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Static analysis of tapered nanowires based on nonlocal Euler-
Bernoulli beam theory via differential quadrature method

Abstract

As a first endeavor, bending analysis of tapered nano wires

with circular cross section is investigated. In this research,

nonlocal elasticity theory based on Euler-Bernoulli beam

theory is used to formulate the equations. Differential

quadrature method (DQM) is employed to solve the gov-

erning equations. Different parameters such as nonlocal pa-

rameter, length and radius of tapered nano wires are also

considered. The results of present work can be used as bench

marks for future works.
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1 INTRODUCTION

Nonlocal theories were used for studying micro and nano structures for several times. Reddy

[18] reformulated various available beam theories, including the Euler–Bernoulli, Timoshenko,

Reddy, and Levinson beam theories, using the nonlocal differential constitutive relations of

Eringen. Zhang et al [25] studied the free transverse vibrations of double-walled carbon nan-

otubes using a theory of nonlocal elasticity. Wang et al [21] investigated the buckling analysis

of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. The small scale

effect on the vibration analysis of orthotropic single layered graphene sheets was studied by

Pradhan and Kumar [16]. Elastic theory of the graphene sheets was reformulated using the

nonlocal differential constitutive relations of Eringen. Pradhan [15] presented the buckling of

single layer graphene sheet based on nonlocal elasticity and higher order shear deformation

theory. Jomehzadeh and Saidi [7] decoupled the nonlocal elasticity equations for three dimen-

sional vibration analysis of nano-plates. Malekzadeh et al [11] proposed the free vibration of

orthotropic arbitrary straight-sided quadrilateral nanoplates using the nonlocal elasticity the-

ory. The formulation was derived based on the first order shear deformation theory. Civalek

et al [14] investigated the free vibration and bending analyses of cantilever microtubules based

on nonlocal continuum model. Wang and Liew [23] studied the application of nonlocal con-

tinuum mechanics to static analysis of micro- and nano-structures. Aghababaei and Reddy [2]

presented the nonlocal third-order shear deformation plate theory with application to bend-

ing and vibration of plates. Analytical solutions of bending and free vibration of a simply
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supported rectangular plate were presented using this theory to illustrate the effect of non-

local theory. Wang [22] proposed the vibration and instability analysis of tubular nano- and

micro-beams conveying fluid using nonlocal elastic theory. Kiani [9] studied the application of

nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Hu et

al [5] investigated the nonlocal shell model for elastic wave propagation in single- and double-

walled carbon nanotubes. Nonlocal longitudinal vibration of single walled carbon nanotubes

with attached buckyballs was considered by Murmu and Adhikari [12]. Closed-form nonlocal

transcendental equation for vibrating system with arbitrary mass ratio i.e. mass of buckyball

to mass of single-walled carbon nanotubes was derived. Yang et al [24] presented the nonlin-

ear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory.

The differential quadrature method was employed to discretize the nonlinear governing equa-

tions which were then solved by a direct iterative method to obtain the nonlinear vibration

frequencies of single-walled carbon nanotubes with different boundary conditions. Nonlinear

free vibration of embedded double-walled carbon nanotubes was studied based on Eringen’s

nonlocal elasticity theory and von Karman geometric nonlinearity by Ke et al [8]. Mustapha

and Zhong [13] studied the free transverse vibration of an axially loaded non-prismatic single-

walled carbon nanotube embedded in a two-parameter elastic medium using nonlocal Rayleigh

beam.

Nano wires have many interesting properties that are not seen in bulk or 3-D materials.

Many different types of nano wires exist, including metallic (e.g., Ni, Pt, Au), semiconducting

(e.g., InP, Si, GaN, etc.), and insulating (e.g., SiO2, T iO2. Surface effects on the elastic

behavior of static bending nano wires were studied by using a comprehensive Timoshenko

beam model by Jiang and Yan [6]. Fu and Zhang [4] established a continuum elastic model

for core–shell nano wires with weak interfacial bonding. Critical buckling loads and resonant

frequencies of simply supported nano wires were obtained by using the Ritz method. Song and

Huang [20] presented a model of surface stress effects on bending behavior of nano wires based

on the incremental deformation theory. The free longitudinal vibration of tapered nanowires

was investigated in the context of nonlocal continuum theory by Kiani [10]. The problem was

studied for the nanowires with linearly varied radii under fixed–fixed and fixed–free boundary

conditions. From the above works, it can be seen that tapered nano wires are rarely studied.

So, more discussions may be needed. From the knowledge of author, up to now, it is the

first time that static analysis of tapered nano wires is studied. The governing equations are

derived based on nonlocal elasticity theory using Euler-Bernoulli beam theory. In this study,

the differential quadrature method as an accurate numerical tool is adopted to discretize the

governing equations.

2 DIFFERENTIAL QUADRATURE METHOD

The basic idea of the differential quadrature method is that the derivative of a function, with

respect to a space variable at a given sampling point, is approximated as the linear weighted

sums of its values at all of the sampling points in the domain of that variable [3, 17, 19].
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Figure 1 Nanowires [1]

 
Figure 2 Tapered nanowire model

In order to illustrate the DQ approximation, consider a function f(x,y) having its field on a

rectangular domain0 ≤ x ≤ a and0 ≤ y ≤ b. let, in the given domain, the function values be

known or desired on a grid of sampling points. According to DQ method, the r thderivative of

a function f(x, y) can be approximated as,

∂rf(x, y)
∂xr

∣
(x,y)=(xi,yj)

=
Nx

∑
m=1

A
x(r)
im f(xm, yj) =

Nx

∑
m=1

A
x(r)
im fmj (1)

where i=1,2,. . . ,Nx, j=1,2,. . . ,Nyand r=1,2,. . . , Nx − 1
From this equation one can deduce that the important components of DQ approximations

are weighting coefficients and the choice of sampling points. In order to determine the weighting

coefficients a set of test functions should be used in Eq. (1). For polynomial basis functions DQ,

a set of Lagrange polynomials are employed as the test functions. The weighting coefficients

for the first-order derivatives in ξ-direction are thus determined as

Ax
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
Lξ

M(xi)
(xi−xj)M(xj) for i ≠ j

−
Nx

∑
j=1
i≠j

Ax
ij for i = j ; i, j = 1,2 . . . ,Nx (2)

where Lxis the length of domain along the x−direction and M(xi) =∏Nx

k=1,i≠k(xi − xk)
The weighting coefficients of second order derivative can be obtained as,

Bx
ij] = [Ax

ij][Ax
ij] = [Ax

ij]2 (3)

In a similar way, the weighting coefficients for y-direction can be obtained. The weighting

coefficient of the third and fourth order derivatives (Cij,Dij) can be computed easily from

(Bij) by

Cij =
N

∑
j=1

AijAijAij , Dij =
N

∑
j=1

BijBij (4)
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3 GOVERNING EQUATIONS

For an Euler-Bernoulli beam theory, the displacement field is assumed to be as follow,

u1 = u (x, t) + z∂w/∂x,u2 = 0, u3 = w(x, t) (5)

where are the axial and transverse displacements. The only nonzero strain of the Euler–

Bernoulli beam theory is [1],

εxx = ∂u/∂x + z∂2w/∂x2 (6)

The equations for an Euler–Bernoulli beam theory are given by,

∂N/∂x+ f =m0∂
2u/∂t2∂2M/∂x2 + q (x)− ∂(N̄∂w/∂x)/∂x =m0∂

2w/∂t2 −m2∂
4w/∂x2∂t2 (7)

where f (x ) and q(x ) are the axial and transverse distributed forces. According to the nonlocal

elasticity theory, the classic Hooke’s law for a uniaxial stress state is given by,

σ − (e0a)2∂2σ/∂x2 = Eε (8)

whereσ(x) is the axial stress,e0 is a beam constant andαis an internal characteristic length.

The constitutive relation for a nonlocal Euler–Bernoulli beam theory is given by,

M − (e0a)2∂2M/∂x2 = EI∂2w/∂x2 (9)

By performing the differentiation of this equation with respect to the variable x twice we

obtain

∂2M/∂x2 − (e0a)2∂4M/∂x4 = ∂2(EI∂2w/∂x2)/∂x2 (10)

The equation of nonlocal Euler–Bernoulli beam theory now can be expressed in terms of

the displacements as,

∂2(−EI∂2w/∂x2)/∂x2 + (e0a)2∂2[∂ (N̄∂w/∂x) /∂x − q +m0∂
2w/∂t2

−m2∂
4w/∂x2∂t2]∂x2 + q − ∂(N̄∂w/∂x)/∂x =m0∂

2w/∂t2 −m2∂
4w/∂x2∂t2

(11)

Using the DQ-rules for the spatial derivatives, the DQ-analogs of the governing Eqs. (11)

become

EI
⎛
⎝

N

∑
j=1

Dijwi

⎞
⎠
+ 2 (I∂E/∂x +E∂I/∂x)

⎛
⎝

N

∑
j=1

Cijwi

⎞
⎠
+ q (xi) .

(I∂2E/∂x2 + 2(∂E/∂x)(∂I/∂x) +E∂2I/∂x2)
⎛
⎝

N

∑
j=1

Bijwi

⎞
⎠
+ (e0a)2 [−∂2q (xi) /∂x2] = 0.

(12)
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It should be mentioned that for e0a = 0, the above equation will reduce to the classical

Euler-Bernoulli beam theory. Two-types of boundary conditions are considered. These are,

Fully clamped, (at both ends)

W = 0∂W /∂x = 0 (13)

Simply supported, (at both ends)

W = 0∂2W /∂x2 = 0 (14)

The discretized form of boundary condition can be obtained by,

Fully clamped, (at both ends)

Wi = 0,
N

∑
j=1

AijWj = 0 (15)

Simply supported,(at both ends)

Wi = 0,
N

∑
j=1

BijWj = 0 (16)

4 NUMERICAL RESULTS

Consider a tapered nano wire having a length L and bigger radius R = r∣x=0. The radius of

nano wire is varying linearly according to r=R-px. In this section, on the basis of the above

equations, different parameters such as length and radius of nano wire, nonlocal parameter

and different boundary conditions are investigated. In these examples, a tapered nano wire is

assumed to have a 80nm length and bigger radius R = 10nm, unless otherwise specified. In all

of the examples, a tapered nano wire is subjected to sinusoidally mechanical loading defined

as follow,

q = q0sin(πx/L) (17)

where q0 is a constant parameter. In Table 1, the effects of nonlocal parameter on the deflec-

tions of simply supported tapered nano wires subjected to sinusoidally mechanical loading are

shown. One can see that with the increase of nonlocal parameter, the deflections will increase.

The increase in the values of the deflections as the nonlocal parameter is varied is evident of

its importance contribution to the mathematical model. It is also shown that the maximum

deflection of tapered nano wire is not occurring at the middle of the wire, as it is expected.

In Fig. 3, the deflections of simply supported tapered nano wires subjected to sinusoidally

mechanical loading for different geometries are figured. The nonlocal parameter is assumed to

be 1nm. It can be seen that increasing the constant parameter p will increase the deflections of

nano wire. It is important to state that increase the constant parameter p is equal to decrease

the radius of nano wire.
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Figure 3 The deflections of simply supported tapered nano wires subjected to sinusoidally mechanical loading
for different geometries ((e0a)2 = 1nm2)
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Figure 4 The effects of radius (R = r∣x=0) of fully clamped tapered nano wires on the deflections under sinu-
soidally mechanical loading ((e0a)2 = 1nm2, p = 0.05)

In this figure, it is obviously shown that the maximum deflections shift to the right side

of nano wire as the constant p increase. The influences of radius (R = r∣x=0) of fully clamped

tapered nano wires on the deflections under sinusoidally mechanical loading are figured in Fig.

4. The figure indicates that increase of radius R, leads to the decrease of the deflections of

tapered nano wire. It is also shown that with less amount of parameter p and more amount

of radius R, the results for tapered nano wires are close to the results for nano wires with

constant cross section. In Fig. 5, the effects of length of fully clamped tapered nano wires are

investigated. As it is expected, in order to decrease the deflections of tapered nano wires, one

should decrease the length of them.
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Table 1 The effects of nonlocal parameter on the deflections of simply supported tapered nano wires subjected
to sinusoidally mechanical loading (p=1)

(e0a)2(nm)2
x/L 0.1 1 10

0.0000 0.0000 0.0000 0.0000

0.0043 0.1376 0.1378 0.1397
0.0170 0.5481 0.5489 0.5565
0.0381 1.2243 1.2260 1.2430

0.0670 2.1536 2.1566 2.1865
0.1033 3.3178 3.3225 3.3685
0.1464 4.6918 4.6983 4.7635
0.1956 6.2422 6.2508 6.3374

0.2500 7.9251 7.9361 8.0461
0.3087 9.6844 9.6978 9.8322
0.3706 11.4483 11.4642 11.6230
0.4347 13.1275 13.1457 13.3279

0.5000 14.6139 14.6342 14.8370
0.5653 15.7816 15.8035 16.0225
0.6294 16.4927 16.5156 16.7444
0.6913 16.6095 16.6326 16.8630

0.7500 16.0165 16.0387 16.2610
0.8044 14.6523 14.6727 14.8760
0.8536 12.5501 12.5675 12.7417

0.8967 9.8752 9.8889 10.0260
0.9330 6.9368 6.9464 7.0427
0.9619 4.1442 4.1500 4.2075
0.9830 1.8999 1.9025 1.9289

0.9957 0.4802 0.4809 0.4875
1.0000 0.0000 0.0000 0.0000
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Figure 5 The effects of length of fully clamped tapered nano wires on the deflections under sinusoidally me-
chanical loading ((e0a)2 = 1nm2,p = 0.01)
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5 CONCLUSION

In this research, utilizing the nonlocal elasticity theory based on Euler-Bernoulli beam theory,

the deflections of tapered nano wires with circular cross section have been obtained. The

differential quadrature method was employed to convert the governing differential equations

into a linear system. It was shown that with the increase of nonlocal parameter and length

of tapered nano wires and with the decrease of radius of tapered nano wires, (R = r∣x=0) the
deflections will increase.
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