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Buckling analysis of laminated composite plates using an
efficient C0 FE model

Abstract

Buckling analysis of laminated composite plates is carried

out by using an efficient C0 FE model developed based on

higher order zigzag theory. In this model the first derivatives

of transverse displacement have been treated as independent

variables to overcome the problem of C1 continuity associ-

ated with the FE implementation of the plate theory. The

C0 continuity of the present FE model is compensated in

the stiffness matrix calculations by using penalty parameter

approach. Numerical results and comparison with other ex-

isting solutions show that the present model is very efficient

in predicting the buckling responses of laminated compos-

ites.
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1 INTRODUCTION

Laminated composite plates are widely used in civil infrastructure systems due to their high

strength to weight ratio and flexibility in design. One of the main failure mechanisms in

composite plates is buckling. Accurate prediction of structural response characteristics is a

challenging problem in the analysis of laminated composites due to the orthotropic structural

behavior, the presence of various types of couplings and due to less thickness of the structural

elements made of composites. Thus, an accurate buckling analysis of the laminated composite

plates is an important part of the structural design.

Finite element method has been widely used for the buckling analysis of laminated compos-

ite plates. To predict the buckling load of composite plates, a number of plate theories have

been proposed. The classical laminate plate theory (CLPT), which neglects the transverse

shear deformation effect, yields acceptable results only for thin laminates[32]. The structures

designed based on CLPT theory may be unsafe because the CLPT overestimates the buckling

load of the laminated composite plates. To take into account the effect of transverse shear

deformation, the first-order shear deformation theory (FSDT)[1, 28] has been used to predict

the dynamic response of laminated composite structures. In the first-order shear deforma-

tion theory (FSDT) a shear correction factor is used to compensate for the assumed uniform

transverse shear strain variations over the entire plate thickness. For a better representation
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of the transverse shear deformations, various higher-order shear deformation (HSDT) plate

theories[5, 15, 16, 30, 36] were proposed. However, it has been observed and mentioned by

many researchers[3] that increasing the number of terms in the in-plane displacement compo-

nents does not improve the results and it is required to add the effect of inter-laminar transverse

shear stress continuity in a multilayered composite plate problem.

A major development in this direction is due to Di Sciuva[34], Murakami[23], Liu et al.[20],

and few others. They proposed zigzag plate theory where layer-wise theory is initially used

to represent the in-plane displacements having piecewise linear variation across the thickness.

The unknowns at the different interfaces are subsequently expressed in terms of those at the

reference plane through satisfaction of transverse shear stress continuity at the layer interfaces.

This theory is known as refined first order shear deformation theory (RFSDT). A further

improvement in this direction is due to Di Sciuva [35], Bhaskar et al.[2], Cho et al.[8, 16] and

some other investigators. They included the condition of zero transverse shear stress at top and

bottom of the plate in addition to the shear stress free conditions at the layer interfaces. This

theory is known as higher order zigzag theory (HZT) or refined higher order shear deformation

theory.

However, all these refined theories including the HSDT demand C1 continuity of the trans-

verse displacement along the element edges at the time of their finite element implementation.

However, a C1formulation is not encouraged in any practical applications. In this situation it

is highly required to develop a C0 finite element formulation which will overcome the above

C1continuity requirement of the theory (HZT).

Typically most of the C0 refined theories[18, 19, 40] en-force the mentioned continuity

assuming the displacement and transverse stresses as primary variable for multilayered com-

posite plates employing the FE method and showed a good agreement with three dimensional

elasticity solutions. On the other hand Ferreira et al. [39] combined the third order theory

of Reddy[11] with a meshfree method based on the multi-quadric radial basis function ap-

proach to study the behavior of multilayered laminated composite beams and plates. Mondal

et al. [29] analyzed the elastic stability behavior of simply supported anisotropic sandwich

flat panels subjected to mechanical in-plane loads by using an analytical approach. Shufrin et

al.[22] used a semi analytical approach for the buckling analysis of symmetrically laminated

rectangular plates with general boundary conditions. Ganapathi et al.[37] investigated the

free vibration characteristics of simply supported anisotropic composite laminates using an-

alytical approach. Nali et al.[14] analyzed buckling behaviour of laminated plates subjected

to combined biaxial/shear loading. Ferriera et al.[24] used meshfree method based on collo-

cation with radial basis functions for buckling and vibration analysis of laminated composite

plates. Ferriera et al.[12] used numerical method for the buckling analysis of laminated plates

based on collocation with wavelets. Nguyen-Van et al. [10] presented buckling and vibration

analysis of composite plate or shell structures of various shapes. Fiedler et al.[25] used refined

higher-order shear deformation theory for buckling analysis of multi-layered plates subjected

to unidirectional in-plane loads. Moreover, it has been also observed that in some cases the

violation of inter-laminar shear stress continuity might lead to higher buckling load.
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In view of the above an efficient C0 FE model has been developed based on a higher

order zigzag theory (HZT) has been used to accurately predict the buckling load of laminated

composite plates. The C0continuity of the present finite element model has been compensated

in the stiffness matrix formulation by using penalty parameter approach. A nine noded C0

continuous isoparametric finite element has been used for the development of the proposed

finite element model. To assess the accuracy, numerical results obtained by using the proposed

finite element model based on HZT have been compared with the results of 3D elasticity, exact

and other finite element solutions available in the literature.

2 FORMULATION

The in-plane displacement fields (Figure 1) are taken as below:

 

Figure 1 Geometry of laminated composite plate

uα = u0α +
nu−1
∑
k=0

skα (Z −Zk)H (Z −Zk) +
nl−1
∑
k=0

T k
α (Z − ρk)H (−Z + ρk) + ξαZ2 + φαZ

3 (1)

where u0α denotes the in-plane displacement of any point on the mid plane, nu and nlrepresent

number of upper and lower layers respectively, Sk
α, T

k
α are the slopes of k -th layer corresponding

to the upper and lower layers. ξα, φα are the higher order unknown terms, H(Z−Zk),H(Z−Pk)
are unit step functions and the subscript α represents the co-ordinate directions [α=1, 2 i.e.

x, y in this case ] respectively and

u3 = w0(x, y) (2)

The stres–sstrain relationship of a lamina, say k -th lamina having any fiber orientation

with respect to the structural axes system (x-y-z ) may be expressed as:

σ̄ = [Q̄k] {ε̄} (3)

The rigidity matrix Q̄k can be evaluated by material properties and fibre orientation fol-

lowing usual techniques followed in case of laminated composites and {ε̄} is the strain field

vector of size (5×1) at the reference plane (i.e., at the mid plane).
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Now by utilizing the transverse shear stress free boundary conditions (σ3α∣z = ±h/2 = 0)
at the top and bottom surface of the plate the components ξα and φα may be expressed as:

Φα = −
4

3h2
{w,α +

1

2
(
nu−1
∑
k=0

SK
α +

nl−1

∑
k=0

T k
α)} (4)

and

ξα = −
1

2h
(
nu−1
∑
k=0

Sk
α −

nl−1
∑
k=0

T k
α) (5)

Similarly by imposing the transverse shear stress continuity conditions at the layer inter-

faces the following expressions for and are obtained:

Sk
α = akαγ(w,γ +Ψγ) + bkαγ w,γ (6)

T k
α = ckαγ(w,γ +Ψγ) + dkαγ w,γ (7)

where, akαγ , b
k
αγ , c

k
αγ , d

k
αγ , are constants depending on material and geometric properties of

individual layers,W,γ is the derivatives of transverse displacement while γ = 1, 2 and S0
α = ψα

is the rotation of normal at the mid plane about co-ordinate directions [α =1, 2 i.e., x, y in

this case].

By using equations (2 -7) the strain field vector can be evaluated as below,

{ε̄} = [H] {ε} (8)

where {ε} is the strain vector of size (17×1) at the reference plane (i.e., at the mid plane)

where is the matrix of size (5×17) containing z terms and some terms related to material

properties.

{ε}T =
⎧⎪⎪⎨⎪⎪⎩

∂u0
1

∂x

∂u0
2

∂y

∂u0
2

∂x
+ ∂u0

1

∂y
∂w1

∂x
∂w2

∂y
∂w2

∂x
∂w1

∂y
∂Ψ1

∂x
∂Ψ2

∂y
∂Ψ2

∂x
∂Ψ1

∂y
Ψ1 Ψ2

∂w
∂x

∂w
∂y

w1 w2

⎫⎪⎪⎬⎪⎪⎭
(9)

In present formulation based on higher order zigzag theory the in-plane displacement fields

require C1 continuity of the transverse displacement for its finite element implementation. In

order to avoid the difficulties associated withC1continuity, the derivatives of w with respect to

x and y are expressed as follows.

∂w

∂x
= w1 and

∂w

∂y
= w2 (10)

which helps to define all the variables including and as C0 continuous.

For the present study, a nine noded C0 continuous isoparametric element shown in Figure

2 with seven nodal unknowns per node(u1, u2,w,Ψ1,Ψ2,w1,w2) are used to develop the finite

element formulation. The generalized displacements included in the present theory can be

expressed as follows.
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u1 =
9

∑
i=1
Niuiu2 =

9

∑
i=1
Nivi, u3 =

9

∑
i=1
Niui,Ψ1 =

9

∑
i=1
NiΨ1i ,

Ψ2 =∑
9

i=1NiΨ2i w1 =∑
9

i=1Niw1i w2 =∑
9

i=1Niw2i

(11)

where Ni is the shape function for the nine noded isoparametric element[33].

Employing Hamilton’s principle, the dynamic equation of equilibrium for a finite element

can be formed. Accordingly the element stiffness matrix can be written as below

[Ke] =
nu+nl
∑
i=1
∭ [B]T [H]T [Q̄i] [H][B]dxdydz =

nu+nl
∑
i=1
[B]T [D] [B]dxdy (12)

in which B is the strain matrix and Qi is the transformed material constant matrix. where

[D] =
n

∑
k=1
∫ [H]T [Q̄i][H]dz

In a similar manner the geometric strain vector may be expressed as,

{εG} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(∂w̄
∂x
)2 + 1

2
(∂ū
∂x
)2 + 1

2
(∂v̄
∂x
)2

1
2
(∂w̄
∂y
)
2
+ 1

2
(∂ū
∂y
)
2
+ 1

2
(∂v̄
∂y
)
2

(∂w̄
∂x
) (∂w̄

∂y
) + (∂ū

∂x
) (∂ū

∂y
) + (∂v̄

∂x
) (∂v̄

∂y
)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡⎢⎢⎢⎢⎢⎣

∂w̄
∂x

0 ∂ū
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0 ∂v̄
∂x

0
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0 ∂ū
∂y
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∂y

∂w̄
∂x

∂ū
∂y

∂u
∂x

∂v̄
∂y

∂v̄
∂x

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̄
∂x
∂w̄
∂y
∂ū
∂x
∂ū
∂y
∂v̄
∂x
∂v̄
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

= 1

2
[AG][θ] =

1

2
[AG][G][∆] (14)

With the matrix [G] in the above equation, the geometric stiffness matrix of an element can

be derived and may be written as

[kg] =
nu+nl
∑
i=1
∭ [G]T [Sk][G]dxdydz (15)

where [Sk] is the in-plane stress components of the k -th layer

Combining all the element geometric and elastic stiffness matrices, the dynamic equilibrium

equation can be written as

([K] − λ [KG]) {∂} = 0) (16)

in which [K] and [KG] are the global elastic and geometric stiffness matrix, where[∂] is the

mode shape vector of buckling and λ is the critical buckling load parameter respectively.
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3 RESULTS AND DISCUSSION

In this section some problems on buckling of laminated composite plates are solved using the

present finite element model considering different features such as boundary conditions, ply

orientations, thickness ratio and aspect ratio. The results obtained by using the proposed FE

model based on HZT is first validated with some published results and then many new results

are also generated.

3.1 Simply supported square isotropic plates

In this example simply supported square isotropic (ν= 0.3) plate subjected to uni-axial loading

is considered. The analysis is carried out for different thickness ratio (a/h = 100, 10). The

critical buckling load obtained by using present FE model obtained are presented with the

results of Chakrabarti and Sheikh [6] based on refined higher order shear deformation theory

(RFSDT), Sundaresan et al. [38] based on first order shear deformation theory and that of

general purpose finite element program MARC [38] in Table 1. It is observed that the present

results are somewhat lesser than Chakrabarti and Sheikh [6], Sundaresan et al. [38] and

general purpose finite element program MARC [38]. It may be due to efficient modeling of the

transverse shear deformation followed in the present finite element model.

Table 1 Normalized Critical buckling loads (λcr) for square isotropic plate

Loading a/h References λcr
uni-axial 100 Present(12×121)

Chakrabarti and Sheikh [6] 4.0
Sundersan et al. [38] 4.0
MARC [38] 4.0

10 Present(12×121) 3.768
Chakrabarti and Sheikh [6] 3.782

λcr = λ
a2

π2D
1 −Meshdivision

3.2 Cross-ply multilayered (0/90/..) composite plate simply supported at all the edges

In this example the buckling of a laminated (0○/90○/90○/0○) square composite plate is consid-

ered. The material properties of the individual layers are given by: E 1/E 2 = open, G12 =

G13 = 0.6E 2, G23 = 0.5E 2, ν12 =ν13 = 0.25.

This problem is solved to assess the performance of the proposed C0 finite element model.

The convergence and comparison of the normalized uni-axial critical buckling load obtained

by using the proposed element is shown in Table 2. The thickness ratio (a/h) is varied (100 to

5) to cover the range of very thin to thick plates. It is found that with refining meshes, results

obtained by the present FE model converge closely to the exact solution [26] and reasonably

close to the 3D elasticity solution given by Noor [13]. The present finite element model based

on higher order zigzag theory gives the more accurate results compared to the results given by
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Fiedler et al. [33] based on a similar theory, results of Van et al. [25] based on first order shear

deformation theory and results of Ferreira et al. [10] based on first order shear deformation

theory respectively. Some new results are also presented in Table 2.

Table 2 Normalized critical uni-axial buckling loads (λcr) with various modular ratios for simply supported
cross-ply [00/900//900/00] square plate

a/h References
E1/E2

3 10 20 30 40
100 Present(2×21) 6.434 13.363 23.213 6.350 42.675

Present(4×4) 5.855 11.837 20.331 5.781 37.118
Present(6×6) 5.755 11.572 19.848 5.683 36.268
Present(8×8) 5.721 11.486 19.702 5.650 36.039
Present(12×12) 5.698 11.432 19.619 5.627 35.923
Present(16×16) 5.690 11.417 19.599 5.619 35.898
Fiedler et al. [13] - - - - 35.946

10 Present(2×21) 5.705 10.441 15.882 20.297 23.991
Present(4×4) 5.297 9.810 15.143 19.516 23.191
Present(6×6) 5.265 9.771 15.095 19.465 23.147
Present(8×8) 5.259 9.764 15.091 19.465 23.138
Present(12×12) 5.256 9.762 15.090 19.461 23.134
Present(16×16) 5.256 9.761 15.064 19.460 23.133
3-D Elasticity [26] 5.294 9.762 15.019 19.304 22.881
Exact[17] - - - - 23.453
Van[25] 5.321 9.809 15.064 19.339 22.912
Ferreira et al. [10] - - - - 23.426
Fiedler et al. [13] - - - - 23.043
Liu [21] 5.401 9.985 15.374 19.537 23.154
Chakrabart and Sheikh[4] 5.114 9.774 15.298 19.957 23.340

20 Present (12×12) 5.575 10.955 18.243 25.082 31.517
Fiedler et al. [13] - - - 31.529

50 Present (12×12) 5.678 11.359 19.418 27.392 35.278
Fiedler et al. [13] - - - - 35.321

5 Present (12×12) 4.310 6.904 9.197 10.724 11.858
Fiedler et al. [13] - - - - 11.601

λcr = λ
a2

E2h3
1 −Meshdivision

In the next example, the effect of number of layers and degree of orthotropy of individual

layers on normalized uni-axial critical buckling load has been studied. The numbers of layers

are varied from 3 to 5 and thickness ratio (a/h) is considered as 10 where h is the overall

thickness of the plate. The material properties are taken same as in the previous section. The

results are given in Table 3. It is to be noted that the present results are somewhat lesser

than 3D elasticity solution of Noor [13] as compared to Fiedler et al. [33], Ferreira et al. [10]

and Reddy and Phan[27] respectively. It has been observed in the previous example that the

present finite element model based on higher order zigzag theory gives more accurate results

compared to the results based on various other theories. It may be due to accurate modeling

of the transverse shear deformation followed in the present finite element model to incorporate

the exact flexible pattern of the structures. Due to inclusion of shear deformation in a refined

manner the stiffness of the structure becomes less and therefore, the buckling load calculated

by the present model gives lesser values than those obtained by other theories.
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Table 3 Normalized critical uni-axial buckling loads (λcr) with various modular ratios for simply supported
cross-ply square plate with thickness ratio (a/h = 10)

References Laminate
E1/E2

3 10 20 30 40
Present (12×12)

0○/90○/0○

5.2284 9.6259 14.6458 18.6158 21.8527
3-D Elasticity [26] 5.3044 9.7621 15.0191 19.3040 22.8807
Ferreira et al. [10] 5.3869 9.8601 14.9746 19.0175 22.3070
Fiedler et al. [13] 5.3210 9.7180 14.7320 18.6902 21.9097
Reddy and Phan, HSDT [31] 5.3933 9.9406 15.2980 19.6740 22.3400
CLPT[13] 5.7538 11.4920 19.7120 27.9630 36.1600
Present (12×12)

0○/90○/0○/90○/0○

5.2750 9.8943 15.5177 20.2477 24.2896
3-D Elasticity [26] 5.3255 9.9603 15.6527 20.4663 24.5929
Ferreira et al. [12] 5.3552 10.0148 15.6805 20.4352 24.5024
Reddy and Phan, HSDT [31] 5.4096 10.1500 16.0080 20.9990 25.3080

λcr = λ
a2

E2h3

3.3 Cross-ply (0○/90○) laminate having different thickness ratio (a/h)

The effect of span to thickness ratio (a/h) on the uni-axial critical buckling load for simply

supported two layer cross-ply (0○/90○) square plate is studied in this example. The material

properties are same as in section 3.2 where E 1/E 2 is taken as 40. The results obtained by

the present finite element model are shown in Table 4 along with those obtained by Van et

al. [25], Reddy and Phan [27], and Chakrabarti and Sheikh [31] respectively. The same trend

as explained before is also observed in the results presented in Table 4. The present results

based on higher order zigzag theory are on the lower side compared to the results base on

other theories as expected.

Table 4 Normalized critical uni-axial buckling loads (λcr) with various thickness ratios (a/h) for simply sup-
ported cross-ply [0○/90○] square plate

References a/h
10 20 50 100

Present (12×12) 11.310 12.427 12.800 12.873
Van et al.[25] 11.360 12.551 12.906 13.039
Chakrabarti and Sheikh, FSDT [4] 11.349 12.510 12.879 12.934
Reddy and Phan, HSDT [31] 11.563 12.577 12.895 12.942

λcr = λ
a2

E2h3

3.4 Cross-ply (0○/90○/90○/0○) laminate having different aspect ratio (a/b)

In this example the effect of aspect ratio (a/b) on the uni-axial critical buckling load for simply

supported four layer cross-ply (0○/90○/90○/0○) square plate is studied. The material properties

are same as in the previous example. The results obtained by using the proposed model are

shown in Table 5 along with those obtained by Fiedler et al. [13]. The results are in good

agreement due the fact that the theory used in the present finite element model and in the
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analytical approach adopted by Fiedler et al. [13] is nearly same. Some new results are also

presented in Table 5.

Table 5 Normalized critical uni-axial buckling loads (λcr) with various aspect ratios (a/b) for simply supported
cross-ply [0○/90○/90○/0○] square plate

a/b References
a/h

5 10 20 50 100
0.5 Present (12×12) 8.739 18.347 25.746 29.087 29.657
1 Present (12×12) 11.858 23.134 31.517 35.278 35.923

Fiedler et al. [13] 11.601 23.043 31.529 35.321 35.946
2 Present (12×12) 15.000 47.368 92.847 112.813 115.029

λcr = λ
a2

E2h3

3.5 Effect of Different boundary conditions

The influence of different boundary conditions on normalized critical uni-axial buckling load

(λcr = λ a2

E2h3
) is investigated in the present section. The plate is considered simply supported

(S) along the edges parallel to the y axis while the other edges have simply supported (S),

clamped (C) or free (F) boundary conditions. The notation SSCF, for example refers to the

simply supported boundary conditions of the two edges parallel to the y axis and the clamped

and free conditions for the two edges parallel to the x axis. The eight layer (0○/90○)4 square

plate is analyzed with material properties same as in previous example while the thickness

ratio (a/h) has been taken as 10 and 100. The normalized critical uni-axial buckling loads of

the eight layer (0○/90○)4 plate under different boundary conditions are shown in Table 6. All

these results are presented for the first time.

Table 6 Normalized critical uni-axial buckling loads with different boundary conditions for cross-ply [0○/90○]4
square plate

a/h λcr

SSSS SSSC SSCC CCCC
10 1.96 2.14 2.67 4.96
100 35.02 58.69 88.39 126.49

3.6 Cross-ply (00/900/00) laminate having different modular ratio (E1/E2) under bi-axial
loading

The effect of modular ratio on normalized critical bi-axial buckling load (λcr = λ a2

E2h3
) for

simply supported cross-ply [0○/90○/0○] square plate with thickness ratio (a/h = 10) is studied

in this example. The material properties are same as in section 3.2. The results obtained

by the present element are shown in Table 7 along with other published results. The results

obtained by the proposed finite element model agree reasonably well with the results obtained

by Van et al., FSDT [25], Ferreira et al., FSDT[10] and Khedir and Librescu, HSDT[26] for

lower E 1/E 2 however with higher value of this ratio i.e., with increased orthotrpic behavior
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the present results are on the lower side as expected and as explained earlier. No pre-buckling

state is considered since other results are also based on the same assumption.

Table 7 Normalized critical bi-axial buckling loads (λcr) with various modular ratios for simply supported
cross-ply [0○/90○/0○] square plate with thickness ratio (a/h = 10)

References
E1/E2

10 20 30 40
Present (12×12) 4.812 7.320 8.688 9.784
Van et al. [25] 4.939 7.488 9.016 10.252
Ferreira et al. [10] - - - 10.196
Fares and Zenkour [9] 4.963 7.588 8.575 10.202
Exact [17] 4.963 5.516 9.056 10.259

λcr = λ
a2

E2h3

3.7 Anti-symmetric cross-ply (0○/90○/0○/90○) laminate

In the present example of anti-symmetric cross-ply (0○/90○/0○/90○) laminate (E 1/E2 =40)

firstly the effect of thickness ratio (a/h) on normalized critical ui-axial and bi-axial buckling

load (λcr = λ a2

E2h3
) with simply supported boundary conditions is studied. The material prop-

erties are same as in section 3.2. The comparison between the normalized critical ui-axial and

bi-axial buckling load is shown in Figure 2. The comparison shows expected trend.

Next the effect of modular ratio (E 1/E 2) on normalized critical ui-axial and bi-axial buck-

ling load (λcr = λ a2

E2h3
) is studied with thickness ratio (a/h) = 10. The material properties are

same as in section 3.1. The comparison between the normalized critical ui-axial and bi-axial

buckling load is shown in Figure 3.

0 20 40 60 80 100
10

20

30

40

50

 Uniaxial
 Biaxial

a/h

λcr

 Figure 2 Comparison between normalized critical uniaxial and biaxial buckling load at different thickness ratio
(a/h)
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Figure 3 Comparison between normalized critical uniaxial and biaxial buckling load at different modular ratio

(E1/E2)

3.8 Angle-ply (45○/-45○/-45○/45○) laminate having different thickness ratio (a/h)

In this section the effect of thickness ratio (a/h) on normalized critical pure shear buckling

load (λcr = λ × 10−3) is studied taking E1/E 2 =40 for an angle-ply (45○/-45○/-45○/45○) laminate

with simply supported boundary conditions. The material properties are same as in section

3.2. The variation of the normalized critical pure shear buckling load with different thickness

ratio (a/h) is shown in Figure 4.

20 25 30 35 40 45 50
0.000

0.002

0.004

0.006

0.008

0.010

 Critical buckling load

a/h

 Figure 4 Variation of normalized critical shear buckling load with different thickness ratio (a/h)

4 CONCLUSIONS

In the present study, the buckling behaviour of laminated composite plates is studied using

an efficient C0 finite element model developed based on higher order zigzag theory. Many

problems are solved covering different features of laminated composites such as boundary

conditions, ply orientations aspect ratio, thickness ratio and loading etc. Numerical results
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on buckling responses for different problems show that the proposed FE model for laminated

composite plates is capable in predicting results very close to the exact solutions. Many new

results are also generated. As such the model may be recommended for wide use in research

and industrial applications.
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