	the	optimization	of	a	cable‐based	parallel	manipulator	is	worked	out	using	evolutionary	algorithms.	The	
workspace	of	a	spherical	parallel	mechanism	for	laparoscopic	surgery	is	optimized	using	a	genetic	algorithm	in	 Li	
and	Payandeh,	2002 .	In	 Castejón	et	al.,	2010 	a	multi‐objective	optimization	was	performed	in	order	to	design	a	
robotic	arm	for	service	tasks.	 In	Zhen	et	al.	 2010 	the	optimization	of	 the	stiffness	and	dexterity	of	a	six	DOFs	
parallel	manipulator	is	presented	using	genetic	algorithms	and	neural	network.	Chaker	et	al.	 2012 	performed	the	
synthesis	of	a	spherical	manipulator	for	surgeries	by	optimizing	the	workspace	and	dexterity	of	the	mechanism	
using	GA.	In	 Essomba	et	al.,	2016 	it	is	presented	the	synthesis	of	a	spherical	manipulator	used	as	a	probe	holder	
considering	 a	multi‐objective	 optimization	 and	 GA.	 The	 synthesis	 of	 a	 3‐RRR	 spherical	 parallel	manipulator	 is	
worked	out	in	 Wu,	2012 	using	a	multi‐objective	optimization	considering	as	objective	function	the	dynamic	dex‐
terity	and	the	isotropy.	In	Ramana	et	al.	 2016 	it	is	worked	out	the	optimization	of	a	3	DOF	parallel	manipulator	
using	as	objectives	the	dexterity,	work	space	and	stiffness.	

An	arising	problem	in	the	design	of	a	parallel	mechanism	comes	from	the	fact	that	their	performance	is	highly	
dependent	on	their	geometric	parameters	and	configurations	as	well	as	the	different	performance	measures	 work‐
space,	dexterity,	etc 	are	mutually	dependent	 Wu,	2012 .	In	this	work,	the	synthesis	of	a	parallel	spherical	manip‐
ulator	is	carried	out	using	a	multi‐objective	optimization	combined	with	GA.	The	proposed	spherical	manipulator	
is	used	as	a	mechanism	to	replicate	the	shoulder	movement	in	a	prosthetic	human	arm.	The	shoulder	of	the	pros‐
thetic	arm	is	analyzed	as	one	of	the	most	complex	part	of	the	prosthetic	device	since	it	requires	a	great	mobility	and	
volume	restrictions.	Three	objective	functions	are	taken	in	to	account	in	the	proposed	optimization.	For	the	first	
objective,	the	specified	trajectory	must	be	inside	the	available	workspace;	the	second	objective	is	the	maximization	
of	the	mechanism	accuracy	 measured	by	the	dexterity ;	while	the	third	objective	is	the	minimization	of	the	torques	
measured	here	by	the	maximum	values 	of	the	three	actuators.	This	is	done	since	a	reduction	in	the	torque	could	
yield	to	a	reduction	in	the	actuators	and	thus	reduction	in	weight	and	power	consumption.	With	the	obtained	re‐
sults,	a	parallel	manipulator	is	designed	and	a	set	of	dynamic	simulations	are	performed	to	validate	the	results	of	
the	optimization	and	to	characterize	the	design	solution.	

2	Genetic	algorithms	and	multi‐objective	optimization	

Genetic	algorithms	 GA ,	developed	in	Holland	 1992 ,	are	heuristic	methods	that	consist	in	optimization	pro‐
cedures	as	inspired	in	natural	evolution.	In	GA,	an	initial	random	population	needs	to	be	created.	The	characteristics	
of	each	solution	are	used	in	equivalent	chromosomes.	Each	solution	is	evaluated	and	classified	according	to	how	
well	it	satisfies	the	objective	function	and	then	it	is	assigned	a	probability	of	reproduction.	The	fittest	individuals	
are	more	likely	to	be	reproduced	 selection ,	and	thus	they	inherit	those	characteristics.	The	combination	 crosso‐
ver 	of	the	parent	genes	yields	to	a	consecutive	generation	 replacement .	Mutation	can	occur	in	the	chromosomes	
of	some	individuals.	It	is	projected	that	some	individuals	of	this	new	generation	will	have	inherited	the	best	char‐
acteristics	of	their	parents	and	will	be	a	better	solution	to	the	problem.	This	new	population	goes	through	the	same	
process	and	this	cycle	is	repeated	until	all	the	members	share	the	same	genetic	information.	This	last	generation	is	
the	best	solution	to	the	optimization	problem	 Fogel,	1994 .	A	genetic	algorithm	is	stopped	when	the	population	
converges	to	an	optimal	solution	or	when	a	maximum	number	of	generations	is	reached,	Figure	1.	

Genetic	algorithms	require	objective	and	fitness	functions.	The	objective	function	defines	the	optimal	condi‐
tion	and	the	fitness	function	assesses	how	well	a	specific	solution	satisfies	the	objective	function	and	assigns	a	real	
value	to	that	solution	 Coello	et	al.,	2007 .	
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Figure	1:	A	flow	chart	of	a	genetic	algorithm	optimization.	

Formerly,	the	information	of	the	individuals	was	encoded	in	bit	strings	called	Binary‐coded,	but	nowadays	the	
individuals	are	coded	using	real	numbers	 Deb	and	Kumar,	1995 .	Real‐coded	GA	usually	achieves	better	results	
than	Binary‐coded	GA	 Davis,	1991 	.	

The	selection	process	consists	in	taking	two	parents	to	create	offspring.	The	objective	is	to	provide	to	the	fitter	
individuals	a	greater	chance	of	reproduction	expecting	that	their	offspring	will	have	higher	fitness.	Typical	types	of	
selection	scheme	are	the	proportionate	selection	and	the	ordinal‐based	selection.	In	the	proportionate	based	selec‐
tion,	the	individuals	are	picked	up	based	on	their	fitness	values	that	are	relative	to	the	fitness	of	the	other	individ‐
uals.	The	ordinal‐based	selection	selects	individuals	by	considering	their	rank	within	the	population	 Sivanandam	
and	Deepa,	2007 .	

The	crossover	combines	two	different	individuals	to	generate	new	offspring.	Many	crossover	methods	exist,	
and	the	most	common	is	single‐point	crossover	 Blum	et	al.,	2012 .	In	this	work,	a	linear	crossover	is	used.	Two	
parents	are	selected	as	p1	and	p2	and	three	offsprings	are	generated	as	0.5	p1	 	0.5p2,	1.5	p1	‐	0.5p2,	‐0.5	p1	 	1.5p2	
respectively	 Herrera	et	al.,	1998 .	Then,	the	three	offspring	are	evaluated	and	the	best	two	are	selected	for	the	next	
generation.	

Mutation	consists	in	a	random	modification	of	a	gene	during	reproduction	 Cabrera	et	al.,	2002 .	In	general,	
the	mutation	prevents	convergence	to	a	local	optimum	 Li	and	Payandeh,	2002 .	The	mutation	operator	is	applied	
with	a	small	probability	 Wang	et	al.,	2004 .	In	this	work,	a	non‐uniform	mutation	is	used	 Michalewicz,	1996 .	

Multi‐objective	optimization	commonly	involves	multiple	conflicting	objectives	that	must	be	considered	sim‐
ultaneously	and	there	is	a	set	of	mathematically	equally	good	solutions	 Miettinen,	2008 .	These	set	of	solutions	
are	known	as	nondominated	or	Pareto	optimal	set.	The	set	of	solutions	forms	the	Pareto	optimal	front.	The	charac‐
teristic	of	a	Pareto	optimal	solution	is	 that	any	change	 in	the	values	of	 the	solution	will	not	 improve	any	of	 the	
objective	functions.	

The	concept	of	dominance	or	domination	is	used	in	most	of	the	optimization	algorithms.	If	there	are	N	objective	
functions,	a	solution	x 1 	dominates	another	solution	x 2 	if	the	two	following	conditions	are	true	 Deb,	2014 :	
1. The solution x(1) is no worse than x(2) in all objectives. 
2. The solution x(1) is better than x(2) in at least one objective. 

A	solution	x 1 	is	Pareto‐optimal	if	is	nondominated	with	respect	to	the	search	space	 or	feasible	region Coello,	
2015 .	

Many	evolutionary	algorithms	have	been	proposed	over	the	years	to	solve	multi‐objective	optimization	prob‐
lems.	In	this	work,	 it	 is	used	a	controlled	elitist	non‐dominated	sorting	GA	 CENSGA Deb	and	Goel,	2001 .	The	
algorithm	of	CENSGA	is	based	in	NSGA‐II	 Deb	et	al.,	2002 ,	but	there	is	a	difference	in	the	selection	approach	that	
improves	the	convergence	to	the	Pareto	front.	
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The	CENSGA	algorithm	works	as	follows.	First,	a	random	Pt	population	of	size	N	is	formed.	From	this	popula‐
tion,	Q	offsprings	are	created	using	the	common	GA	operators	 crossover,	mutation .	Then,	a	combined	Rt	popula‐
tion	 Pt	È	Qt 	of	size	2N	is	 formed.	The	population	Rt	 is	sorted	according	to	non‐domination	and	different	non‐
dominated	fronts	are	created.	The	first	non‐dominated	front	is	formed	only	by	elements	non‐dominated	with	re‐
spect	to	Rt.	The	second	non‐dominated	front	is	formed	by	elements	dominated	by	just	one	solution.	All	the	elements	
of	Rt	are	assigned	a	front	in	a	similar	fashion	 Elarbi	et	al.,	2017 .	The	crowding	distance	is	calculated	for	every	
element	of	Rt	 Tan	et	al.,	2006 .	Then	N	elements	are	selected	from	Rt	to	form	the	next	generation	Pt 1.	The	maxi‐
mum	number	of	elements	selected	from	i‐th	non‐dominated	front	is	defined	by	a	geometric	distribution	
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where	r	is	the	reduction	ratio	 r 1 	and	K	is	the	number	of	non‐dominated	fronts.		
ni	denotes	the	maximum	allowable	number	of	individuals	taken	from	the	i‐th	front.	If	ni	is	larger	than	the	num‐

ber	of	elements	in	the	i‐th	front,	then	all	the	elements	of	this	front	are	chosen	and	the	remaining	slots	are	added	to	
ni 1.	But	if	ni	is	smaller	than	the	number	of	elements	in	the	front,	ni	the	elements	are	chosen	using	a	crowded	binary	
tournament	selection.	The	crowded	binary	tournament	takes	two	elements	and	returns	the	one	with	the	bigger	
crowding	distance.	GA	operators	are	applied	to	the	new	population	of	Pt 1	to	form	Qt 1	and	are	combined	to	form	
Rt 1	and	the	described	process	is	repeated	for	a	specific	number	of	generations.	The	result	of	this	process	is	the	
Pareto	front,	this	means	a	set	of	optimal	solutions.	CENSGA	algorithm	is	summarized	in	Figure	2.	

	
Figure	2:	A	flow	diagram	of	the	CENSGA	algorithm.	

3	Kinematic	design	and	its	analysis	

The	prosthetic	device	considered	in	this	work	is	based	in	the	design	in	 Leal‐Naranjo	et	al.,	2016 ,	Figure	3 a .	
This	device	has	seven	degrees	of	freedom,	with	three	DOFs	that	are	in	the	shoulder,	one	in	the	elbow	and	three	in	
the	wrist.	The	shoulder	of	this	prototype	is	driven	by	a	3DOF	parallel	spherical	manipulator,	Figure	3 b .	The	mech‐
anism	of	the	elbow	is	a	4bar	mechanism.	The	wrist	mechanism	is	also	a	parallel	spherical	manipulator.	The	weight	
of	this	prototype	is	1250	g	including	the	hand.	The	main	issue	of	prosthetic	arms	is	the	functionality	and	weight	of	
the	device.	An	improvement	in	the	prosthetic	kinematic	design	could	potentially	yield	in	improvements	in	the	func‐
tionality	and	also	in	the	weight	due	to	lower	power	requirements.	
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Figure	3:	3D	printed	prototype:	a 	a	prosthetic	human	arm;	b 	shoulder	mechanism.	

The	shoulder	of	the	prosthesis	is	modelled	as	a	three	DOFs	spherical	manipulator,	Figure	4 a .	The	manipula‐
tor	consists	of	three	legs	with	three	revolute	joints	each,	whose	axes	converge	at	one	point	that	 is	the	center	of	
rotation.	The	axes	of	these	revolute	joints	are	defined	by	the	unit	vectors	ui,	vi	and	wi.	The	links	ai	 attached	to	the	

lower	platform 	are	characterized	by	the	angle	 1_i ,	which	represents	the	angle	between	the	joints	of	the	link.	The	

links	bi	 attached	to	the	mobile	platform 	are	characterized	by	the	angle	 2_i ,	which	represent	the	angle	between	

the	joints	of	the	link,	Figure	4	 b .	

	
Figure	4:A	spherical	parallel	manipulator	for	the	shoulder	joint:	a 	a	CAD	design;	b 	a	scheme	with	design	parameters.	

The	mobile	and	the	fixed	platforms	are	commonly	triangular	pyramids	defined	by	
i 	and	

i ,	with	an	equilat‐

eral	triangle	as	a	base.	Due	to	the	shape	of	the	base	of	the	pyramids,	the	attachment	points	 vertexes	of	the	base 	
are	spaced	every	120°	but	in	this	work	instead	of	regular	pyramids,	the	attachment	points	in	the	fixed	and	mobile	
platforms	are	considered	as	a	parameter	that	can	take	any	value.	This	means	that	the	base	is	a	scalene	triangle	and	
the	attachment	points	are	defined	by	the	angle	

i i	refers	to	the	i‐th	leg;	i 1,2,3 	which	is	considered	as	another	

parameter	of	the	mechanism,	Figure	5.	Angle	
i 	 is	the	angle	between	the	Y	axis	and	the	axis	of	the	attachment	

point.	
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Figure	5:	Distribution	of	the	attachment	points	at	the	fixed	and	mobile	platforms.	

For	this	parallel	manipulator,	the	inverse	kinematic	analysis	is	pretty	straight	forward	in	comparison	to	the	
direct	kinematic.	The	inverse	analysis	is	as	follows.	Vector	ui	is	defined	as	

( ) ( / 2)[0 1 0] , 1,2,3    T
i z i xu R R id g p= - = 	 2 	

where	Ra b 	represents	a	rotation	of	“b”	degrees	around	the	“a”	axis.	
Unit	vector	vi	is	given	by	

( ) ( ) ( )v 1_ 0 1 0
2

T

i z i x y i z iR R R R
p

d g q a
æ ö÷ç é ù= - ÷ç ê ú÷ ë ûç ÷è ø

	 3 	

unit	vector	wi	is	a	function	of	the	orientation	of	the	mobile	platform,	thus	this	vector	is	defined	as	

w Q w 'i i= 	 4 	

where	wi'	is	the	initial	orientation	of	the	vectors	when	the	manipulator	is	in	its	home	configuration	and	is	given	by	

( ) ( ) ( )w ' 0 sin cos
i

T

i zR d b bé ù= ê úë û
	and	Q	is	the	orientation	matrix	of	the	mobile	platform.	

For	the	second	link	this	relation	follows	

( )v w 2_cosi i ia=⋅ 	 5 	

substituting	wi	and	vi	in	Equation	5,	and	making	algebraic	simplifications	it	yields	to	

2 0AX BX C+ + = 	 6 	

Where	

( ) ( ) ( ) ( )_ 1 3 4 5 7 2_cos
y zi x i i iA w a a w a a w a a= - + + - + - 	 7 	

( ) ( ) ( )_ 2 6 82 2 2
y zi x i iB w a w a w a= + + 	 8 	

( ) ( ) ( ) ( )_ 1 3 4 5 7 2_cos
y zi x i i iC w a a w a a w a a= + + + + - 	 9 	

( )tan /2iX q= 	 10 	

( ) ( )1 1_sin cosi ia a d=- 	 11 	

( ) ( ) ( )2 1_sin sin cosi i ia a d g=- 	 12 	

( ) ( ) ( )3 1_cos sin sini i ia a d g=- 	 13 	
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( ) ( ) ( )4 1_cos cos sini i ia a d g= 	 14 	

( ) ( )5 1_sin sini ia a d=- 	 15 	

( ) ( ) ( )6 1_sin cos cosi i ia a d g= 	 16 	

( ) ( )7 1_cos cosi ia a g=- 	 17 	

( ) ( )8 1_sin sini ia a g= 	 18 	

Equation	6	is	a	quadratic	equation	that	provides	the	angle	of	the	input	links	of	the	spherical	manipulator.	It	
can	be	seen	from	equation	6	that	for	each	leg,	two	solutions	exist.	Thus,	for	every	position	in	the	workspace	of	this	
manipulator	can	be	designed	for	eight	possible	assembly	solutions,	Figure	6.	

	
Figure	6:	Representation	of	the	two	possible	solutions	for	each	leg	of	the	mechanism.	

4	Modelling	and	design	optimization	procedure	

One	of	the	aims	of	the	optimization	of	this	parallel	manipulator	is	to	maximize	the	workspace	in	a	way	that	the	
prosthetic	arm	should	be	able	 to	describe	a	humeral	extension	movement	of	20	degrees	and	a	humeral	 flexion	
movement	of	90	degrees,	Figure	7 a .	

	
Figure	7:	Motion	requirements:	a 	Flexion‐Extension	movement	of	the	humerus;	b 	reference	frames.	

To	fulfill	this	requirement,	it	is	necessary	the	manipulator	will	to	be	able	to	perform	a	rotation	from	‐20°	to	90°	
around	the	axis	X”,	which	is	perpendicular	to	the	sagittal	plane	of	the	body,	Figure	7 b .	The	axis	X”,	where	the	
rotation	occurs,	not	necessarily	coincides	with	the	home	position	of	the	manipulator.	For	this	reason,	it	was	consid‐
ered	that	the	manipulator	is	rotated	an	angle	ϕ1	around	the	Z	axis	from	its	reference	position,	and	the	manipulator	
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rotates	 doing	the	flexion‐extension 	around	the	X”	axis	which	is	rotated	from	X’	an	angle	ϕ2,	so	the	orientation	of	
the	end‐effector	is	given	by	

( ) ( )Q 1Z xR Rj e¢¢= 	 19 	

with	

( )( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )

( ) ( ) ( )
''

1 cos cos 1 cos sin

1 cos 1 cos cos sin

sin sin cos

x x x y y

x x y y y x

y x

k k k k k

R k k k k k

k k

e e e e
e e e e

e e e

é ù- + -ê ú
ê ú= - - + -ê ú
ê ú-ê úë û

	 20 	

where	kx 	‐sin ϕ2 ,	ky 	cos ϕ2 	and	ε	is	a	variable	with	values	from	‐20°	to	90°.	
The	required	movement	describes	an	arc	of	110°.	This	arc	was	discretized	in	segments	of	5°.	The	objective	

function	with	the	workspace	can	be	defined	as	

Q   1

1    . 6  
( ),

0    .6   

if X inEq isreal
g h h

if X inEq isnotreal

ìïï= å = íïïî
	 21 	

where	g1	is	evaluated	in	the	mentioned	arc.	Thus,	due	to	the	adopted	discretization,	the	maximum	value	for	this	
function	is	23.	For	simplicity,	this	function	is	multiplied	by	‐1	and	it	is	tried	to	be	minimized.	

The	second	objective	of	the	optimization	is	related	to	the	kinematic	accuracy	of	the	manipulator.	The	kinematic	
accuracy	is	associated	with	the	conditioning	number	of	the	Jacobian	matrix	 also	related	to	dexterity .	The	dexterity	
is	defined	as	 Gosselin	and	Angeles,	1987 	

K J  J K  1 1     1 q x x qk k- -= - - £ < ¥ 	 22 	

with	
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( )K v u w v u w v u w1 1 1 2 2 2 3 3 3q diag= ´ ´⋅ ⋅ ⋅´ 	 24 	

where	||	||	denotes	the	Euclidean	norm	of	its	matrix	argument	and	 	denotes	the	vector	product	 or	cross	product .	
The	value	of	k 1	corresponds	to	a	configuration	with	good	kinematic	accuracy,	and	does	not	have	an	upper	

limit.	The	second	objective	function	is	expressed	as	

2g k= 	 	 25 	

The	third	objective	is	related	to	the	torque	that	is	required	to	perform	the	flexion‐extension	movement.	Due	to	
the	low	accelerations	that	are	required	during	the	movement	and	the	low	mass	of	the	prosthetic	device,	the	inertial	
effects	can	be	ignored	and	a	static	analysis	can	be	performed	for	each	position	in	the	defined	trajectory	with	limited	
computational	costs.	

Using	the	virtual	work	approach,	the	end‐effector	output	forces	 forces	and	torques 	is	given	by	 Tsai,	1999 	
TF J  	 26 	

thus,	the	motor	torques	is	calculated	as	

  1TJ F


 	 27 	

where	J	is	the	jacobian	and	its	given	by	

1
q xJ K J 	 28 	
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and	F	are	the	torques	due	to	the	weight	of	the	prosthetic	device	 15	N ,	the	hand	 5	N 	and	the	load	carried	 5	N 	
and	considering	its	corresponding	lever	arm.	

By	using	Equation	 27 ,	the	torque	that	is	required	for	the	actuators	can	be	evaluated	as	the	third	objective	
function	in	the	form	

3  g M ax T orque= 	 29 	

where	Max	Torque	is	the	maximum	value	of	the	torque	of	the	motors	in	the	prescribed	trajectory	to	be	minimized.	
Since	the	inverse	kinematic	of	this	manipulator	it	has	eight	different	solutions	 two	different	solutions	for	each	

leg ,	so	it	is	necessary	to	stablish	an	equation	to	limit	the	mechanism	to	be	constrained	during	the	entire	optimiza‐
tion	process	for	the	same	branch.	Furthermore,	from	Figure	4	it	can	be	seen	that	in	order	to	change	from	one	branch	
to	another	it	can	only	be	possible	if	the	links	of	a	leg	are	aligned,	thus	the	mechanism	passes	through	a	singular	
position.	To	constrain	the	mechanism	in	the	same	branch,	the	sign	of	the	cosine	between	the	plane	formed	by	the	
unit	vectors	vi	and	ui	and	the	unit	vector	wi	needs	to	remain	constant.	Such	a	condition	can	be	expressed	as	

( )v u w( )i i isign ´ ⋅ 	 30 	

In	order	to	assure	that	the	position	of	the	motors	is	not	overlapped,	a	restriction	between
1 ,

2 	and	
3 	are	

stablished	as:	

1 1 2 40h d d= - ³ 	 31 	

2 2 3 40h d d= - ³  	 32 	

3 1 3 40h d d= - ³  	 33 	

A	minimum	angle	of	40	degrees	between	the	attachment	points	was	stablished	in	order	to	be	possible	to	fit	the	
actuators.	

The	design	parameters	are	ϕ1,	ϕ2,	γ,	β,	α1_1,	α1_2,	α1_3,	α2_1,	α2_2,	α2_3,	δ1,	δ2	and	δ3.	The	optimization	problem	is	
defined	as	

1 2 3           ,  ,  m in g g g 	 34 	

1 2 3   4 0 ,  40 ,  4 0  sub ject to h h h   	 35 	

CENSGA	algorithm	was	applied	using	a	random	population	of	100	individuals	and	a	reduction	ratio	of	0.5.	The	
maximum	number	of	iterations	was	200.	For	the	genetic	operators,	it	was	used	a	linear	crossover	and	a	non‐uniform	
mutation	with	a	mutation	probability	of	0.5%.	

5	Results	

After	finishing	the	optimization,	the	Pareto	front	for	the	eight‐different	assembly	solutions	was	obtained.	The	
function	g2	 Maximum	torque	of	the	motors 	was	plotted	vs	g1 amplitude	of	the	defined	trajectory ,	Series	1	 in	
Figure	8.	g2	vs	g3	 dexterity ,	Series	2	in	Figure	8.	Series	1	and	2	are	in	the	same	plot	with	two	vertical	axes	in	order	
to	visualize	the	three	objective	values	of	a	possible	solution.	For	the	g2	vs	g3	plot,	only	solutions	that	completely	
satisfy	the	motion	were	plotted	 g1 	24 	in	order	to	reduce	the	data	plotted	and	as	the	main	interest	 is	only	in	
solutions	that	would	satisfy	the	stablished	trajectory.	The	scale	in	all	the	plots	was	the	same	in	order	to	simplify	the	
comparison.	In	Figure	8a	the	values	of	the	objective	functions	for	the	solutions	of	the	first	possible	assembly	are	
plotted.	It	can	be	seen	that	for	this	configuration	one	the	most	suitable	solution	has	an	objective	value	of	g1 24,	
g2 3.5	and	g3 	1.4.	There	are	other	solutions	that	require	a	lower	torque	but	the	value	of	the	dexterity	increases	
to	g1 24,	g2 3.3	and	g3 	2.9;	or	some	other	solutions	with	a	better	dexterity	but	the	torque	increases	to	g1 24,	
g2 3.9	and	g3 	1.2.	Figure	8b	shows	objective	functions	for	the	second	configuration.	In	this	configuration,	the	most	
suitable	solution	has	an	objective	value	of	g1 24,	g2 5.9	and	g3 	2.5,	so	clearly	is	not	a	better	one	as	compared	
with	that	for	configuration	1.	
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Figure	8:	Values	of	the	three	objective	functions	for	the	different	solutions:	a 	Assembly	solution	1;	b 	Assembly	solu‐
tion	2;	c 	Assembly	solution	3;	d 	Assembly	solution	4;	e 	Assembly	solution	5;	f 	Assembly	solution	6;	g 	Assembly	so‐

lution	7;	h 	Assembly	solution	8.	
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For	configuration	3	 Figure	8c ,	the	solution	with	the	smallest	torque	has	values	of	g1 24,	g2 3.2	and	g3 	4.9	
and	as	the	dexterity	decreases,	the	torque	increases	so	it	is	not	better	as	the	solution	of	configuration	1.	In	Figure	
8d	it	can	be	seen	that	the	most	suitable	solution	has	the	values	of	the	objective	function	g1 24,	g2 3.4	and	g3 	1.4.	
This	solution	is	slightly	better	than	configuration	1.	For	configuration	5	and	6	and	8 Figure	8	e,	Figure	8f	and	Figure	
8h ,	there	is	no	solution	in	the	used	scale,	so	it	can	be	concluded	that	there	is	not	a	better	solution	than	the	one	
proposed	in	the	other	configuration.	In	Figure	8g	it	can	be	seen	a	set	of	suitable	solutions	like	the	one	with	values	
for	objective	function	g1 24,	g2 3.18	and	g3 	2.5.	and	g1 24,	g2 3.5	and	g3 	1.2.	

After	comparing	the	solutions,	it	was	chosen	the	one	with	objective	function	g1 24,	g2 3.18	and	g3 	2.5	de‐
spite	it	has	a	slightly	worst	dexterity	than	the	solution	of	configuration	1	because	it	is	the	one	with	the	lowest	torque,	
and	a	lower	torque	represents	smaller	actuators	and	lower	overall	weight.	The	value	of	the	parameters	associated	
to	this	solution	are	shown	in	Table	1.	

Table	1:	Parameters	used	for	the	synthesis	of	the	mechanism.	

Parameter	 Value	 ° Parameter Value	 ° 	
ϕ1	 48	 α2_1 76
ϕ2	 224	 α2_2 52
Γ	 77	 α2_3 53
Β	 76	 δ1 0
α1_1	 39	 δ2 76
α1_2	 39	 δ3 200
α1_3	 47	

	
With	the	calculated	values,	a	CAD	design	of	 the	manipulator	was	done.	Two	dynamic	simulation	were	per‐

formed	in	order	to	evaluate	the	performance	of	the	manipulator.	The	first	simulation	aimed	to	perform	a	flexion‐
extension	movement	with	a	 load	of	5	N	at	the	 location	of	the	hand,	Figure	9.	The	movement	begins	with	20°	of	
extension	and	finishes	at	90°	of	flexion.	The	time	required	to	perform	the	movement	was	stablished	to	be	2	s.	The	
material	of	the	prosthetic	device	was	ABS	except	for	the	links	of	the	parallel	manipulator	that	were	model	as	alu‐
minum.	

	
Figure	9:	Representation	of	the	movement	performed	during	the	dynamic	simulation.	

The	results	of	the	simulation	show	that	during	the	movement,	the	actuators	perform	smooth	movements.	The	
manipulator	does	not	approach	any	singularity,	and	this	is	because	the	optimization	of	the	dexterity.	The	maximum	
torque	that	the	actuators	require	is	2.98	Nm,	Figure	10.	
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Figure	10:	Results	of	the	humeral	flexion‐extension	simulation:	a 	angular	displacement	of	the	actuators;	b 	torque	of	

the	actuators.	

The	second	simulation	consisted	in	the	same	movement	as	in	the	previous	analysis	but	with	the	elbow	in	a	
flexed	position,	Figure	11.	

	
Figure	11:	Representation	of	the	movement	performed	during	the	second	dynamic	simulation.	

The	results	show	that	the	maximum	required	torque	to	perform	this	movement	is	2.9	Nm,	Figure	12.	

	
Figure	12:	Results	of	the	humeral	flexion‐extension	simulation:	a 	angular	displacement	of	the	actuators;	b 	torque	of	

the	actuators.	

A	third	simulation	was	performed	in	order	to	compare	with	the	previous	design.	The	characteristics	of	the	
simulation	are	the	same	as	simulation	one	but	the	payload	was	increased	to	10	N	and	showed	that	when	the	payload	
is	increased	to	1	kg,	the	maximum	required	torque	is	4	Nm.	

6	Conclusions	

In	this	work,	a	multi‐objective	optimization	is	used	to	design	of	a	spherical	parallel	manipulator	as	the	shoulder	
of	a	prosthetic	device.	The	results	show	that	the	required	torque	to	perform	the	defined	movement	was	reduced	in	
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comparison	with	the	previous	design	 4	Nm	vs	6	Nm .	In	comparison	to	the	previous	configuration	of	the	mecha‐
nism	used,	the	range	of	motion	was	increased	and	an	improvement	in	the	controllability	of	the	mechanism	was	
achieved	in	terms	of	the	dexterity.	From	the	results,	it	is	evident	that	the	optimization	of	the	three	objectives	needs	
to	be	carried	out	 in	a	simultaneous	way	because	they	are	dependent	to	each	other	and	an	 improvement	 in	one	
characteristic	could	yield	to	an	undesired	repercussion	of	the	others.	
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