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An enriched meshless finite volume method for the modeling  
of material discontinuity problems in 2D elasticity 

Abstract 
A 2D formulation for incorporating material discontinuities into the mesh-
less finite volume method is proposed. In the proposed formulation, the 
moving least squares approximation space is enriched by local continuous 
functions that contain discontinuity in the first derivative at the location of 
the material interfaces. The formulation utilizes space-filling Voronoi-
shaped finite volumes in order to more intelligently model irregular geom-
etries. Numerical experiments for elastostatic problems in heterogeneous 
media are presented. The results are compared with the corresponding so-
lutions obtained using the standard meshless finite volume method and el-
ement free Galerkin method in order to highlight the improvements 
achieved by the proposed formulation. It is demonstrated that the enriched 
meshless finite volume method could alleviate the expecting oscillations in 
derivative fields around the material discontinuities. The results have re-
vealed the potential of the proposed method in studying the mechanics of 
heterogeneous media with complex micro-structures. 

Keywords 
finite volume method, meshless method, material discontinuity, enrich-
ment technique, Voronoi tessellation. 

1 INTRODUCTION 

The finite-volume method ሺFVMሻ is a numerical technique that provides approximate solutions to boundary 
value problems with partial differential equations. In this method, the computational domain is divided into 
smaller sub-domains, called as finite volumes, each containing one node point on the discretized geometry and 
the partial differential equation is satisfied in the integral sense over each finite volume. A distinctive feature of 
the method is the use of boundary integral instead of the domain integral, for satisfying partial differential equa-
tion. 

The mesh-based formulation of FVM is a well-established technique in a wide range of problems concerned 
with the mechanics of solids and structures, see ሺTaylor et al. 2003, Fallah 2004, Cardiff et al. 2014, Escarpini Fil-
ho and Marques 2016, Cavalcante and Pindera 2016ሻ. However, for certain classes of problems, the heavy and 
rigid reliance of the mesh-based FVM on a mesh leads to some difficulties. Some of these difficulties are as follows 
ሺLiu 2009ሻ: 
• High computational cost and human-labor in creation of a quality mesh for domain with complex geometry, 
• Additional computation as well as a degradation of accuracy in remeshing approach to deal with evolution problems, and 
• Discontinuous nature in calculating stress fields, due to the element-wise continuous nature of the displacement field assumed in the mesh-

based formulation. 
These difficulties could be decreased by using a mesh independent formulation. For this purpose, meshless 

formulation of FVM, which is also named as MLPG5 by Atluri and Shen ሺ2002ሻ, has been introduced. This method 
has been accepted by many researchers and widely used for solving problems in solid and structural mechanics, 
see ሺBatra et al. 2004, Han et al. 2005, Sladek et al. 2008, Hosseini et al. 2011, Soares et al. 2012, Ebrahimnejad et 
al. 2014, 2015, 2017ሻ. 

Interpolation of field variables by moving least squares approximation and integrating weak form of the 
equilibrium equation over local finite volumes in meshless FVM eliminates the need for mesh generation. Instead, 
it relies on background local finite volumes where each finite volume is independent of the others, i.e. they can be 
of any geometric shape and size and even using overlapped finite volumes are allowed. However, they should 
locate entirely inside the boundaries and their union should cover the whole domain. In addition, the high order 
of continuity inherits from moving least squares approximation, provides solutions with smooth derivatives 
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throughout the domain. As a result, negligible pre-processing and post-processing costs of meshless FVM are the 
main attractive features over the prevalent mesh-based methods ሺAtluri and Shen 2002ሻ. Atluri and Shen ሺ2002ሻ 
have demonstrated that meshless FVM can be a simple and efficient alternative to the all-purpose FEM, due to its 
speed, accuracy and response stability. 

In this paper the meshless FVM is applied to the material discontinuity problem which is an important issue 
in numerical modeling of heterogeneous media. It should be noted that heterogeneity is a ubiquitous property of 
solids and structures associated with features such as holes or inclusions that have an important role in the fail-
ure ሺGdoutos 2005ሻ. 

The solution of problems in heterogeneous media typically involves discontinuity in gradient fields. In order 
to capture non-smooth property of the solutions, there are two essentially different techniques. The first tech-
nique applies smooth polynomial approximation spaces and trusts in domain discretization that conforms to ma-
terial discontinuities. The polynomial approximation spaces can be constructed by using either a mesh-based 
shape function or meshless approximation function. The alternative technique is based on ‘enrichment’ of smooth 
approximation space such that the domain discretization being independent of the material discontinuities. The 
enrichment will be accomplished by adding special weak discontinuous functions to the approximation space 
with unknown parameters that control the strength of the discontinuity. 

The first above mentioned technique has been used by Cavalcante et al. ሺ2007ሻ within the mesh-based FVM 
framework for functionally graded materials and also by Li et al. ሺ2003ሻ in the 3D formulation of the MLPG meth-
od to problems with singularities and material discontinuities. In the latter, the heterogeneous medium is sepa-
rated into isolated, homogeneous parts and then continuity constraints are enforced at the interface to ‘reconnect’ 
the pieces. To accomplish the ‘separation’, meshless approximation function applied separately within each ho-
mogeneous part and therefore domains of influence are truncated at the material interfaces. Also, local sub-
domains, which partially cut by the interface, are redefined to locate entirely inside the boundaries. In spite of the 
simple concept of this technique, the presence of truncated domains of influence could introduce some mesh de-
pendency into the solution ሺCordes and Moran 1996, Li et al. 2000ሻ; Furthermore, re- definition of local sub-
domains and domains of influence could be difficult and computationally expensive ሺde Borst 2008ሻ. The so-
called enrichment technique has been applied both in the area of mesh-based and meshless methods. Melenk and 
Babuška ሺ1996ሻ enriched the standard finite element approximation, Belytschko and Black ሺ1999ሻ set up the 
frame of the extended FEM ሺXFEMሻ and Belytschko et al. ሺ1996ሻ implemented it within the EFG method for intro-
ducing discontinuous derivatives into the solution. Batra et al. ሺ2004ሻ utilized this technique in the 1D meshless 
formulation of FVM to analyze heat conduction in a bimetallic circular disk. Recently, Yoon and Song ሺ2014ሻ and 
Hu et al. ሺ2015ሻ applied this technique in order to handle discontinuities in heterogeneous media. Using the en-
richment technique is interesting since a fix and regular domain discretization can be applied and domain dis-
cretization cost is reduced to a minimum ሺAn et al. 2011ሻ. In this paper, based on the enrichment technique used 
already by Krongauz and Belytschko ሺ1998ሻ, a 2D formulation within the meshless FVM framework is proposed 
to handle material discontinuity. 

The structure of the present paper is as follows. In the next section, the basic concepts including standard 
meshless FVM, moving least squares approximation and enrichment of approximation space are briefly described. 
A 2D formulation in modeling heterogeneous material within the meshless FVM framework is presented in sec-
tion 3. Numerical examples and results to verify the capability of the formulation are presented in section 4 and 
concluding remarks are given in the last section. 

2 BASIC CONCEPTS 

2.1 Standard meshless FVM 

Most of the meshless methods, e.g. element free Galerkin ሺEFGሻ and smoothed particle hydrodynamics ሺSPHሻ, 
are based on global weak forms and required the use of background mesh in order to integrate the weak form of 
the equilibrium equation. On the other hand, the meshless local Petrov-Galerkin ሺMLPGሻ method satisfies the 
weak form over the local sub-domains. As a special case, MLPG5 ሺAtluri and Shen 2002ሻ chose the Heaviside step 
function as the test function. Consequently, domain integrals are vanished and integration is performed along the 
boundary of local sub-domains. Satisfying local weak form denotes the momentum balance law over the local sub-
domains that resemble the concept of FVM. Therefore, the MLPG5 method could be recognized as the meshless 
FVM ሺAtluri et al. 2004ሻ. 

Let   be a domain bounded by   . Momentum balance principles for static problems are given by 

, 0   ,ij j ib for all xs + = ÎW  ሺ1ሻ 
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where σ  is the stress tensor and b is the body force measured per unit volume. The essential and natural 
boundary conditions are as follows 

  i i uuu on= G , ሺ2aሻ 

  i i ttt on= G , ሺ2bሻ 

where u  and t  are defined as the prescribed displacements and tractions, respectively. u  is the global essential 

boundary and t  is the global natural boundary. Utilizing weighted residual method, weak form of the Equations 

ሺ1ሻ-ሺ2ሻ over I-th local finite volume s  enclosed by  s , can be written as 

( ) ( ), 0,
s su

I I
ij j i i ib v d u u v ds a

W G
+ W - - G =ò ò  ሺ3ሻ 

where Iv  is the test function for I-th local finite volume and 1 >>  is a penalty parameter which is applied to 
impose the essential boundary conditions. In meshless formulations, a local approximation scheme will be 
applied to approximate the trial function; therefore, the essential boundary conditions cannot be imposed 
directly, a priori, but superimposed in a weak form. In this paper, the penalty method is applied to superimpose 

the essential boundary conditions, as the second term in Equation ሺ3ሻ. Let s  denotes a part of the s  located 

on the global boundary, then     su s u   is a part of the s  that coincides with the global essential boundary. 

By applying the divergence theorem, Equation ሺ3ሻ could be rewritten as 

( ) ( ), 0
s s su

I I I I
ij j ij j i i in v d v b v d u u v ds s a

¶W W G
G - - W- - G =ò ò ò , ሺ4ሻ 

where n is the unit outward normal vector to the boundary s . By using the Heaviside step function as the test 

function, imposing natural boundary conditions and doing some algebraic operations, one can obtain the 
following expression 

0s su su st s su
i i i i i it d t d u d t d b d u d

G G G G W G
G G a G G W a G- - - = + -ò ò ò ò ò ò , ሺ5ሻ 

where 0s  is a part of the s  which is totally inside the global domain and  st s t    is a part of the s  

that coincides with the global natural boundary. Equation ሺ5ሻ represents a weak form of the balance law in the 

local finite volume  s , with the boundary conditions being enforced. It can be seen that the left hand side of 

Equation ሺ5ሻ, which leads to the stiffness matrix, does not involve domain integration. In addition, in the absence 
of body force, domain integration is totally eliminated. It should be mentioned that Equations ሺ1ሻ-ሺ2ሻ would be 
satisfied, a posteriori, in the global domain   and on its boundary   , respectively, if the union of all local finite 
volumes covers the global domain ሺAtluri and Zhu 1998ሻ. 

2.2 Moving least squares approximation 

In Meshless methods, a local partition of unity approximation is applied to approximate unknown field func-
tions with the nodal parameters of unknown variable at some randomly scattered nodes. Among available local 
partition of unity approximation schemes, moving least squares ሺMLSሻ approximation has been utilized in mesh-
less FVM due to its reasonable accuracy and simplicity of extension to 3D problems ሺAtluri and Zhu 1998ሻ. 

Let the neighborhood of a point  x , where  1 2, 
T

x x x  contains space coordinates, be a sub-domain x  and 

called the domain of definition of MLS approximation of the field function   u x . The MLS approximation  hu x  

of the function   u x  can be defined over a given set of nodes  1 2, , , nx  x   x  as 

( ) ( ) ( ) ( ) ( )
1

,  
mh J J T

xJ
u x p x a x p x a x x W

=
= = " Îå , ሺ6ሻ 



Abdullah Davoudi-Kia et al. 
An enriched meshless finite volume method for the modeling of material discontinuity problems in 2D elasticity 

Latin American Journal of Solids and Structures, 2018, 15ሺ2ሻ, e13 4/22 

where  p x  is the complete polynomial basis function of order m  and  a x  is a vector containing associated 

unknown coefficients. In two dimensions,  p x  can be expressed as 

1 2( ) [1, , ]  , 3Tp x x x linear basis m= = , ሺ7aሻ 

( ) ( ) ( )2 2

1 2 1 1 2 21, , , , ,   , 6Tp x x x x x x x quadratic basis mé ù= =ê ú
ë û

 . ሺ7bሻ 

In the MLS approximation, the coefficient vector  a x  can be determined by minimizing the weighted re-

sidual  J x  

( ) ( ) ( ) ( )1

2
ˆI T

I
In IJ x w x x p x ua x

=
é ù= - -ê úë ûå , ሺ8ሻ 

Where n is the number of nodes in the domain of definition for which the weight function  w  Ix x  associated 

with the I-th node is positive and ˆ Iu refers to the fictitious nodal values and not the nodal values of MLS 

approximant  hu x  at the I-th node. Equation ሺ8ሻ can be rewritten in the form 

( ) ( ) ( )ˆ ˆ. . . .
T

J x P a x U W P a x Ué ù é ù= - -ê ú ê úë û ë û , ሺ9ሻ 

where 

( ) ( ) ( )1 2, , ,
TT T T nP p x p x p xé ù= ¼ê úë û

, ሺ10ሻ 

( )

( )

1 0

0 n

w x x

W

w x x

é ù- ¼ê ú
ê ú= ¼ ¼ ¼ê ú
ê ú
ê ú¼ -ë û

, ሺ11ሻ 

1 2 ,ˆ ˆ ˆ ˆ, ,
TnuU u ué ù= ¼ê úë û

 . ሺ12ሻ 

The unknown  a x  coefficients can be found by minimizing of  J x  with respect to  a x  

( )
( )

( ) ( ) ( ) ˆ 0
J x

A x a x V x U
a x

¶
= - =

¶
, ሺ13ሻ 

where the matrices A and V are defined as 

( ) ( ) ( ) ( )1

n I I T I T
I

A x w x x p x p x P WP
=

= - =å , ሺ14ሻ 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, , , n n TV x w x x p x w x x p x w x x p x P Wé ù= - - ¼ - =ê úë û  . ሺ15ሻ 

Solving for  a x  from Equation ሺ13ሻ and substituting in Equation ሺ6ሻ, the MLS approximation can be de-

fined as 

( ) ( )
1

ˆ
nh I I
I

u x x uf
=

= å , ሺ16ሻ 

where the shape function of the MLS approximation corresponding to I-th node defined by 

( ) ( ) ( ) ( )1
1

JImI J
J

x p x A x V xf -
=

é ù= ê úë ûå  . ሺ17ሻ 

The MLS approximation would be well-defined if matrix A  in Equation ሺ14ሻ be invertible, therefore, do-
mains of definition should be large enough to cover at least m  nodes ሺi.e.  n m ሻ for each point of interest to pre-
vent the singularity of the matrix  A . These nodes are also not allowed to lie on a straight line. On the other hand, 
domains of definition should be small enough in order to preserve the local character of the MLS approximation 
ሺAtluri and Zhu 1998ሻ. 
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It should be noted that according to Equation ሺ17ሻ, continuity of the MLS approximation depends on the con-
tinuity of the basis function and also the smoothness of the weight function. Thus, the weight function has a signif-
icant role in the efficiency of the MLS approximation. The exponential function, cubic and quartic spline functions 
are common useful examples of weight functions ሺLiu and Gu 2005ሻ. In this paper, the cubic spline weight func-
tion is used where defined as 

( )
( ) ( )

( ) ( )

2 3

2 3

2 3 4 4 0.5

4 3 4 4 4 3 0.5 1

0 1

I I I

I I I I I

I

r r r

w x x r r r r

r

ìïï - + £ïïïï- = - + - < <íïïï ³ïïïî

, ሺ18ሻ 

where I I
cr r  Ix x   and  Ix x  denotes the distance from I-th node to point x  and 

I
cr  is the radius of the 

circular support for the weight function for I-th node. The cubic spline weight function has 2nd order continuity 

over the entire domain; therefore, MLS approximant  hu x  is C2 continuous over the entire domain. 

2.3 Enrichment of approximation space 

According to the 'reproduction' property of the MLS approximation, it can reproduce any functions that are 
included in the basis. Clearly Equation ሺ16ሻ is just able to reproduce continuous fields; therefore, only if the basis 
enriched by a special approximation function, including discontinuity in the derivative, MLS approximation will 
reflect the discontinuity in the gradient fields ሺLiu and Gu 2005ሻ. The enrichment can be accomplished by adding 
a special function to the approximation space, extrinsically. In addition, most non-smooth phenomena in solid 
mechanics have a local character; therefore, it may be useful to employ the enrichment in local regions ሺFries and 
Belytschko 2010ሻ. 

There are two conditions for the special approximation function which is customized for material interface. It 
should be continuous in the approximation field with a discontinuity in the first derivative at the location of the 
material interfaces ሺBelytschko et al. 1996ሻ. In addition, it should have compact support to maintain discrete 
equations banded and sparse ሺKrongauz and Belytschko 1998ሻ. There are several ways to construct such an en-
richment approximation function. An et al. ሺ2011ሻ introduced a piecewise linear function with a cusp at the loca-
tion of material interface. Krongauz and Belytschko ሺ1998ሻ employed a higher-order polynomial function with 
more constraints and also a localized ramp function. More different enrichment approximation functions could be 
defined by using the level set function which used within the XFEM framework, see ሺSukumar et al. 2001, Moës et 
al. 2003ሻ. In this paper, the spline function introduced already by Krongauz and Belytschko ሺ1998ሻ is applied to 

enrich MLS approximation space. In a two dimensional domain with dn  lines of material discontinuity, the en-

richment approximation function for J-th line of material discontinuity is defined as: 

( ) ( ) ( )3 21 1 1 1
1

6 2 2 6
0 1

J J J J
J J

J

r r r r
r

r
y

ìïï- + - + £ïï= íïï ³ïïî

, ሺ19ሻ 

where  
J J J

cr r r   and Jr  is the distance to the closest point on the J-th line of material discontinuity and 
J

cr  is 

the length of the support of  
J , i.e. the distance over which  0J . The plot of the enrichment approximation 

function ሺEquation 19ሻ and its derivative in one dimension are illustrated in Figure 1, where the kink of the 
enrichment function and the jump in its derivative across the material discontinuity are clearly seen. 
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Figure 1: Enrichment function and its derivative in one dimension. 

The enriched approximation  hu x  for the function   u x , is then given by 

( ) ( ) ( )2

1 1
ˆ dn nh I I J J J

I J
u x x u q rf y

= =
= +å å , ሺ20ሻ 

where the first term on the right-hand side of this equation represents the standard meshless FVM 

approximation, see Equation ሺ16ሻ, 2n  is the number of field nodes in the support domain of 2D MLS 

approximation, dn  is the number of lines of material discontinuity and  
Jq  are amplitude parameters that govern 

the strength of the discontinuity across the material interfaces. 
In 2D problems, q is expressed in term of the arc length of the material discontinuity and then is discretized 

over the discontinuity line as follows 

( ) ( )1

1
ˆ

n K K
K

q qs sf
=

= å , ሺ21ሻ 

where 
K  are one dimensional approximation function, 1 n is the number of enrichment nodes in the support 

domain of 1D approximation and ˆKq are fictitious nodal values that are considered as unknowns in the discretized 
equations. In contrast to field nodes, which are employed to define fictitious nodal values of displacement fields, 
enrichment nodes are distributed along material discontinuities in order to discretize the amplitude parameters; 
they have no displacement degree of freedom. The definition of r  and s in a typical two-dimensional domain is 
illustrated in Figure 2. It should be noted that, at the points far away from discontinuities the second term on the 
right-hand side of Equation ሺ20ሻ vanishes due to the compact support property of enrichment approximation 
function and this equation degenerates to Equation ሺ16ሻ. As a result, using enrichment approximation function, 
Equation ሺ20ሻ led to a local enriched formulation. 
 

L  K  

r  
s  

r  

s  

 
Figure 2: Illustration of r and s values for a material discontinuity. Line of material discontinuity is illustrated by a solid 

line; solid and open circles are denoted the field nodes and the enrichment nodes, respectively and squares are arbi-
trary points. The values of r and s for point K are shown by dashed lines and those for point L are illustrated by dash-

dot lines. 
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3 THE PROPOSED FORMULATION BASED ON THE MESHLESS FVM FRAMEWORK 

3.1 Domain discretization 

A promised feature of enriched formulations is the domain discretization independent of the geometry and 
location of the heterogeneities ሺSukumar et al. 2001ሻ; therefore a regular discretization can be employed in het-
erogeneous media, but these regular sub-domains may be intersected by irregular-shaped external boundaries. In 
the proposed formulation, the Voronoi tessellation is applied for constructing local background finite volumes for 
a set of considered field nodes. The resulted finite volumes can be regular inside the domain and irregular for 
nodes next to the external boundaries. 

It should be mentioned that in mesh-based methods usually mesh refinement is applied where there are de-
tails. In work presented by Cavalcante et al. ሺ2007ሻ, the need for extensive mesh refinement at the arbitrarily 
shaped geometries has been eliminated using a parametric mapping. Li et al. ሺ2003ሻ, which applied pure spherical 
local finite volumes in their meshless FVM formulation, reduced the size of the finite volumes that are close to the 
weak or strong boundaries so as not to cross over the boundaries; therefore, a dense cloud of nodes is required to 
completely represent the irregularities. 

As mentioned above, the inherent flexibility of the meshless FVM enables the use of the Voronoi tessellation 
for the domain discretization. In mathematics, for a given set of nodes, partitioning of a domain into sub-domains 
based on distance to the considered nodes called Voronoi tessellation ሺOkabe et al. 2009ሻ. These sub-domains, so 
called as finite volumes are space-filling polygons in 2D space and can be constructed corresponding to each node 
by forming the perpendicular bisector lines between the nodes and connecting the lines around each node. A Vo-
ronoi tessellation and the local background finite volume associated with an arbitrary node are illustrated in Fig-
ure 3. 

 

 
Figure 3: Voronoi shaped finite volumes. Voronoi tessellation for a given set of nodes ሺdotsሻ is illustrated by solid lines 

and the bold polygon is represented the local background finite volume associated with an arbitrary node. 

3.2 Enrichment of approximation space 

In order to discretize the governing equations, formulation of the meshless FVM can be used. It satisfies weak 
form of the balance law over local finite volumes which are formed around the field nodes, see Equation ሺ5ሻ. For a 
linear elastic solid within the range of infinitesimal deformations, the traction in Equation ሺ5ሻ can be written as 
follows 

i ij j ijkl kl jt n C e ns= = , ሺ22ሻ 

where C  is the 4th order elasticity tensor, n is the unit outward normal vector and e is the strain tensor which is 
defined as 

( ), , 2kl k l l ke u u= +  . ሺ23ሻ 
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In heterogeneous media that contains material interfaces, enriched approximation space can be applied in 
order to make domain discretization independent of the material discontinuities; to this end, the enriched ap-
proximation Equation ሺ20ሻ is utilized as displacement trial function. In order to obtain the discrete equations, 
approximated displacement function and its derivatives are needed. The enriched approximation is given as 

( ) ( ) ( ) ( )2 1

1 1 1
ˆˆ dn n nh I I K J K J

i i iI J K
u x x su q rf f y

= = =
= +å å å , ሺ24ሻ 

where ˆI
iu  and  ˆ

J K
iq are the unknown fictitious nodal values for displacement fields and discontinuities amplitude 

parameters. By differentiating this equation one can obtain 

( ) ( ) ( ) ( ) ( ) ( )2 1 1

, , , ,1 1 1 1 1
ˆ ˆˆ d dn n n n nh I I K J J K K J J K

i j j i j i j iI J K J K
u x x u s r q qs rf f y f y

= = = = =
= + +å å å å å ሺ25ሻ 

where ,
I
j  and ,

K
j  are the derivatives of 2D and 1D MLS approximation functions, respectively, and  ,

J
j  are 

derivative of the enrichment approximation functions. Using the chain rule of differentiation 

( )
( ) ( )

,

K K
K
j

j j

s s s
s

x s x

f f
f

¶ ¶ ¶
= =

¶ ¶ ¶
, ሺ26ሻ 

( )
( ) ( )

,

J J
J

j
j j

r r r
r

x r x

y y
y

¶ ¶ ¶
= =

¶ ¶ ¶
 . ሺ27ሻ 

By substituting Equations ሺ22ሻ-ሺ27ሻ into Equation ሺ5ሻ, finally one obtains the linear algebraic discretized 
equations for a local finite volume as follows 

ˆKU F= , ሺ28ሻ 

where Û  is the vector of unknowns, K  and F  are the equivalent local stiffness matrix and load vector, 
respectively, and can be written as follows 

0s su su

K nDBd nDBd Nd
G G G

G G a G= - - -ò ò ò  , ሺ29ሻ 

st s su

F td bd ud
G W G

G W a G= + -ò ò ò , ሺ30ሻ 

where t , b and u  are the prescribed tractions, the body force measured per unit volume and the prescribed 
displacements, respectively. In Equation ሺ29ሻ, D  is the elasticity matrix and n contains the entries of the unit 
outward normal vector and defined as 

1 2

2 1

0

0

n n
n

n n

é ù
ê ú= ê ú
ê úë û

  . ሺ31ሻ 

Also, the element contribution to N  and strain–displacement matrix B  are as follows 

I J K
std enrN N Né ù= ê úë û , ሺ32ሻ 

I J K
std enrB B Bé ù= ê úë û , ሺ33ሻ 

with their entries being 
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( ) ( )
( ) ( )

0 0
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, ሺ34ሻ 
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Accordingly, the vector of unknowns, Û , is expressed as 

1 2 1 2
ˆ ˆ ˆ ˆ ˆI I J K J KU u u q qé ù= ê úë û  . ሺ36ሻ 

It should be noted that both N  and B  are composed of the standard part and the enriched part, where the 
standard part is computed at every node but the enriched part is only computed at enriched nodes. 

Due to the non-polynomial form of the both MLS approximation and enrichment approximation function, ex-
act integration of the weak form of the balance law is difficult. So, efficient numerical integration of the weak form 
may have an important role in the accuracy and computational efficiency of the method ሺNguyen et al. 2008; Ven-
tura et al. 2009ሻ. Hence, weak form of the balance law can be numerically integrated by Gaussian quadrature rule 
over the finite volumes boundaries. Ventura et al. ሺ2009ሻ have demonstrated that the boundary integration 
scheme is much more accurate than the domain integration for the same computational cost and it is especially 
efficient when the integrand has discontinuous and/or non-polynomial form. 

3.3 Treatment of additional unknowns 

Although in enriched Galerkin-based methods assembling all local equations to the global system leads to as 
many discrete equations as the number of unknowns, but; the proposed formulation faces to a different situation. 

Consider a discretized 2D problem with 1n  enrichment nodes and 2n  field nodes. There are two unknown 

fictitious nodal values associated with every field node and every enrichment node. The unknowns associated 
with the field nodes are fictitious displacement fields and with the enrichment nodes are fictitious nodal disconti-

nuities amplitude parameters. Therefore, the vector of unknowns has  1 22 n n  entries. On the other hand, 

Equation ሺ28ሻ provides two discrete equations for each individual field node or corresponding finite volume, 
whereas there are no equations corresponding to enrichment nodes, because they have no displacement degrees 
of freedom. In order to satisfy the momentum balance law over the entire domain, Equation ሺ28ሻ should be ap-
plied over all finite volumes. The resulted equations are assembled to form the global system equations. By doing 

so, we have only  22 n  discrete equations. This is due to the stack form assembly procedure in finite volume 

methods. 

In order to have the required  12 n  discrete equations, we need 1n  additional local finite volumes. Thanks 

to the inherent flexibilities of the meshless FVM, arbitrarily overlapping local finite volumes can be defined, which 

resolves this difficulty. To this end, we define 1n  new local finite volumes corresponding to the selected field 

nodes. By doing so, Equation ሺ28ሻ provides two additional discrete equations for each newly-defined local finite 
volume. These equations are independent from the previous set one. 

4 NUMERICAL EXPERIMENTS AND RESULTS 

In order to assess the performance and accuracy of the proposed formulation, a set of numerical experiments 
are performed. The considered test problems are linear elastostatic within the range of infinitesimal defor-
mations. A one-dimensional bi-material bar and also a two-dimensional infinite plate with a central inclusion both 
subjected to the prescribed displacement fields are studied. The results are compared with the corresponding 
solutions obtained by the standard meshless FVM in order to demonstrate the improvements achieved by the 
proposed formulation. In these experiments, both numerical methods utilized similar domain discretization, but 
different local approximations. The meshless FVM takes Equation ሺ16ሻ, whereas the proposed formulation takes 
Equation ሺ20ሻ as displacement trial function. The computations are performed using a domain discretization 
which is independent of the shape and location of the interface with the appropriate material property at each 
quadrature point. In order to further highlight the capability of the proposed formulation, some comparisons are 
also made with the results from the EFG method which has been introduced by Belytschko et al. ሺ1994ሻ. 

4.1 1D Bi-material bar 

Consider a one-dimensional bar of length L and constant cross sectional area, A, composed of two different 

materials, i.e. 1 2   . Young's moduli in  1 0,     and  2 , L    are denoted by 1E  and 2 E , respec-

tively. There is a material discontinuity at  x  . The bar is fixed at one end and the other end is subjected to a 
prescribed displacement  u . The problem is depicted in Figure 4. 
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Figure 4: 1D bi-material bar. Problem description. The bar is composed of two different materials, i.e. 1 2   , 

with a material discontinuity at  x  . The bar is fixed at one end and the other end is subjected to a prescribed dis-
placement  u . 

In the computations, let L ൌ 10, A ൌ 1,   ൌ 5, 1E ൌ 1, 2E ൌ 0.5 and u  ൌ 1. The computation is performed 

using 22 uniformly distributed field nodes. One-dimensional finite volumes are constructed with faces located at 
the middle of the field nodes. In the proposed formulation one enrichment node at the location of the material 
discontinuity is required. The domain discretization and corresponding finite volumes used in this test are shown 
in Figure 5. It should be noted that the computations of the EFG method are also performed by using the similar 
nodal arrangement applied in the standard meshless FVM. 

 

 
Figure 5: 1D bi-material bar. Domain discretization and corresponding finite volumes. Blue and red dots are denoted 

the enrichment node and field nodes, respectively. 1D local background finite volumes are illustrated by red lines. 

A linear basis and the cubic spline weight function are used in the MLS approximation. The essential bounda-
ry conditions are imposed by the penalty method using a value of 1.00E൅07 as penalty parameter. The exact ana-
lytical solutions for this problem are as follows ሺKrongauz and Belytschko 1998ሻ 

( )
( ) ( )

2

1 21 2

51
5 5 55

E x x
u x

E x E xE E

ì £ïï= íï - + ³+ ïî
, ሺ37ሻ 

( )
( )

1 2

1 2

   
5

E E
x for all x

E E
s =

+
 . ሺ38ሻ 

The nodal displacement and stress values are obtained from the proposed formulation and compared with 
the exact analytical solutions in Figures 6-7, respectively. In addition, the numerical solutions obtained from the 
meshless FVM and EFG method are also shown in the same figures for comparison purposes. Figure 6 shows a 
very good agreement between the nodal displacements obtained from the proposed formulation and the exact 
analytical solution. In Figure 7, all these numerical methods result in a stress concentration in the vicinity of the 
material discontinuity. In order to compare local accuracy of these methods, a local relative error norm is defined 

as the maximum value of  2
/numerical exact exact    which is calculated at each node. According to Figure 7, the 

EFG method yields a local error of 4.95%, the meshless FVM produces the local error 47.53% where the proposed 
formulation improved it to 17.24%. 
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Figure 6: 1D bi-material bar. Displacement variation along the bar. 

 

 
Figure 7: 1D bi-material bar. Stress variation along the bar. 

 

In order to further compare the proposed formulation with the meshless FVM, a convergence study is con-
ducted using 22, 34 and 50 uniformly distributed field nodes. As mentioned above, in these tests, the proposed 
formulation employed one enrichment node at the location of the material discontinuity. The results of the nu-
merical nodal stresses are obtained and a magnified view around the interface is presented in Figure 8. It is clear 
that the maximum error in nodal values has remained roughly at the same level while the node number increases; 
therefore, the accuracy of the proposed formulation can't be achieved by the meshless FVM even with a dense 
nodal distribution. 
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Figure 8: 1D bi-material bar. Convergence results. ሺaሻ Meshless FVM, ሺbሻ Proposed formulation. 

In the calculation of error, let   num
 and   exact

 represent approximated and exact analytical solutions, re-

spectively. Then, the relative error norms in displacement and stress can be defined as follows 
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where u and   are the displacement and stress at each node, respectively, and   is the computational domain 
of the bar. Table 1 represents the numerical results for the relative error norms obtained with 50 uniform field 
nodes and one enrichment node. 

Table 1: 1D bi-material bar. The relative error norms. 

Error norms Proposed formulation Meshless FVM EFG method 

de  0.37% 0.38% 0.05% 

es  3.12% 6.96% 1.03% 

 
It is clear that both of the proposed formulation and the meshless FVM give almost equal relative error 

norms in displacement. On the other hand, the proposed formulation yields to a more accurate solution for stress; 
the relative error norm in stress obtained from the proposed formulation is about half of the meshless FVM result. 
In addition, both error norms obtained from the EFG method are significantly smaller than those of other meth-
ods. 

Although in this numerical experiment, the EFG method demonstrates good results, however, it should be 
mentioned that the observed performance of EFG method is due to the well-adjusted quadrature points which 
cannot be accommodated in 1D formulation of FV-based methods. It is worth mentioning that in the 1D formula-
tion of FV-based methods quadrature points are restricted to be located at two endpoints of each 1D local finite 
volume. However, as demonstrated, the effect of this drawback has been reduced by the proposed formulation 
through the enrichment of approximation space. 

4.2 2D infinite plate with an inclusion 

Consider a two-dimensional infinite plate with a circular inclusion subjected to a prescribed displacement 
field. In the numerical model, a bi-material square domain of length L with a centered circular inclusion of radius 

1 r  is considered, i.e. 1 2  . Young's modulus and Poisson's ratio of the inclusion 1  are denoted by 1E

and 1  and those of the matrix 2  are denoted by 2E  and 2  , respectively. There is a material discontinuity 

across the interface 1  ሺ 1r r ሻ where tractions and displacements are continuous across it. The problem is de-

picted in Figure 9. 

Ω2  

Ω1   

r1   
θ  

r  

Γ1   Γ2   

Γ2: ur = r , uθ = 0   
x2   

x1   

L

L   
Figure 9: 2D infinite plate with an inclusion. Problem description. The plate is composed of a square domain of length L 

with a centered circular inclusion of radius 1 r , i.e. 1 2 Ω Ω Ω  , with a material discontinuity across the interface 1 Γ . 

The model is subjected to a prescribed displacement field on the external boundary 2 Γ . 

In the polar coordinate system, the essential boundary conditions on the external boundary 

2  are given by 
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, 0ru r uq= =  . ሺ41ሻ 

In the computations, L ൌ 2, 1r ൌ 0.4, 1E ൌ 2, 1  ൌ 0.2, 2E ൌ 10, 2 ൌ 0.3 and the plane strain state are as-

sumed. The computation is made using 452 field nodes. The proposed formulation added 36 enrichment nodes 
along the line of material discontinuity. The Voronoi tessellation is employed to construct finite volumes. The 
domain discretization and corresponding finite volumes used in this test are shown in Figure 10. It should be not-
ed that similar nodal arrangement used in the standard meshless FVM is also utilized in the EFG method. 

A four-point Gaussian quadrature rule is applied in order to integrate the weak form of governing equation. A 
quadratic basis, circular domain of influence and the cubic spline weight function are used in the MLS approxima-
tion. The essential boundary conditions are imposed by the penalty method using a value of 1.00E൅07 as penalty 
parameter. 

 

 
ሺaሻ 

 
ሺbሻ 

 
Figure 10: 2D infinite plate with an inclusion. Domain discretization and corresponding finite volumes. Blue and red 
dots are denoted the enrichment nodes and field nodes, respectively. 1D and 2D local background finite volumes are 
illustrated by blue and red lines, respectively. Due to symmetry, only a quarter of the domain is shown. ሺaሻ Meshless 

FVM, ሺbሻ Proposed formulation. 
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In the polar coordinate system, the exact analytical solution for displacements is as follows ሺSukumar et al. 
2001ሻ 
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0uq = , ሺ43ሻ 

and the exact analytical stress fields are given by the following equations where the shear stress field is zero 
ሺSukumar et al. 2001ሻ. 

( )

( )

2 2

12 2
1 1
2 2

12 2

1 2 2 0

1 2 2
rr

L L
r r

r r

L L
r r L

r r

b m l
s

b m lb

ì éæ ö ùï ÷çï ê ú÷çï - + + £ £÷çê úï ÷ç ÷ï è øï ê úë û= í éæ ö ùï ÷ï çê ú÷ï ç + - + £ £÷ï çê ú÷÷çï è øê úïî ë û

, ሺ44ሻ 

( )

( )

2 2

12 2
1 1
2 2

12 2

1 2 2 0

1 2 2

L L
r r

r r

L L
r r L

r r

qq

b m l
s

b m lb

ì éæ ö ùï ÷çï ê ú÷çï - + + £ £÷çê úï ÷ç ÷ï è øï ê úë û= í éæ ö ùï ÷ï çê ú÷ï ç - + + £ £÷ï çê ú÷÷çï è øê úïî ë û

, ሺ45ሻ 

where 
  and   are appropriate Lame constants at each material and   is defined as 
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The analytical solutions for this problem are given in the polar coordinate system, in which they can be trans-
formed to the Cartesian coordinate system using equations provided in Appendix A. 

The solutions obtained from the proposed formulation, meshless FVM, EFG method and also exact analytical 

one are shown in Figures 11-12 for the horizontal displacement xu  and the normal stress xx  both along the 

line  y x , respectively. A magnified view around the discontinuities is presented in Figure 12 for better observa-
tion. 

 

 

Figure 11: 2D infinite plate with an inclusion. Variation of the x u  along the line  y x . 
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Figure 12: 2D infinite plate with an inclusion. Variation of the  xx  along the line  y x . A magnified around the dis-
continuities view. 

It is clear from Figure 11 that the nodal displacement curve obtained from the proposed formulation agrees 
well with the exact analytical solution, especially in the vicinity of the material discontinuity. In addition, it is seen 
in Figure 12 that a significantly higher accuracy in the nodal stress curve is achieved by the proposed formulation 
as compared with the other meshless methods. The meshless FVM and EFG method fail to reproduce the expected 
jumps in the nodal stress curve. However, oscillations around the material discontinuity are vanished in the solu-
tion obtained from the proposed formulation. 

Another notable observation is that normal stress xx  is constant within the inclusion. The L2 relative error 

norm of the predicted xx  inside the inclusion for meshless FVM and EFG method is 0.012 and 0.008, respective-

ly, while the proposed formulation reduces it to 0.002. 

In the calculation of error, the numerical solutions are compared to the exact analytical ones. Let  num
  and 

 exact
  represent approximated numerical and exact analytical solutions, respectively, then the relative error 

norms in displacement and stress could be defined as follows 
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where u and σ  are the vectors of displacement and stress at each point, respectively, and   is the 
computational domain of the problem. Table 2 represents the results for the relative error norms. Clearly, 
proposed formulation yields to more accurate results than both meshless FVM and EFG method. 

 

Table 2: 2D infinite plate with an inclusion. The relative error norms. 

Error norms Proposed formulation Meshless FVM EFG method 

de  0.48% 2.56% 1.50% 

es  1.96% 20.20% 8.05% 

 



Abdullah Davoudi-Kia et al. 
An enriched meshless finite volume method for the modeling of material discontinuity problems in 2D elasticity 

Latin American Journal of Solids and Structures, 2018, 15ሺ2ሻ, e13 17/22 

In order to further evaluate the proposed formulation, a convergence study is conducted using 452, 1068 and 
1548 field nodes. In the above mentioned tests, the proposed formulation employs 36, 84 and 140 enrichment 
nodes along the material interface, respectively. Computations of the meshless FVM are carried out using similar 
field nodes. The numerical results for the relative error norm in displacement predictions are plotted against the 
field node number in Figure 13. 

 

 
Figure 13: 2D infinite plate with an inclusion. Convergence results. 

The proposed formulation yields to solutions with less error than meshless FVM and the error of the pro-
posed formulation falls below 0.2% when the node number increases to 1688 ሺincluding 1548 field nodes and 
140 enrichment nodesሻ. 

4.3 2D infinite plate with an extremely soft inclusion 

In order to demonstrate the capability of the proposed formulation in the extreme cases, above mentioned 
two-dimensional infinite plate is considered in a different state regarding to inclusion material property. In this 

case we let 1E ൌ 0.02 while 2E  remains equal to 10. Similar geometry, boundary conditions, nodal arrangement 

and numerical techniques are used as presented in the previous test. 

The solutions for the horizontal displacement xu  and the normal stress xxσ  both along the line  y x , ob-

tained from the proposed formulation, meshless FVM, EFG method and also exact analytical one are shown in 
Figures 14-15, respectively. 

 



Abdullah Davoudi-Kia et al. 
An enriched meshless finite volume method for the modeling of material discontinuity problems in 2D elasticity 

Latin American Journal of Solids and Structures, 2018, 15ሺ2ሻ, e13 18/22 

 

Figure 14: 2D infinite plate with an extremely soft inclusion. Variation of the x u  along the line  y x . 

 

Figure 15: 2D infinite plate with an extremely soft inclusion. Variation of the xx  along the line  y x . A magnified 
around the discontinuities view. 

Figure 14 shows a very good agreement between the solution of the proposed formulation and the exact ana-
lytical one. The kinks across the material discontinuities are accurately captured. In Figure 15, a magnified view 
around the discontinuities is presented. As can be seen in Figure 15, while nodal stress curves obtained from 
meshless FVM and EFG method show oscillations in the vicinity of the material discontinuity, they are alleviated 

in the proposed formulation results. As mentioned already, the normal stress xxσ  is constant within the inclu-

sion. The L2 relative error norm of the predicted xxσ  inside the extremely soft inclusion for the meshless FVM, 

EFG method and proposed formulation are 0.019, 0.024 and 0.001, respectively. 
In addition, the results for the relative error norms calculated using Equations ሺ47ሻ-ሺ48ሻ are reported in Ta-

ble 3. 
Table 3: 2D infinite plate with an extremely soft inclusion. The relative error norms. 

Error norms Proposed formulation Meshless FVM EFG method 

de  0.97% 3.77% 3.23% 

es  3.40% 31.09% 7.00% 

 
Again, the convergence study is conducted where three different tests with the same nodal arrangement as 

the problem of 2D infinite plate with an inclusion are considered. The numerical results for the relative error 
norm in displacement predictions are plotted against the field node number in Figure 16. It is clear that the pro-
posed formulation yields to more accurate results as compared to the meshless FVM. 
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Figure 16: 2D infinite plate with an extremely soft inclusion. Convergence results. 

5 CONCLUSIONS 

The aim of this paper is to propose a 2D formulation based on the meshless FVM framework for solving prob-
lems with material discontinuity. In order to capture the discontinuity in the gradient fields, the MLS approxima-
tion space has been enriched by a continuous function, having discontinuity in its derivatives. In contrast to the 
standard meshless methods, in the proposed formulation, the domain discretization task is done independently of 
the material discontinuities and also displacement and traction continuity constraints at the interface is automati-
cally satisfied without additional treatment. Utilizing enrichment and also space-filling Voronoi-shaped local finite 
volumes, greatly simplifies the domain discretization task. 

Several numerical experiments have been performed. The comparisons with the analytical solutions have 
shown an excellent agreement in both displacement and stress fields predictions. It has demonstrated that the 
proposed formulation could alleviate the expecting oscillations in derivative fields in the vicinity of the material 
discontinuities appeared in the standard meshless methods. The formulation has been also successfully applied to 
the case of extremely soft inclusion problem. In comparison with the Galerkin-based methods, the proposed for-
mulation is particularly attractive as it employs boundary integration over the finite volumes boundaries instead 
of domain integration. It should be mentioned that, as stated in Ventura et al. ሺ2009ሻ, the boundary integration 
scheme is much more accurate than the domain integration for the same computational cost and it is especially 
efficient when the integrand has non-polynomial form. 

The results indicate the potential and promise feathers of the proposed formulation for studies of the me-
chanics of heterogeneous media. 
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Appendix A Transformation of field variables 
Two-dimensional displacement and stress components in the polar coordinate system can be transformed to the Cartesian 
coordinate system through the equations provided here. The coordinate systems are illustrated in Figure A.1. 

x2   

x1   

θ   

r  

 
Figure A.1: Cartesian and polar coordinate systems. 

Displacement transformation 

cos sinx ru u uqq q= -  ሺA.1ሻ 

sin cosy ru u uqq q= +  ሺA.2ሻ 

Stress transformation 

( ) ( ) ( )1
1 cos2 1 cos2 2 sin 2

2x r rq qs q s q s q sé ù= + + - -ë û  ሺA.3ሻ 

( ) ( ) ( )1
1 cos2 1 cos2 2 sin 2

2y r rq qs q s q s q sé ù= - + + +ë û  ሺA.4ሻ 

( ) ( ) ( )1
sin 2 sin 2 2 cos 2

2xy r rq qs q s q s q sé ù= - +ë û  ሺA.5ሻ 
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