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Vibration attenuation and shape control of surface mounted,
embedded smart beam

Abstract

Active Vibration Control (AVC) using smart structure is

used to reduce the vibration of a system by automatic modifi-

cation of the system structural response. AVC is widely used,

because of its wide and broad frequency response range, low

additional mass, high adaptability and good efficiency. A lot

of research has been done on Finite Element (FE) models

for AVC based on Euler Bernoulli Beam Theory (EBT). In

the present work Timoshenko Beam Theory (TBT) is used

to model a smart cantilever beam with surface mounted sen-

sors / actuators. A Periodic Output Feedback (POF) Con-

troller has been designed and applied to control the first

three modes of vibration of a flexible smart cantilever beam.

The difficulties encountered in the usage of surface mounted

piezoelectric patches in practical situations can be overcome

by the use of embedded shear sensors / actuators. A math-

ematical model of a smart cantilever beam with embedded

shear sensors and actuators is developed. A POF Controller

has been designed and applied to control of vibration of a

flexible smart cantilever beam and effect of actuator loca-

tion on the performance of the controller is investigated.

The mathematical modeling and control of a Multiple In-

put multiple Output (MIMO) systems with two sensors and

two actuators have also been considered.
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1 INTRODUCTION

Undesired noise and vibrations have always been a major problem in many human activities

and domains. From buildings to atomic force microscopes, all can be disturbed in their normal

functions by vibrations and noise. Recent technological advancements such as the availability

of high–power and low–cost computing, smart materials, and advanced control techniques

have led to a growing use of AVC systems. The implication of active control is that desirable

performance characteristics can be achieved through flexible and clever strategies, whereby

actuators excite the structure based on the structure’s response measured by sensors.
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Umapathy and Bandyopadhyay [20] discussed the vibration control aspects of a smart flex-

ible beam for a Single Input Single Output (SISO) case. Hanagud et al. [11] developed a FE

model for an active beam based on EBT and applied optimal output feedback control. Hawang

et al.[13] developed a FE model for vibration control of a laminated plate with piezoelectric

sensors /and actuators. Crawley et al [9] have presented the analytical and experimental

development of piezoelectric actuators as elements of intelligent structures. FE models of a

structure containing distributed piezoelectric sensors / actuators can also be seen in [10, 24].

Detailed survey on various control algorithms used in active vibration control studies has been

presented by Alkhatib and Golnaragi [4]. A detailed comparative studies of different control

algorithms on active vibration control of smart beam has been presented in [14, 21]. Kumar

and Narayanan [15] carried out optimal location studies of sensor-actuator pairs using Linear

Quadratic Regulator (LQR). Li et al. [16] proposed an optimal design methodology for the

placement of piezoelectric actuator/sensor pairs. Molter et al. [17] carried out control design

analysis for flexible manipulators using piezoelectric actuators. In their paper GA technique is

employed for optimization of placement and size of piezoelectric material for optimal vibration

control. Optimal controller design for the location, size and feedback of sensor/actuators have

been carried out in references [12, 23].

Chandrashekhara and Vardarajan [8] have presented a FE model of a piezoelectric compos-

ite beam using higher – order shear deformation theory. Aldraihem et al. [3] have developed a

laminated cantilever beam model using EBT and TBT with piezoelectric layers. Abramovich

[1] has presented analytical formulation and closed form solutions of composite beam with

piezoelectric actuators using TBT. Narayan and Balamurugan [18] have presented finite el-

ement formulation for the active vibration control study of smart beams, plates and shells

and the controlled response is obtained using classical and optimal control strategies. In the

analyses mentioned above, the controlled response has been obtained based on extension mode

actuation. There have been very few studies based on shear mode actuation and sensing for

the analysis of active structures.

The idea of exploiting the shear mode of creating transverse deflection in beams (sand-

wiched type) was first suggested by Sun and Zhang [19]. A FE approach was used by Ben-

jeddou et al [6] to model a sandwich beam with shear and extension piezoelectric elements. It

was observed that the shear actuator is more efficient in rejecting vibration than the extension

actuator for the same control effort. Aldraihem and Khdeir [2] proposed analytical models and

exact solutions for beams with shear and extension piezoelectric actuators. The models are

based on TBT and HOBT. Exact solutions are obtained by using the state – space approach.

Azulay and Abramovich [5] studied the effects of actuator location and number of patches

on the actuator’s performance for various configurations of patches and boundary conditions

under mechanical and/or electrical loads.
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2 POF CONTROL

A standard result in control theory says that the poles of a linear time invariant (LTI) con-

trollable system can be arbitrarily assigned by state feedback. If the original system is time

invariant and the linear combinations are also constrained to the time invariant, the design

problem is to choose an appropriate matrix of feedback gains. The problem of pole assignment

by piecewise constant output feedback with infrequent observation was studied by Chammas

and Leondes [7] for LTI systems.

Consider the system

ẋ = Ax(t) +Bu(t),
y(t) = Cx(t) (1)

Where x ∈Rn, u ∈Rm, y ∈Rp,A ∈Rn×n,B ∈Rn×m,C ∈Rp×n

A, B, C are constants matrices and it is assumed that the system (A, B, C) is control-

lable, observable and stable. Assume that output measurements are available from system at

time instants t = kτ = 0, 1, 2,. . . . Now, construct a discrete LTI system from these output

measurements at rate 1/τ (sampling interval of τ seconds), the system so obtained is called

the τ system and is given by,

x(k + 1)τ = Φτx(kτ) + Γτu(kτ)
y(kτ) = Cx(kτ) (2)

Now, design an output injection gain matrix G such that Eigen values of (Φτ +GC) are
inside the unit circle i.e., eig(Φτ +GC)<1.

u(t) =Kly(kt),
[kτ + l∆] ≤ t < [kτ + (l + 1)∆],Kl+N =Kl

(3)

For l = 0, 1, - - - - - - - - N –1, where an output sampling interval τ is divided in to

N subintervals of width ∆ = τ/N , the hold function being assumed constant. To see the

relationship between the gain sequence {Kl} and closed loop behavior, let {Φ,Γ,C} be a new

system and denote the system sampled at rate 1/∆ as the ∆ system and collect the gain

matrices Kl in to one matrix. If (Φ,Γ) system is controllable and (Φτ ,C) is observable, one

can first choose and output injection gain G to place the eigen values of (ΦN + GC) in the

desired locations inside the unit circle and then compute the POF gain sequence {Kl} such

that,

ΓK = G (4)

andρ(ΦN +GC) < 1 is satisfied, where ρ is spectral radius.

Werner and Furuta [22] proposed the performance index so that ΓK = G need not be

forced exactly. This constraint is replaced by a penalty function, which makes it possible to

enhance the closed loop performance by allowing slight deviations from the original design and

at the same time improving behavior. The performance index is,
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J(k) =
∞
∑
l=0
[ xT

l uT
l ] [

Q 0

0 R
] [ xl

ul
] +

∞
∑
k=1
(xkN − x∗kN)

T
P (xkN − x∗kN) (5)

Where, R ∈Rm×n,Q and P ∈Rn×n, are positive definite and symmetric weight matrices.

The first term represents ’averaged’ state and control energy whereas the second term penalizes

deviation of G.

3 FORMULATION

3.1 Surface Mounted Sensors and Actuators

The smart cantilever model is developed using a piezoelectric beam element, which includes

sensor and actuator dynamics and a regular beam element based on TBT assumptions. The

piezoelectric beam element is used to model the regions where the piezoelectric patch is bonded

as sensor/actuator, and rest of the structure is modeled by the regular beam element.

The longitudinal axis of the regular beam element (Fig. 1), lies along the X – axis. The

element has constant moment of inertia, modulus of elasticity, mass density and length. The

element is assumed to have two degree of freedom, a transverse shear force and a bending

moment act at each nodal point.
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Figure 1 A Regular Beam Element
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Figure 2 Piezoelectric Beam Elements with
Sensors and Actuators

The displacement relation in the x, y and z direction can be written as,

u (x, y, z, t) = zθ(x, t) = z (∂w
∂x
− β (x)) ,

v (x, y, z, t) = 0,
w (x, y, z, t) = w (x, t)

(6)

Where, w is the time dependent transverse displacement of the centroidal axis, θ is the

time dependent rotation of the cross – section about ‘Y – axis’.
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For the static case with no external force acting on the beam, the equation of motion is,

∂ [κGA (∂w
∂x
+ θ)]

∂x
= 0,

∂ (EI ∂θ
∂x
)

∂x
− κGA(∂w

∂x
+ θ) = 0 (7)

The boundary conditions are given as,

At x = 0 w = w1, θ = −θ1 and At x = L w = w2, θ = −θ2
The mass matrix is given by,

[M] =
L

∫
0

[ [Nw]
[Nθ]

]
T

[ ρA 0

0 ρIyy
] [ [Nw]
[Nθ]

]dx (8)

[M] = [MρA] + [MρI] (9)

[MρA] in equation is associated with translational inertia and [MρI] is associated with

rotary inertia, there expressions are given in the appendix.

The stiffness matrix is given by,

[K] =
L

∫
0

[
∂
∂x
[Nθ]

[Nθ] + ∂
∂x
[Nw]

]
T

[ EI 0

0 κGA
] × [

∂
∂x
[Nθ]

[Nθ] + ∂
∂x
[Nw]

]dx (10)

Finally we obtain;

[K] = EI

(1 + ϕ)L3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

12 6L −12 6L

6L (4 + ϕ)L2 −6L (2 − ϕ)L2

−12 −6L 12 −6L
6L (2 − ϕ)L2 −6L (4 + ϕ)L2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Here ϕ is the ratio of the beam bending stiffness to the shear stiffness given by,ϕ = 12
L2 ( EI

κGA
) ,

L is the length of beam element. E is the Young’s modulus of the beam material, G is shear

modulus of the beam material, k is shear coefficient which depends on the material definition

and cross – sectional geometry, I is the moment of inertia of the beam element, A is the area

of cross – section of the beam element and ρ is the mass density of the beam material.

The consistent force array is given as,

{F} =
L

∫
0

[ [Nw]
[Nθ]

]
T

{ q

m
}dx. (12)

The piezoelectric element is obtained by sandwiching the regular beam element between two

thin piezoelectric layers as shown in figure 2. The element is assumed to have two – structural

degree of freedom at each nodal point and an electric degree of freedom. The piezoelectric
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layers are modeled based on EBT as the effect of shear is negligible and the middle steel layer

is modeled based on TBT. The mass and stiffness matrix of piezoelectric layers is given by,

[Mp] =
ρpAplp

420

⎡⎢⎢⎢⎢⎢⎢⎢⎣

156 22lp 54 −13lp
22lp 4l2p 13lp −3l2p
54 13lp 156 −22lp
−13lp −3l2p −22lp 4l2p

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[Kp] =
EpIp

lp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
l2p

6
lp
−12

l2p

6
lp

6
lp

4 − 6
lp

2

−12
l2p
− 6

lp
12
l2p

− 6
lp

6
lp

2 − 6
lp

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

ρp is the mass density of piezoelectric beam element, Ap is the area of piezoelectric patch

= 2 tac, lp (=L) is the length of the piezoelectric patch. Ep is the modulus elasticity of

piezoelectric material, Ip is the moment of inertia of piezoelectric layer w. r. t. the neutral

axis of the beam

Ip =
1

12
ct3a + cta [

(ta + tb)
2

]
2

ta is the thickness of actuator, tb is the thickness of beam, c is the width of beam.

The mass matrix for the piezoelectric beam element is given by,

[Mpiezo] = [MρA] + [MρI] + [Mp] (14)

Stiffness matrix [Kpiezo] for the piezoelectric beam element,

[Kpiezo] = [K] + [Kp] (15)

3.1.1 Piezoelectric Strain Rate Sensors and Actuators

The linear piezoelectric coupling between the elastic field and the electric field can be expressed

by the direct and converse piezoelectric equations, respectively,

D = dσ + eTEf ε = sEσ + dEf (16)

σ is the stress, ϵ is the strain, Ef is the electric field, e is the permittivity of the medium,

SE is the compliance of the medium, d is the piezoelectric constants.

Sensor Equation: If the poling is done along the thickness direction of the sensors with

the electrodes on the upper and lower surfaces, the electric displacement is given by,

Dz = d31 ×Epεx = e31εx (17)

e 31 is the piezoelectric stress / charge constants, Ep is the Young’s modulus of piezoelectric

material, ϵx is the strain of the testing structure at a point.

The sensor output voltage is,

V s(t) = Gce31zc

lp

∫
0

nTl q̇.dx (18)
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nTl is the second spatial derivative of the shape function of the flexible beam and as a scalar

vector product as,

V s(t) = pT q̇ (19)

q̇ is the time derivative of the displacement vector, pT is a constant vector.

The input voltage to an actuator is V a(t) given by,

V a(t) =KV s(t) (20)

Actuator Equation: The strain developed by the electric field (Ef) on the actuator layer

is given by,

εA = d31Ef (21)

The control force applied by the actuator is,

fctrl = Epd31cz ∫
lp

n2.dx.V
a(t). (22)

z = (ta+tb)
2

, is the distance between the neutral axis of the beam and the piezoelectric layer.

Or as a scalar product as,

fctrl = h.V a(t) (23)

nT2 is the first spatial derivative of shape function of the flexible beam, hT is a constant

vector.

If any external forces described by the vector fext are acting then, the total force vector

becomes,

ft = fext + fctrl (24)

3.1.2 Dynamic Equation and State Space Model

The dynamic equation of motion of the smart structure is finally given by,

M . q̈ +K . q = fext + fctrl (25)

q = T.g , (26)

T is the model matrix containing the eigen vectors representing the desired number of

modes of vibration of the cantilever beam, g is the modal coordinate vector.

Equation (25) is then transformed in to,

M∗.g̈ +C∗.ġ +K∗.g = f∗ext + f∗ctrl (27)
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M ∗ is the generalized mass matrix K∗ is the generalized stiffness matrix, C∗ is the gener-

alized damping matrix, f∗ext is the generalized external force vectors, f∗ctrl is the generalized

control force vectors. The structural modal damping matrix is-:

C∗ = α M∗ + β K∗, (28)

α and β are constants.

The state space model is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [ 0 I

−M∗−1K∗ −M∗−1C∗
]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ [ 0

M∗−1TTh
] u (t) + [ 0

M∗−1TT f
] r(t) (29)

u (t) is the control input, r (t) is the external input to the system, f is the external force

coefficient vector. The sensor equation for the modal state space form is given by;

y(t) = [ 0 pT T ]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(30)

The above system may be represented as,

ẋ = A .x (t) +B . u (t) +E . r (t) (31)

y (t) = CTx (t) (32)

3.1.3 Validation for Surface Mounted Smart Beam

To validate the present formulation and the computer program, a cantilever beam made of steel

which is surface bonded with two PZT layers on both side is considered. The elastic modulus,

poisons ratio and density of steel and PZT are 200GPa, 0.3 and 7500 Kg/m3 and 139 GPa,

0.3 and 7500 Kg/m3 respectively while the strain and stress constants of PZT are 23×10−12
m/V and 0.216 respectively [8]. The length, width and the thickness of the beam are 500 mm,

30 mm and 2 mm respectively while the thickness of each of the PZT layers is 40 µm. The

Voltages at the steel and PZT layers are set to zero. The beam is discretized into 20 elements to

obtain converged results. The beam is excited with 0.2×10−3 Ns impulse load acting on the tip

of the beam. The closed loop response of the tip displacement is obtained using constant gain

negative velocity feedback (CGVF) control with gain Gv =1 and linear quadratic Regulator

(LQR) control Q=106 and R=1 and compared with the response obtained under the same

condition by the Narayanan and Balamurugan [8]. The control is applied after 0.5 seconds.

The present response of the system is very well matched with the published results. Next, the
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first six open-loop and closed-loop natural frequencies of beam are presented in Table 1 and

compared with reference [18]. These frequencies are in good agreement with the published

results.

Table 1 First six natural frequencies of smart steel cantilever beam

Open loop natural Closed loop natural Closed loop natural Natural
frequencies (Hz) frequencies (Hz) frequencies (HZ)

frequencies (Hz) (CGVF control) (LQR control) [8]
6.809 6.855 6.834 6.89
41.64 43.19 41.69 43.285
115.7 121.6 115.7 121.225
226.2 237.5 226.3 237.72
373.6 357.5 373.7 393.58
557.8 506.3 557.9 589.63

 

Figure 3 Closed loop response of smart cantilever steel beam (a) Narayanan and Balamurugan [18](reproduced
with permission from Elsevier) and (b) Present obtained with negative CGVF control with Gv=1.

 

Figure 4 Closed loop response of smart cantilever steel beam (a) Narayanan and Balamurugan [18] (reproduced
with permission from Elsevier) and (b) Present obtained with LQR control with Q = 106 and R=1.

3.2 Embedded Shear Sensors And Actuators

The piezoelectric element is embedded on discrete locations of the sandwich beam as shown in

Figure (5). The smart cantilever beam model is developed using a piezoelectric sandwich beam

element, which includes sensor and actuator and a regular sandwiched beam element, which

includes foam at the core. A FE model of a piezoelectric sandwich beam is developed using
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laminate beam theory. It consists of three layers. The assumption made is that the middle

layer is perfectly glued to the carrying structure and the thickness of adhesive can be neglected

and each layer behaves as a Timoshenko beam. The longitudinal axis of the sandwiched beam

element lies along the X – axis. The element has constant moment of inertia, modulus of

elasticity, mass density and length. The element is assumed to have three degree of freedom,

a transverse shear force and a bending moment act at each nodal point.

    Steel 

Y - Axis  

 Foam 

 

 

 

 

 

 

  h X

 

 

 

 

 

l  

 

 Actuator                                                    Sensor  

Figure 5 A Sandwiched Beam Element

The displacement relation of the beam u (x, z ) and wu (x, z ) can be written as,

u (x, z) = u0(x) − zθ (x, t) w(x, z) = w0 (x) (33)

u0(x) and w0(x) are the axial displacements of the point at the mid plane,θ (x) is the

bending rotation of the normal to the mid plane.

The beam constitutive equation can be written as,

⎡⎢⎢⎢⎢⎢⎣

Nx

Mx

Qxz

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A11 B11 0

B11 D11 0

0 0 A55

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∂u0

dx
∂θ
∂x

θ + ∂w0

∂x

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

E11

F11

G55

⎤⎥⎥⎥⎥⎥⎦
(34)

A11, B11, D11 and A55 are the extensional, bending and shear stiffness coefficients defined

according to the lamination theory,

A11 = c
N

∑
k=1
(Q11)k (zk − zk−1) ,

B11 = c
N

∑
k=1
(Q11)k (z

2
k − z2k−1) ,

D11 = c
3

N

∑
k=1
(Q11)k (z

3
k − z3k−1)

(35)

A55 = cκ
N

∑
k=1
(Q55)k (zk − zk−1) ,
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Zk is the distance of the kth layer from the X – axis, N is the number of layers, k is the shear

correction factor usually taken equal to 5/6.

The boundary conditions are given as,

At x = 0 w = w1, θ = θ1, u = u1 and At x = L w = w2, θ = θ2, u = u2

After solving, we get,

[u] = [Nu]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

w1

θ1
u2

w2

θ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, [w] = [Nw]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1

θ1
w2

θ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, θ = [Nθ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1

θ1
w2

θ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (36)

[Nu] = [ N1 N2 N3 N4 N5 N6 ]
[NW ] = [ N7 N8 N9 N10 ]
[Nθ] = [ N11 N12 N13 N14 ]

(37)

Values of N1 to N12 be given in the appendix,

The symmetric mass and stiffness matrices are given by,

[M] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

Values of the mass and stiffness matrix coefficients are given in the appendix.

The material constants Q11, Q22, Q12, Q66, G13 and G23 for foam, steel and piezoelectric

materials are given in table 2. These constants are used to calculate the values of A11, B11,

D11 and A55

Table 2 Material Properties and Constants

Material Constants Piezoelectric Material Steel Foam
G12(MPa) 24800 78700 99.9
G13(MPa) 24800 78700 99.9
G23(MPa) 24800 78700 99.9
d31(m/V) -16.6×10−9 # #
d15(m/V) 1.34×10−9 # #
Q11(MPa) 68400 215000 85.4
Q22(MPa) 68400 215000 85.4
Q12(MPa) 12600 2880 75.8
Q66(MPa) 12600 78700 9.99

Latin American Journal of Solids and Structures 9(2012) 401 – 424



412 V. Rathi et al / Vibration attenuation and shape control of surface mounted, embedded smart beam

Sensor Equation: The charge q(t) accumulated on the piezoelectric electrodes is given

by,

q (t) =∬
A

D3 dA (39)

D3is the electric displacement in the thickness direction, A is the area of electrodes.

The current induced in sensor layer is converted in to the open circuit sensor voltage

V s (t) using a signal-conditioning device with a gain of Gc and applied to the actuator with

the controller gain Kc.

V s (t) = Gci (t) , V s (t) = e15c 6η
(−12η+l2) [ 0 2 −l 0 −2 −l ] [q̇] , V s (t) = [p]T [q̇]

[q̇] is the time derivative of the modal coordinate vector, [p]T is a constant vector.

The input voltage of the actuator is V a(t), given by,

V a (t) =KcV
s (t) (40)

Actuator Equation: The strain produced in the piezoelectric layer is directly propor-

tional to the electric potential applied to the layer.

γxz ∝ Ef

γxz is the shear strain in the piezoelectric layer, Ef is the electric potential applied to the

actuator.

From the constitutive piezoelectric equation, we get,

γxz = d15Ef (41)

The shear force Qxz is given as

Qxz = cGd15
V a (t)

tp

tp

∫
0

dz (42)

Or as a scalar product,

fctrl = h . V a (t) (43)

Where,fctrl = Qxzand hT is a constant vector.

If any external forces described by the vector fctrl are acting, then total force vector be-

comes,

ft = fext + fctrl (44)
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3.2.1 Dynamic Equation and State Space Model

The dynamic equation is,

M∗.g̈ +C∗.ġ +K∗.g = f∗ext + f∗ctrl (45)

C∗ = α M∗ + β K∗, (46)

The state space form of the system is obtained as,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ 0 I

−M∗−1K∗ −M∗−1C∗
]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ [ 0

M∗−1TTh
]u(t) + [ 0

M∗−1TT f
] r(t) (47)

The sensor equation for the modal state space form is given by;

y (t) = [ 0 pT T ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

The above system can be represented as,

ẋ = A .x (t) +B . u (t) +E . r (t) (49)

y (t) = CTx (t) (50)

4 SIMULATION

4.1 Simulation of Surface Mounted Sensors and Actuators

The state space representation of the cantilever beam with the surface mounted sensor /

actuator is obtained by using nine regular beam elements and one piezoelectric element as

shown figure (6).

The dimensions and properties of the flexible beam and piezoelectric sensor / actuator used

in the numerical simulation are given in tables 3 and 4 respectively.

Two state space models of the smart cantilever beam have been obtained by keeping the

AR 8 and 15, the length of the beam is kept constant and the thickness of the beam is varied.
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Figure 6 Cantilever Beam with Surface Mounted Sensors and Actuators

Table 3 Physical Properties of Steel Beam

Total length of beam (mm) l 500
Width (mm) b 24
Young’s modulus (Pa) Eb 193x109

Density Kg/m3) ρb 8030
Constants used in C∗ α,β 10−3,10−4

The POF control technique is used to design a controller to suppress vibration of a cantilever

beam. For this purpose three vibration modes are considered. In the first case the AR is

taken equal to 15. Configuration specifications of smart beam are as per table 3 and 4. The

collocated sensor and actuator are placed near the fixed end. The FE model of the surface

mounted cantilever beam is developed in MATLAB using TBT. A sixth order space model

of the system is obtained on retaining the first three modes of vibration of the system. The

first three natural frequencies calculated are 106.03 Hz,658.33Hz, 1826.38Hz respectively. An

impulsive force of 10N is applied for duration of 0.05 sec and the open loop response (OLR) of

the system is obtained as shown in figure 7. A controller based on the POF control algorithm

has been designed to control the first three modes of vibration of the smart cantilever beam.

The sampling interval used is 0.0004 sec. The sampling interval is divided in to 10 subintervals

(N=10). The periodic output gain for the system is obtained by using the algorithm given for

POF controller, the impulse response of the system with POF gain is shown in figure 8.

In the second case the AR is taken equal to 8, and again all other parameters are kept

same as that in the first case for which AR is 15. The first three natural frequencies calculated

are 197.94Hz, 1215.89Hz and 3311.05Hz respectively. The OLR and CLR (with POF gain) of

the system is obtained as shown in figure 9 and 10.

Table 4 Properties of Piezoelectric Sensor /Actuator

Width (mm) b 24
Thickness (mm) ta 0.5
Young’s Modulus (Pa) Ep 68x109

Density(Kg/m3) ρp 7700
Piezoelectric strain Constant (mV−1) d31 125x10-12

Piezoelectric stress Constant (VmN−1) e31 10.5x10−3
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Figure 7 OLR of Surface Mounted Can-
tilever Beam with AR = 15

 

Figure 8 CLR of Surface Mounted Can-
tilever Beam with AR = 15

  

Figure 9 OLR of Surface Mounted Cantilever
Beam with AR = 8

Figure 10 CLR of Surface Mounted Can-
tilever Beam with AR = 8

The variation of control signal with time is shown in figure 11 (for AR = 15) and 12 (for

AR = 8).

  

Figure 11 Control Signal of Surface Mounted
Cantilever Beam with AR = 15

Figure 12 CLR of Surface Mounted Cantilever
Beam with AR = 8

A POF controller is designed for the Timoshenko beam models. Two cases (AR=15,8 )

have been considered. By comparing the OLR and CLR in the first case for AR=15, we

observed that there was a 89.43% decrease in settling time for the system after applying POF

control, and a change of 89% in settling time was observed for the case with AR=8. Thus, it

can be inferred from the simulation results, that a POF controller applied to a smart cantilever

model based on TBT is able to satisfactorily control higher modes of vibration of the smart

cantilever beam for a wide range of AR.
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4.2 Simulation of Embedded Sensors and Actuators

4.2.1 Single Input Single Output (SISO) System

The FE model of smart cantilever beam based on laminate beam theory is developed. Keeping

the sensor location fixed and varying the position of the actuator, different state space models

of the smart cantilever beam are obtained. A POF controller is designed to control the first

three modes of vibration of the smart cantilever beam. Here an attempt has been made to find

the optimum actuator position for a single input single output (SISO) system. Three cases

have been considered.

In the first case FE model of the smart cantilever beam is obtained by dividing the beam

into 10 elements. The actuator is placed as the 1st element (at the fixed end) and the sensor

is placed as the 8th element as shown in figure 13. The length of beam is 200mm and its cross

– section is 10mm× 20mm. The length of piezoelectric patch is 200mm and its cross – section

is 6mm × 20mm. The material properties used for the generation of FE model are given in

table 2. A ninth order space model of the system is obtained on retaining the first three modes

of vibration of the system. The first three natural frequencies (same for all three models) are

44.9 Hz, 82.4 Hz and 131.5 Hz respectively.

 

Figure 13 Smart Cantilever Beam with Actuator at 1st Position and Sensor at 8th Position

An impulsive force of 10N is applied for duration of 0.05sec and the OLR of the system

is obtained as shown in figure 14 A controller based on the POF control algorithm has been

designed to control the first three modes of vibration of the smart cantilever beam. The

sampling interval used is 0.07 m sec. The sampling interval is divided in to 10 subintervals (N

=10). The impulse response or CLR of the system with POF gain is shown in figure 15.

  

Figure 14 OLR of Smart Cantilever Beam with
Actuator at 1stPosition

Figure 15 CLR of Smart Cantilever Beam with
Actuator at 1stPosition
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In the second case, the actuator is placed as the 5th element and the sensor is placed as

the 8th element as shown in figure 17. Other parameters are kept same.
 

                           Foam  Actuator 

 

 

 

 

 

 

 

 

 Steel Sensor  

Figure 16 Smart Cantilever Beam with Actuator at 5th Position and Sensor at 8th Position

An impulsive force of 10 N is applied for duration of 0.05 sec and the OLR of the system is

obtained as shown in figure 17. The CLR of the system with POF gain is shown in figure 18.

  

Figure 17 OLR of Smart Cantilever Beam with
Actuator at 5th Position

Figure 18 CLR of Smart Cantilever Beam with
Actuator at 5th Position

In the third case, the actuator is placed as the 10th element (at the free end) and the sensor

is placed as the 8th element as shown in figure 19. Other parameters are kept same as that of

first case.

         Foam 

 

 

 

 

 

 

 Actuator 

 Steel  Sensor 

    

Figure 19 Smart Cantilever Beam with Actuator at 1st Position and Sensor at 8th Position

An impulsive force of 10 N is applied for duration of 0.05 sec and the OLR of the system is

obtained as shown in figure 20. The impulse response of the system with POF gain is shown

in figure 21.

The variation of control signal with time for all the three cases are shown in figure 22 to 24.
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Figure 20 OLR of Smart Cantilever Beam
with Actuator at 10th Position

Figure 21 CLR of Smart Cantilever Beam
with Actuator at 10th Position

 
 

Figure 22 Control Signal of Smart Can-
tilever Beam with Actuator
Placed at 1st Position

Figure 23 Control Signal of Smart Can-
tilever Beam with Actuator at 5th

Position

 

Figure 24 Control Signal of Smart Cantilever Beam with Actuator at 10th Position

Here in the present case, the performance of the controller is evaluated for different actuator

locations while the position of the sensor is kept constant. It can be inferred from the response

characteristics that the actuator locations has negligible effect on the performance of the

controller.
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4.2.2 Multi – Input Multi – Output (MIMO) Systems

Active control of vibration of a smart cantilever beam through smart structure concept for a

multivariable system (MIMO) case is considered here. The structure is modeled in space state

from using Finite element method by dividing the beam in to 10 FE and placing the sensors

at the 6thand 10thpositions and the actuators at the 4th and 8th position. Thus giving rise

to MIMO with two actuator inputs u1 and u2 and two sensors outputs y1and y2, The POF

control technique is used to design a controller to suppress the first three modes of vibration

of a smart cantilever beam for a multi variable system. The simulations are carried out in

MATLAB. The parameters are kept same as that of the model used for SISO case. The first

three natural frequencies calculated are 45.2 Hz, 83.2 Hz and 136.4 Hz respectively.

 

Figure 25 A MIMO Smart Cantilever Beam with Two Inputs and Two Outputs

An impulsive force of 10N is applied for duration of 0.05sec. A controller based on the

POF control algorithm has been designed to control the first three modes vibration of the

smart cantilever beam for the multivariable case. The CLR (sensor outputs y1and y2) with

periodic output feedback gain K for the state space model of the system is shown in figure 27

and 31. Figures 29 and 33 show the variation of the control signal with time.

It can be inferred from the simulation results, that the system’s performance meets the

design requirements. It is also observed that the maximum amplitude of the sensor output

voltage is less for the multivariable case and the response takes lesser time to settle. Controlling

time is considerably reduced with MIMO systems as compared to SISO systems.

  

Figure 26 CLR of SISO System with Sensor
at 6th Position

Figure 27 Response y1 of MIMO System
with POF
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Figure 28 Control Input of SISO System
with Sensor at 6th Position and
Actuator at 4th Position

Figure 29 Control Input u1 of MIMO Sys-
tem with POF

  

Figure 30 30 CLR of SISO System with Sen-
sor at 10th Position and Actuator
at 8thPosition

Figure 31 Response y2 of MIMO System
with POF

  

Figure 32 Control Input of SISO System
with Sensor at 10th Position and
Actuator at 8thPosition

Figure 33 Control Input u2 of MIMO Sys-
tem with POF
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5 CONCLUSION

An integrated FE model to analyze the vibration suppression capability of a smart cantilever

beam with surface mounted piezoelectric devices based on TBT is developed. In practical

situations a large number of modes of vibrations contribute to the structures response. In this

work a FE model of a smart cantilever beam have been obtained by varying the AR from

8 to 15, the length of the beam is kept constants and the thickness of the beam is varied.

POF control technique is used to design a controller to suppress the vibration of the smart

cantilever beam by considering three modes of vibration. Two different cases have been con-

sidered (AR=8,15). The simulation results show that the POF controller based on TBT is

able to satisfactorily control the first three modes of vibration of the smart cantilever beam

for different AR. Surface mounted piezoelectric sensors and actuators are usually placed at

the extreme thickness positions of the structure to achieve most effective sensing and actua-

tion. This subjects the sensors / actuators to high longitudinal stresses that might damage

the piezoceramic material. Furthermore, surface mounted sensors/ actuators are likely to be

damaged by contact with surrounding objects. Embedded shear sensors / actuators can be

used to alleviate these problems. A FE model of a smart cantilever beam with embedded

piezoelectric shear sensors / actuators based on laminate theory is developed.

A POF controller is designed to control the vibration of the system. The performance of

the controller is evaluated for different actuator locations while the position of sensor is kept

constant. It was observed from the simulation results that the location of the actuator has

negligible effect on the performance of the controller. A MIMO system with two sensors and

two actuators has also been considered. A POF controller has been designed for the MIMO

smart structure model to control the vibration of the system by considering the three modes

of vibration. The beam with embedded shear sensors / actuators has been divided in to 10 FE

with the sensors placed at the 6th and 10th positions and the actuators placed at the 4th and

8th positions. It can be inferred from the simulation results, that when the system is placed

with the controller, the system’s performance meets the design requirements. It is observed

that the maximum amplitude of the sensor output voltage is less for the multivariable case

and the response takes lesser time to settle.
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APPENDIX

Translational mass matrix:

[MρA] =
ρI

210(1 + ϕ)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[70ϕ2 + 147ϕ + 78] [35ϕ2 + 77ϕ + 44] L
4

[35ϕ2 + 63ϕ + 27] − [35ϕ2 + 63ϕ + 26] L
4

[35ϕ2 + 77ϕ + 44] L
4

[7ϕ2 + 14ϕ + 8] L2

4
[35ϕ2 + 63ϕ + 26] L

4
− [7ϕ2 + 14ϕ + 6] L2

4
[35ϕ2 + 63ϕ + 27] [35ϕ2 + 63ϕ + 26] L

4
[70ϕ2 + 147ϕ + 78] − [35ϕ2 + 77ϕ + 44] L

4

− [35ϕ2 + 63ϕ + 26] L
4
− [7ϕ2 + 14ϕ + 6] L2

4
− [35ϕ2 + 77ϕ + 44] L

4
[7ϕ2 + 14ϕ + 8] L2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rotational Mass matrix

[MρI] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

36 − (15ϕ − 3)L −36 − (15ϕ − 3)L
− (15ϕ − 3)L (10ϕ2 + 5ϕ + 4)L2 (15ϕ − 3)L (5ϕ2 − 5ϕ − 1)L2

(10ϕ2 + 5ϕ + 4)L2 (15ϕ − 3)L 36 (15ϕ − 3)L
− (15ϕ − 3)L (5ϕ2 − 5ϕ − 1)L2 (15ϕ − 3)L (10ϕ2 + 5ϕ + 4)L2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The mass matrix for the sandwich beam element ,

[M] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where,

M11 =
1

3
LI1,M12 =M21 =

1

2

γ L2I1

(12η−L2)
, M13 =M31 = −

1

4

γ L3I1

(12η−L2)
, M14 =M41 =

1

6
LI1,

M15 =M51 = −1
2

γ L2I1
(12η−L2) , M16 =M61 = −1

4
γ L3I1
(12η−L2) , M24 =M42 = 1

2
γ L2I1
(12η−L2) ,

M22 = 1
35

L
⎛
⎜
⎝

−294I3ηL2 + 35I2L3 + 1680I2η2 + 13I3L4 − 420I2ηL
+ 42I1L2 + 42γ2I1L

2

⎞
⎟
⎠

(12η−L2)2
,

M23 =M32 = 1
210

L
⎛
⎜
⎝

11I3L
5 − 10080I2η2 + 1260I3η2L − 231I3L3η + 126γ2I1L

3

+ 1260LI1η + 840I2ηL2 + 21I1L3

⎞
⎟
⎠

(12η−L2)2
,

M25 =M52 = 3
70

L(3I3L4−28γ2I1L
2−28I1L2−84I3ηL2+560I3η2)
(12η−L2)2

,

M26 =M62 = 1
420

L
⎛
⎜
⎝

13I3L
5 + 10080I2η2 + 2520I3η2L − 378I3L3η + 252γ2I1L

3

− 2520LI1η − 840I2ηL2 − 42I1L3

⎞
⎟
⎠

(12η−L2)2
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M55 = 1
35

L
⎛
⎜
⎝

13I3L
4 − 35I2L3 + 42γ2I1L

2 + 42I1L2 − 294I3ηL2

+ 420I2ηL + 1680I3η2
⎞
⎟
⎠

(12η−L2)2
,

M56 =M65 = 1
210

L
⎛
⎜
⎝

11I3L
5 + 10080I2η2 + 1260I3η2L − 231I3L3η + 126γ2I1L

3

+ 1260LI1η − 840I2ηL2 + 21I1L3

⎞
⎟
⎠

(12η−L2)2
,

M66 = 1
210

L
⎛
⎜
⎝

252I3η
2L2 − 42I3L4η + 10080I1η2 + 63γ2I1L

4 + 28I1L4

− 420I1ηL2 + 2I3L6 + 2520I2η2L − 210I2ηL3

⎞
⎟
⎠

(12η−L2)2
.

The stiffness matrix for the sandwich beam element is

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K11 = AA11

L
, K12 =K21 = AB11

L
, K13 =K31 = 0, K14 =K41 = −AA11

L
, K15 =K51 = −AB11

L
,

K16 =K61 = 0, K22 = − 1
10

AL(D11L
3−10B11γ L2+60A55L+60η2A11L+120γ B11η)

(12η−L2)2
,

K23 =K32 = 6
5
A
L

(D11L
4+10A55 L2+10γ2A11L

2−20η D11L
2+120 D11η

2)
(12η−L2)2

,

K24 =K42 = −AB11

L
, K25 =K52 = −6

5
A
L

(D11L
4+10A55 L2+10γ2A11L

2−20η D11L
2+120 D11η

2)
(12η−L2)2

,

K26 =K62 = 1
10

AL(−D11L
3−10B11γ L2−60A55L−60γ2A11L+120γ B11η)

(12η−L2)2
,

K33 =
A
⎛
⎜
⎝

2L6D11 − 30L4D11η + 180L2D11η
2 − 15L5γ B11 + 2160A55η

2

+ 60A55L
4 − 360A55ηL

2 + 180γL3B11η + 45γ2L4A11

⎞
⎟
⎠

15L(12η−L2)2 , K34 =K43 = 0,

K35 =K53 = 1
10

AL(D11L
3−10B11γ L2+60A55L+60γ2A11L+120γ B11η)

(12η−L2)2
, K44 = AA11

L
,

K45 =K54 = AB11

L
,K46 =K64 = 0,

K36 =K63 =
−A
⎛
⎜
⎝

L6D11 − 60L4A55 − 90L4A11γ
2 − 60L4η D11 + 360D11L

2η

+ 4320A55η
2 − 720A55ηL

2

⎞
⎟
⎠

30L(12η−L2)2 ,

K55 = 6
5
A
L

(D11L
4+10A55 L2+10γ2A11L

2−20η D11L
2+120 D11η

2)
(12η−L2)2

,

K56 =K65 = − 1
10

AL(−D11L
3−10B11γ L2−60A55L−60γ2A11L+120γ B11η)

(12η−L2)2
,

K66 =
A
⎛
⎜
⎝

2L6D11 + 15L5B11γ − 30L4D11η + 2160A55η
2 + 180L2D11η

2

+ 60A55L
4 − 360A55ηL

2 − 180γL3B11η + 45γ2L4A11

⎞
⎟
⎠

15L(12η−L2)2 .
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