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Numerical simulations of crack propagation tests in adhesive
bonded joints

Abstract

Mainly due to their low weight, low cost and ease of assembly,

the adhesive bonds have emerged as a promising technology.

However, the lack of adequate tools of design and control

remain an obstacle to the use of the adhesives. In this work a

cohesive interface model formulated within the framework of

damage mechanics is applied for the simulation of decohesion

during crack propagation tests. Considering the mechanical

tests of aluminium/epoxy specimens, comparisons between

experimental and numerical results are presented.
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1 INTRODUCTION

The widespread use of adhesive joints is indicative of the advantages of bonding techniques

over welding and riveting ones. Contrary to holes, rivets, clamps and screws that have a

tendency to cause stress concentration areas, adhesives can distribute the load over the entire

bonded area. However, the use of adhesive bonding in aircraft structures and other safety

critical applications has been limited due to the lack of adequate tools of design and control.

The development of numerical tools of design is necessary to increase the utilization of bonded

joints in the industry. Interface damage models have been extensively used for the non-linear

incremental analysis of debonding in the last years [1, 3, 4]. This damage models use some

parametres that can be identified from mechanical tests.

The paper investigates the validation of a damage interface model for the simulation of crack

propagations test. Comparisons between experimental results in aluminium/epoxy specimens

and numerical simulation are presented.
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2 INTERFACE MODEL

In the cohesive-zone approach the description of a state of damage along an interface relies upon

the definition of a traction-separation law incorporating the dependence of the surface tractions

on the corresponding displacement discontinuities [u] = u+ − u− and the damage criterion to

be met for the cohesive process zone to grow and the crack advance. In the simplest one-

dimensional case the damage onset and decohesion propagation conditions only involve the

single-mode displacement or energy release rate component; on the contrary, when considering

the mixed-mode case these conditions have to properly account for the interaction of the pure-

mode contributions. In this last case the work of separation per unit fracture area does actually

results from the interplay of the I and II pure-mode contributions, that are not independent

in that they evolve together as a consequence of the interaction of the traction-displacement

jump relationships in two directions. In what follows we shall briefly discuss the cohesive-zone

model used in this work. A more exhaustive presentation of this model can be found in [10].

2.1 Pure-mode model

The adhesive joint here considered consists of two elastic bodies (adherends) joined by a

plane adhesive layer whose thickness is assumed to be negligible compared to both that of the

joined bodies and to its in-plane dimensions. These features enable the adhesive layer to be

conveniently schematized as an interface, i.e. as a zero-thickness surface entity which ensures

displacement and stress transfer between the adherends, see Fig. 1.

Figure 1 Interface schematization.

Assuming that the displacement jump [u] = u+ − u− at the interface in one direction is

small in the usual sense, the elastic damage model for the interface can be derived based on a

stored energy function defined as:

ψ ([u] ,D) = 1

2
(1 −D)k+ ⟨[u]⟩2+ +

1

2
k− ⟨[u]⟩2− (1)

where D ∈ [0,1] denotes a scalar damage variable in the usual sense, the symbols ⟨⋅⟩+ and ⟨⋅⟩−
stand for the positive and negative part of the argument ⟨⋅⟩, defined as ⟨x⟩± = 1 /2 (x ± ∣x∣), and
k+ and k− are the undamaged interface stiffnesses in tension and compression, respectively,

the latter representing a penalty stiffness accounting for the impenetrability constraint.

The associated interface traction in the direction of the jump is then the following:
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t = ∂ψ

∂ [u]
= (1 −D)k+ ⟨[u]⟩+ + k

− ⟨[u]⟩− (2)

The damage driving force is classicaly defined by:

Y = − ∂ψ
∂D
= 1

2
k+ ⟨[u]⟩2+ (3)

The damage evolution is subjected to the classical loading/unloading conditions:

f(Y ) ≤ 0 Ḋ ≥ 0 f(Y )Ḋ = 0 (4)

f(Y ) = Y − Y ∗ Ḋ ∈ [0,1] (5)

where the damage threshold Y ∗ is defined by:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y ∗ = Go if D = 0
Y ∗ = Go + (Yf −Go) [− log (1 −D)]N if D ∈ ]0,1[
Y ∗ = max

τ∈[0,T ]
Y (τ) if D = 1

(6)

The energy dissipated in the decohesion process is:

∫
1

0
Y ∗(D)dD = Go + (Yf −Go)Γ (N + 1) = Gc (7)

where Γ is the Gamma function [5], defined by:

Γ (N + 1) = ∫
+∞

0
xNe−xdx = N ⋅ Γ(N) (8)

The traction-separation relationship for this model is depicted in Fig. 2.
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Figure 2 Traction–separation relationships.
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2.2 Mixed-mode model

As opposite to the single-mode case, where the criteria used for determining damage onset and

propagation up to complete failure only involve one single component of the energy release

rate, when considering mixed-mode conditions the total energy released during decohesion

(GT ) results from the interplay of the I and II pure-mode contributions that evolve together

as a consequence of the interactions between the traction-displacement jump in the normal

and tangencial directions.

GT = GI +GII (9)

The stored energy function takes the following form:

ψ ([u] ,D) = 1

2
(1 −D) [k+n ⟨[un]⟩

2
+ + ks [us]

2] + 1

2
k−n ⟨[un]⟩

2
− (10)

where k+n and k−n are the interface stiffness normal component in tension and compression, ks
is the interface stiffness sliding (tangential) component, and [un] and [us] denote the normal

and sliding components of the displacement jump vector [u], i.e. [un] = [u] n, [us] = [u] n,
n and s being the outward unit normal and the unit tangent vector to the interface, see also

Fig. 1.

The constitutive equations for the interface traction vector t and the damage driving force

are obtained in the usual way as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t = ∂ψ

∂ [u]
= (1 −D) [k+n ⟨[un]⟩+ n + ks [us] s] + k−n ⟨[un]⟩− n

Ym = −
∂ψ

∂D
= YI + YII

(11)

The energy release rate for the two modes are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

YI =
1

2
k+n ⟨[un]⟩

2
+

YII =
1

2
ks [us]2

(12)

In the above equation and in the remainder of the paper the subscript m is appended to

the mixed-mode variables in order to emphasize the difference with the analogous unsuffixed

variables, that refer to the single-mode case.

Based on the above relationships, the equivalent mixed-mode energy release rate Ym can

be expressed as

Ym =
1

2
k+nδ

2 (13)

where δ is an equivalent opening displacement given by

δ = (⟨[un]⟩2+ + α
2 [us]2)

1/2
(14)
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being

α =
√

ks
k+n

(15)

a mixed-mode parameter β can be defined as

β = α tan (φ) (16)

where φ is the loading angle

φ = arctan [ [us]
⟨[un]⟩+

] ∈ [0,+π /2] (17)

The expressions of the pure-mode contributions (12) follow as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

YI =
1

1 + β2
Ym

YII =
β2

1 + β2
Ym

(18)

The cohesive relationship can thus be reformulated as

tδ = (1 −D)k+nδ (19)

where tδ is an equivalent scalar traction

tδ = (t2n +
1

α2
t2s)

1/2
(20)

being the normal and sliding components of the traction vector

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tn = ⟨t ⋅ n⟩+ =
1

(1 + β2)1/2
tδ

ts = t ⋅ s =
αβ

(1 + β2)1/2
tδ

(21)

Having identified the damage-driving force as the mixed-mode energy release rate (13), one

can specify the evolution equations as

Ḋ = γ̇ ∂ϕm
∂Ym

(22)

along with the KKT conditions:

ϕm ≤ 0; γ̇ ≥ 0; γ̇ϕm = 0 (23)

for the damage mode:
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ϕm = Ym − Y ∗m ≤ 0 (24)

where, analogous to the one-dimensional case, Y ∗m denotes the mixed-mode instantaneous

critical energy release rate, whose evolution is governed by a monotonically increasing positive

function Fm.

As opposite to the one-dimensional situation, where the damage onset is determined by

comparing the energy release rate with the initial pure-mode threshold Go, under mixed-mode

loading damage can occur before any single-mode component attains its initial allowable value.

Accordingly, the definition of the critical damage-driving force for a regularized mixed-mode

model, that at least formally can be given as in the single-mode case, i.e. as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y ∗m = Ymo ⇒ D = 0
Y ∗m = Fm (D) ⇒ D ∈ ]0,1[
Y ∗m = max

τ≤t
Ym (τ) ⇒ D = 1

(25)

The damage onset is obtained according to the following criteria:

( YI
GoI
)
α1

+ ( YII
GoII

)
α2

= 1 (26)

where GoI and GoII are the initial pure-mode damage thresholds while α1 and α2 are model

parameters to be chosen in accordance with experimental data, that are assumed to be both

strictly positive and non-necessarily integer.

For α1 = α2 the initial mixed-mode threshold Ymo can be computed:

Ymo =
(1 + β2)GoIGoII

[(GoII)α1 + (β2GoI)α1]1/α1
(27)

For the delamination propagation, the well-known ellipse criterion is assumed [9].

( GI

GcI
)
β1

+ ( GII

GcII
)
β2

= 1 (28)

where the exponents β1 et β2 are strictly positive reals while the mode I and mode II released

energies are given by

Gi = ∫
+∞

0
YiḊdt ; i ∈ {I, II} (29)

For the particular case of β1 = β2 the propagation of decohesion takes place for:

GTc =
(1 + β2)GcIGcII

[(GcII)β1 + (β2GcI)β1]
1/β1

(30)

where GTc is computed as the total work of separation:

GTc = ∫
+∞

0
Y ∗mḊdt (31)
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whose expression depends upon that of the function Fm defining the critical damage-driving

force in the range D ∈ ]0,1[.
In particular, taking for Fm one of the expressions used in the one-dimensional case, i.e. :

Fm (D) = Ymo + (Ymf − Ymo) [− log (1 −D)]N (32)

According to the damage evolution law, one has the expression of the parameter Ymf as:

Ymf = Ymo +
1

Γ (N + 1)
[GTc − Ymo] (33)

where Γ is the Gamma function [5].

One can see that the interface model takes into account the modification of the mixed mode

ratio during the loading path. Figure 3 presents the behaviour of the model for mixed mode.

This model has been implemented in the Finite Element Code CAST3M, where it can be

used for simulation of damage evolution in adhesively bonded joints.

Figure 3 Mixed-mode traction–separation relationships.

3 MECHANICAL TESTS

The parameters of the interface model are the undamaged stiffnesses (kn and ks), the acti-

vation energies for each pure mode (GoI and GoII), the critical energies (GcI and GcII) and

the exponent of the ellipse criterion for activation and propagation (α). The exponent α is

classicaly set to 2.

The stiffnesses of a thin layer of adhesive can not be derived from the elastic properties

of the adhesive itself. They can not be identified from mechanical tests on adhesively bonded

assemblies as they have a small influence on the global response of the assemby [6]. kn and ks
are indentified from acoustical tests not presented in this paper [11].
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The activation energies Goi and the critical energies Gci can be indentified straight from

classical crack propagation test results.

The tests depend on the load application mode used to propagate the crack. The double-

cantilever bean (DCB) and the end-notched flexure (ENF) are pure mode I and pure mode II

tests, respectively. We can also have mixed-mode tests like the mixed-mode flexure (MMF).

These test are presented schematically in Fig. 4.

Figure 4 Crack propagation tests

Due to their boundary conditions simpler than mode I tests, ENF and MMF tests were

performed in this work.

The samples tested consist of two 3mm thick and 20mm wide aluminum plates bonded

with a layer of 0.5mm of epoxy. They were tested using a traction/compression machine (MTS

816). The tests had been perfomed via displacement control with a three-point bending fixture

with span L = 120mm. The elastic properties of the aluminum are E = 75000MPa and ν = 0.3.
Figure 5 shows two results of ENF tests for two different initial crack lengths a.

Figure 6 shows some results of this mixed-mode tests. On the different curves, inclinations

at the beginning of each curve correspond to different initial crack lengths a. The results show

that the structure compliance depends on the length of the initial crack as expected.

0 0,5 1 1,5 2
Displacement (mm)

0

100

200

300

400

500

L
oa

d 
(N

)

ENF1 (a = 20mm)
ENF2 (a = 25mm)

ENF

Figure 5 ENF results
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Figure 6 MMF results

Figure 7 ENF test

4 NUMERICAL RESULTS

Numerical simulations and tests results must be compared to evaluate the parameters of the

mechanical interface model. Owing to the softening behaviour of the local traction–separation

relationship, the structural response will unavoidably suffer from some mesh-dependence. This

problem has been reported by many analysts and the general recommendation is that of using

a sufficiently refined mesh around the decohesion front in order to allow values of the peak

stress of the local traction-separation relationship that are high enough to correctly predict

the decohesion [1]. The finite-element (FE) mesh used to simulate an ENF test showed in

Fig. 7is composed by 528 quadratic elements with eight nodes (3 elements in the thickness of

each plate) and 74 quadratic elements of interface.

Figures 8 and 9 give the comparison between experimental curve and simulation result after

identification of the damage parameters in mode II GoII(and)GcII Just after the start of the

crack propagation, effects of dynamic propagation not represented in this quasi-static model do

not allow the correct representation of the structure answer. Besides, the computations have
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been carried out by using a varying step size and a local-control-based arc-length algorithm in

order to make convergence easier by taking into account the snap-back problem [2].

To simulate a MMF test, the FE mesh showed in Fig. 7 is used. It is composed by 504

quadratic elements with eight nodes (3 elements in the thickness of each plate) and 77 quadratic

elements of interface.
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Figure 8 ENF numerical and test results
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Figure 9 ENF numerical and test results

Latin American Journal of Solids and Structures 9(2012) 339 – 351



S. de Barros et al / Numerical simulations of crack propagation tests in adhesive bonded joints 349

Figures 11, 12 and 13 give the comparison between a experimental curve and the result of

the numerical model after identification of the rest of the damage parameters (GoI and GcI).

Just after the start of the crack propagation, effects of great displacements of the lower plate

not represented in this model do not allow the correct representation of the structure answer.

At least, the elastic characteristics of the bonded interface that were identified in the

acoustic tests and its damage characteristics that were identified in mechanical tests in mode

II (ENF) and mixed-mode (MMF) are:

α1 = α2 = 2 β1 = β2 = 2
kn = 810N/mm3 ks = 760N/mm3

GcI = 0.02N/mm3 GoI = 0.4 ×GcI

GcII = 0.09N/mm3 GoII = 0.4 ×GcII

Figure 10 MMF test
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Figure 11 MMF numerical and test results
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Figure 12 MMF numerical and test results
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Figure 13 MMF numerical and test results
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5 CONCLUSION

In the present work, a damage interface model was validated as a possible tool applied for the

simulation of crack propagation during adhesive tests.

A cohesive zone model formulated within the framework of damage mechanics was briefly

presented. The model has been implemented in a Finite Element Code and numerical simula-

tions have been carried out for some examples referring to both single-mode and mixed-mode

solicitations.

ENF and MMF crack propagation tests have been performed in aluminium/epoxy samples

with different initial crack lengths. The results show that the structure compliance depends

on the length of the initial crack as expected.

Finally, comparasions with numerical results have shown a satisfactory agreement, once

the crack propagation point could be foreseen with a quite good accuracy.
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