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Buckling analysis of laminated sandwich beam with soft core

Abstract

Stability analysis of laminated soft core sandwich beam has

been studied by a C0 FE model developed by the authors

based on higher order zigzag theory (HOZT). The in-plane

displacement variation is considered to be cubic for the

face sheets and the core, while transverse displacement is

quadratic within the core and constant in the faces beyond

the core. The proposed model satisfies the condition of stress

continuity at the layer interfaces and the zero stress condi-

tion at the top and bottom of the beam for transverse shear.

Numerical examples are presented to illustrate the accuracy

of the present model.
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1 INTRODUCTION

Laminated composite structures are widely used in aerospace, naval, civil, and mechanical

industries due to its superior properties such as high strength/stiffness to weight ratio and

greater resistance to environmental degradation over the conventional metallic materials. The

use of high strength materials in such construction leads to slender sections, thus making

buckling as a primary mode of failure of the member subjected to axial compressive forces.

These buckling modes depend upon the material properties and relative stiffness of the face

sheets and core.

The most important feature of the laminated composites (e.g., GFRP, CFRP etc.) is that

these are weak in shear due to their low shear modulus compared to extensional rigidity. In

order to fulfill the weight minimization, a laminated sandwich construction having low strength

core and high strength face sheets may be used. As the material property variation is very

large between the core and face layers in case of sandwich construction, the effect of shear

deformation becomes more complex.

Based on assumed displacement field, the theories proposed for the accurate analysis of

composite laminated structures are grouped as Single layer theory and Layer-wise theory. In

single layer theory the deformation of the plate is expressed in terms of unknowns at the

reference plane, which is usually taken at the middle plane of the plate. This theory is also
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known as first-order shear deformation theory (FSDT). Based on the first-order shear defor-

mation theory, Allen [5] presented a three-layered model for the analysis of sandwich beams

and plates wherein the zigzag deformation pattern was considered. B-spline functions based

on FSDT have been used by the Dawe and Wang [18, 19] as trial functions for Rayleigh-Ritz

analyses and finite strip analyses. Aiello and Ombres [2] developed a model using FSDT to

assess the optimal arrangement of hybrid laminated faces of sandwich panel for local buckling

loads. Wang [49] employed the B-Spline Rayleigh-Ritz method based on first order shear de-

formation theory to study the buckling problem of skew composite laminates. Sundersan et

al. [46] have studied the influence of partial edge compression of composite plates by using a

finite element method based on FSDT for analyzing isotropic plates. The structural behavior

of sandwich laminated composites cannot be assessed satisfactorily by a FSDT, as the core

and face sheets deform in different ways due to wide variation of their material properties,

which is identified by a kink in the variation of in-plane displacements across the thickness

at the interface between the core and stiff face layers. So as to predict the actual parabolic

variation of shear stress, this (FSDT) required shear correction factor. This has inspired many

researchers to develop a number of refined plate theories.

A higher order variation of in-plane displacement through the thickness is considered to

represent the actual warping of the plate cross-section for overcoming the need of shear correc-

tion factor so it is called as higher order shear deformation theory (HSDT). The warping of the

cross section also allows higher order variation of transverse shear stresses/strains across the

depth [38]. By choosing appropriate shape functions, four shear deformation theories presented

by Aydogdu [10], are named as: parabolic shear deformation beam theory, hyperbolic shear

deformation beam theory, first order shear deformation beam theory and exponential shear

deformation beam theory, for the buckling analysis of composite beam. The theories developed

for buckling analysis by Reddy and Phan [39], Kant and Kommineni [26], Khedir and Reddy

[28] , Moita et.al [33, 34], Vuksanovic [48] and many other falls under this category. Song and

Waas [44] presented a higher order theory for the buckling and vibration analysis of composite

beams and the accuracy of HSDT was demonstrated compared to 1-D Euler-Bernoulli, 2-D clas-

sical elasticity theory and Timoshenko beam theory. Frostig [23] obtained the general as well

as local buckling loads for sandwich panels consisting of two faces and a soft orthotropic core

using HSDT. Karama et.al [27] presented a multilayered laminated composite model by intro-

ducing a sine function as a transverse shear stress function where a FE based software package

Abaqus was used to check the efficiency of the model. Babu and Kant [11] presented two

C0 isoparametric finite element formulations, one based on FSDT and other based on HSDT

to investigate the effect of skew angle on buckling coefficient. Matsunaga [29, 30] developed

one dimensional global higher order theory, in which the fundamental equations were derived

based on the power series expansions of continuous displacement components to analyze the

vibration and buckling problems. A new triangular element was developed by Chakrabarti and

Sheikh [14, 15], for the buckling analysis of composite plate using Reddy’s higher order theory.

The effect of partial edge compression was investigated [15]. Nayak et.al [4] developed a shear

deformable plate bending element based on a third order shear deformable theory (i.e.HSDT).
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Zhen and Wanji [51] presented global theories with higher order shear deformation and zigzag

theories satisfying continuity of transverse shear stresses at interfaces for analyzing the global

response of sandwich laminated beams. The effects of the number of higher order terms in

the shear deformation as well as inter-laminar continuity of shear stress on global response of

laminated beams and soft core sandwich beams were studied in this paper [51].

The actual behavior of a composite laminate is that the transverse strain may be discon-

tinuous but the corresponding shear stress must be continuous at the layer interface [41], while

HSDT shows discontinuity in the transverse shear stress distribution and continuity in the

variations of the corresponding transverse shear strain across the thickness. This is mainly

due to the different values of shear rigidity at the adjacent layers.

The above disparity leads to the development of layer-wise theories, which started with

discrete layer theories. In discrete layer theories the unknown displacement components are

taken at all the layer interfaces including top and bottom surfaces of the structure. Discrete

layer theories proposed by Srinivas [45], Toledeno and Murakami [47], Robbins and Reddy [25] ,

Cetkovic [13] and many others assume unique displacement field in each layer and displacement

continuity across the layers. In these theories, the number of unknowns increases directly with

the increase in the number of layers due to which it required huge computational involvement.

The improvement of layer-wise theories comes in the form of zigzag theories (ZZT), where

the unknowns at different interfaces are defined in terms of those at the reference plane.

The number of unknowns are made independent of the number of layers by introducing the

transverse shear stress continuity condition at the layer interfaces of the laminate and the in

plane displacements have piece-wise variation across the plate thickness in this theory (ZZT).

Averill [6] developed a C0 finite element based on first order zigzag theory and overcome the

C1continuity requirement by incorporating the concepts of independent interpolations and

penalty functions. Hermitian functions were used by Di Sciuva [20, 21] to approximate the

transverse displacement in the formulations. Carrera [22] used two different fields along the

laminate thickness direction for displacement and transverse shear stress respectively for his

formulation. Averill and Yip [7] developed a C0 finite element based on cubic zigzag theory,

using interdependent interpolations for transverse displacement and rotations and penalty

function concepts.

In some improved version of these theories, the condition of zero transverse shear stresses

at the plate/beam top and bottom was also satisfied. Kapuria et.al [40] developed 1D zigzag

theory for the analysis of simply supported beams. The effect of the laminate layup and the

thickness to span ratio was investigated. Zigzag models for laminated composite beams were

developed by using trigonometric terms to represent the linear displacement field, transverse

shear strains and stresses [42, 43]. However, the zigzag theory has a problem in its finite element

implementation as it requires C1
continuity of the transverse displacement at the nodes.

To combine the benefits of the discrete layer wise and higher order zigzag theories, Cheung

et.al [50], Yip and Averill [24], Icardi [8, 9] and many other authors developed theories which

are known as sub-laminated models. Aitharaju and Averill [3] developed a new C0 FE based

on a quadratic zigzag layer-wise theory. For eliminating shear locking phenomenon, the shear
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strain field is also made field consistent. The transverse normal stress was assumed to be

constant through the thickness of the laminate. The new FE was applied to model the beam

as combination of different sub-laminates.

Ramtekekar et.al [36], Bambole and Desai [12] and many more developed a mixed FE

approach for accurate analysis of stresses, where the stress components are assumed as the

field variables at interface nodes along with displacement field variables. Dafedar et.al [17]

and Dafedar and Desai [16] have presented a theory based on mixed higher order theory for

the buckling analysis of laminated composite structures. Two sets of mixed models HYF1 and

HYF2 have been presented by selectively incorporating non-linear components of Green’s strain

tensor. Individual layer theory (ILT) based HYF1 and HYF2 models have been developed by

considering a local Cartesian co-ordinate system at the mid-surface of each individual layer

and at mid-surface of the entire structure respectively.

The transverse deformation is very significant in case of a laminated sandwich structure

having a soft core as there is abrupt change in the values of transverse shear rigidity and thick-

ness of face sheet and the core. As such to achieve sufficient accuracy, unknown transverse

displacement fields across the depth in addition to that in the reference plane are essential

to represent the variation of transverse deflection. This can be done by using sub-laminate

plate theories but the number of unknowns will increase with the increase in the number of

sub-laminates. On the other hand, introduction of additional unknowns in the transverse

displacement fields invites additional C1 continuity requirements in its finite element imple-

mentation by using the zigzag theory as mentioned earlier. However, the application of a

C1continuous finite element is not encouraged in a practical analysis.

Recently Pandit et.al [31, 32] proposed a higher order zigzag theory for the static and

buckling analysis of sandwich plates with soft compressible core. In this model [31, 32] a nine-

node isoparametric element with 11 field variables per node was employed. To overcome the

problem of C1continuity the authors [31, 32] have used separate shape functions to define the

derivatives of transverse displacements such C0finite element was used for the implementation

of the theory. It has imposed some constrains, which are enforced variationally through penalty

approach. However, the problem of choosing suitable value for the penalty stiffness multiplier

is a well known problem in the finite element method.

In this paper an attempt is made to do the stability analysis of laminated sandwich beam

having soft compressible core based on higher order zigzag theory by using a C0 beam finite

element model recently developed by the authors [1]. The model satisfies the transverse shear

stress continuity conditions at the layer interfaces and the conditions of zero transverse shear

stress at the top and bottom of the beam. The isoparametric quadratic beam element has

three nodes with seven displacement field variables (i.e., in-plane displacements and transverse

displacements at the reference mid surface, at the top and at the bottom of the beam along

with rotational field variable only at the reference mid surface) at each node. The displacement

fields are chosen in such a manner that there is no need to impose any penalty stiffness in the

formulation. The element may also be matched quite conveniently with other C0 elements.

The present beam model is used to solve stability problems of laminated sandwich beams
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having different geometry boundary conditions.

2 MATHEMATICAL FORMULATIONS

The in-plane displacement field (Figure 1) is chosen as follows:

U = u0 + zθx +
nu−1
∑
i=1
(z − zui )H(z − zui )αi

xu +
nl−1
∑
i=1
(z − zli)H(−z + zli)αi

xl + βxz
2 + ηxz3 (1)

where,u0 denotes the in-plane displacement of any point on the mid surface, θx is the rotation

of the normal to the middle plane about the z -axis,nu and nl are number of upper and lower

layers respectively, βx and θx are the higher order unknown, αi
xu and αi

xl are the slopes of i-th

layer corresponding to upper and lower layers respectively and H (z − zui ) and H (−z + zli) are
the unit step functions.

 
Figure 1 General lamination scheme and displacement configuration.

The transverse displacement is assumed to vary quadratically through the core thickness

and constant over the face sheets (as shown in Fig. 2)and it may be expressed as,

W = l1wu + l2w0 + l3wl for core

= wu for upper face layers

= wu for lower face layers

(2)

where wu,w0 and wl are the values of the transverse displacement at the top layer, middle

layer and bottom layer of the core, respectively, and l1, l2 and l3 are Lagrangian interpolation

functions in the thickness co-ordinate.

The stress–strain relationship based on a plane stress condition of an orthotropic layer/

lamina (say k -th layer) having any fiber orientation with respect to structural axes system

(x -z ) may be expressed as
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Figure 2 Variation of transverse displacement (w) through the thickness of laminated sandwich beam.
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.....or {σ̄} = [Q̄K] {ε̄} (3)

where {σ̄}, {ε̄} and [Q̄K] are the stress vector, the strain vector and the transformed rigidity

matrix of k -th lamina, respectively.

Utilizing the conditions of zero transverse shear stress at the top and bottom surfaces of

the beam and imposing the conditions of the transverse shear stress continuity at the interfaces

between the layers along with the conditions, u = uuat the top and u =ul at the bottom of the

beam, βx,ηx,α
i
xu,α

i
xl, (∂wu/∂x)and (∂wl/∂x) may be expressed in terms of the displacement

u0,θx, uu and ul as

B = [A]{α} (4)

where,

{B} = {βxηxα
1
xuα

2
xu...α

nu−1
xu α1

xlα
2
xl...α

nl−1
xl (∂wu/∂x) (∂wl/∂x)}

T
,{α} = {u0θxuuul}T

and the elements of [A] are dependent on material properties. It is to be noted that last two

entries of the vector {B} helps to define the derivatives of transverse displacement at the top

and bottom faces of the beam in terms of the displacements u0, θx, uu, and ul to overcome

the problem of C1 continuity as mentioned before.

Using the above equations, the in-plane displacement field as given in equation (1) may be

expressed as

U = b1u0 + b2θx + b3uu + b4ul (5)

where, the coefficients b′is are function of thickness coordinates, unit step functions and material

properties.

The generalized displacement vector {δ} for the present beam model can now be written

with the help of equations (2) and (5) as

{δ} = {u0w0 θx uuwu ulwl}T
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Using strain-displacement relation and equations (1)-(4), the strain field may be expressed

in terms of unknowns (for the structural deformation) as

{ε̄} = {ε̄}L + {ε̄}NL

where,

The linear strain part is

{ε̄}L = [
∂ U

∂ x

∂W

∂ z

∂ U

∂ z
+ ∂W

∂ x
] or {ε̄}L = [H] {ε} (6)

and non-linear strain part can be written as

{ε̄}NL = {1/2(∂w̄/∂x)
2 + 1/2(∂ū/∂x)2} or {ε̄}NL = 1/2 [AG] {θ} (7)

where,

{θ} = [∂w̄/∂x ∂ū/∂x]or {θ} = [HG] {ε} = [HG] [B] {δ} and

{ε} = [u0θxuuulwuw0wl (∂wu/∂x) (∂w0/∂x) (∂wl/∂x) (∂u0/∂x) (∂θx/∂x) (∂uu/∂x) (∂ul/∂x)]

and the elements of [H ], [AG] and [HG] are functions of z and unit step functions. The values

of l1, l2, l3, bi’s and the elements of [H ] are used as reported in the appendix (A,B and C) by

Chakrabarti et al. [1]. With the quantities found in the above equations, the total potential

energy of the system under the action of transverse load may be expressed as

Πe = Us −Uext (8)

where Us is the strain energy and Uext is the energy due to the externally applied in-plane

load.

Using equations (3) and (6) , the strain energy (Us) is given by

Us =
1

2

n

∑
k=1
∫∫ {ε̄}

T [Q̄k] {ε̄}dxdz =
1

2
∫ {ε̄}

T [D] {ε}dx (9)

where,

D = 1

2

n

∑
k=1
∫ {H}

T [Q̄k] {H}dz (10)

and the energy due to application of external in-plane load can be calculated as

Uext =
1

2

n

∑
k=1
∫∫ {ε̄}

T
NL [S

i] {ε̄}NL dxdz = 1

2
∫ {ε̄}

T
NL [G] {ε̄}NL dx (11)

where,

G =
n

∑
k=1
∫ {HG}T [Si] {HG}dz
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and the stress matrix [Si] may be expressed in terms of in-plane stress components of the i-th

layer as

[Si] = [ σx 0

0 0
]

In the present problem, a three-node quadratic element with seven field variables (u0, w0,

θx, uu, wu, ul and wl) per node is employed. Figure 3 shows the node numbering and natural

coordinate of the element.

 

Figure 3 Node numbering and natural co-ordinate of the beam element.

Using finite element method the generalized displacement vector δ at any point may be

expressed as

{δ} =
n

∑
i=1

Ni {δ}i (12)

where, δ = u0,w0, θx, uu,wu, ul,wl
T as defined earlier, δi is the displacement vector correspond-

ing to node i, Ni is the shape function associated with the node i and n is the number of nodes

per element, which is three in the present study.

With the help of equation (12), the strain vector {ε} that appeared in equation (6) may

be expressed in terms of field variables as

{ε} = [B] {δ} (13)

where is the strain-displacement matrix in the Cartesian coordinate system.

The elemental potential energy as given in equation (7) may be rewritten with the help of

equations (8)-(13) as

Πe = 1/2∫ {δ}
T [B]T [D][B] {δ}dx − 1/2∫ {δ}

T [B]T [G][B] {δ}dx

= 1/2{δ}T [Ke] {δ} − 1/2λ{δ}T [KG] {δ}
(14)

where,

[Ke] = ∫ [B]T [D][B]dx (15)

[KG] = ∫ [B]T [G][B]dx (16)

where, [Ke]and [KG] are stiffness matrix and geometrical stiffness matrix.
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The equilibrium equation can be obtained by minimizing Πe as given in equation (14) with

respect to {δ} as

[Ke] {δ} = λ[KG] {δ} (17)

where λ is a buckling load factor.

The displacements, stresses (in case of static analysis) and buckling loads in laminated

sandwich beams are calculated by developing a numerical code to implement the above men-

tioned operations involved in the proposed FE model. The skyline technique has been used

to store the global stiffness matrix in a single array and Gaussian decomposition scheme is

adopted for the static solution, while simultaneous iteration technique is used for solving the

buckling equation (17).

3 NUMERICAL RESULTS

In this section, some examples on the buckling analysis of laminated sandwich beam having

a soft core is analyzed by using the proposed FE model based on higher order zigzag theory.

The accuracy and applicability of the proposed FE model based are demonstrated by solving

a number of problems having different features. The results obtained are compared with the

published results in some cases and finally many new results are also generated. The following

different boundary conditions are used

1. Simply supported boundary condition (H): The field variables u0, w0, wu and wl are

restrained while θx, uuand ul are unrestrained in one boundary. In the other boundary,

the field variables w0, wu and wl are restrained while u0, θx, uuand ul are unrestrained.

2. Clamped boundary condition (C): All the nodal field variables at the boundary are fully

restrained.

3. Free boundary condition (F): All the nodal field variables at the boundary are unre-

strained.

The non-dimensional quantities used, to show different results are as follows

Buckling load, λ̄ = λl2

h2ETf

where h and l are depth and span length of the beam respectively and ETf is the transverse

modulus of elasticity of face layer.

3.1 Three layered laminated composite beam (0○/90○/0○)

For the convergence studies of critical buckling load, a three layer beam is analyzed taking mesh

divisions 2, 5, 10, 16, 20 and 30. The layers are of equal thickness. The material properties

[28] used in this example is as shown in Table 1 (Example 1).
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Table 1 Material properties for laminated beams

Example Layer/Sheet Material properties

E1(psi) E3(psi) G12(psi) G13(psi) G23(psi) υ12 υ13 υ23

1 [28]# All 40.0E06 1.0E06 0.6E06 0.6E06 0.5E06 0.25 0.25 0.25
2 [30] All 25.0E06 1.0E06 0.5E06 0.5E06 0.6E06 0.25 0.25 0.25
3 [16] Face∗ 10.2E06 10.2E06 3.9E06 3.9E06 3.9E06 0.3 0.3 0.3

Core 1.5E-03 1.58E05 3.86E4 3.86E4 3.86E4 1E-05 3E-05 3E-05
4 [37] Face 19E6 1.5E6 1.0E6 0.9E6 1.0E6 0.22 0.22 0.49

Core 1.0E3 1.0E3 0.5E3 0.5E3 0.5E3 1E-5 1E-5 1E-5
∗ Face number increases from the outer layers towards inside

# Reference for the material properties

Table 2 Comparison of critical buckling load for laminated sandwich beam (0○/90○/0○).

l/h Reference H-H C-H C-C C-F
5 Present (2)∗ 8.6473 9.7001 11.9105 4.6986

Present (5) 8.5926 9.6808 11.3643 4.6920
Present (10) 8.5910 9.6764 11.3515 4.6909
Present (16) 8.5909 9.6761 11.3507 4.6903
Present ([30]) 8.5908 9.6761 11.3506 4.6901
Present ([6]) 8.5908 9.6761 11.3506 4.6901
Aydogdu [10] 8.6130 9.8130 - 4.7070

Khdeir &Reddy [28] 8.6130 9.8140 11.6520 4.7080
10 Present 18.7727 25.7446 34.3640 6.7592

Khdeir &Reddy [28] 18.8320 25.8570 34.4530 6.7720
20 Present 27.0394 46.7479 75.0934 7.6070

Aydogdu [10] 27.0840 46.8820 - 7.6110
∗ Quantities within the parentheses indicate mesh size.

H-H: Hinged-Hinged; C-H: Clamed-Hinged;C-C: Clamped-Clamped and
C-F: Clamped-Free

The beam is analyzed by considering four different boundary conditions and different values

of thickness ratio (l/h). The results obtained by using the proposed FE model are presented in

Table 2. It may be observed in Table 2 that the buckling loads are converged at mesh division

20. A mesh division 20 is taken for all subsequent analysis to get accurate results. The present

results corresponding to arbitrary boundary conditions are compared with those published;

FSDT [10] and TSDT [28]. It may be observed in Table 2 that the present results are in good

agreement with the other results.

3.2 Multilayered composite beam (0○/90○/0○....)

In this example the effect of number of layers is investigated by analyzing a simply supported

laminated composite beam. Different layups are considered for the analysis by increasing the

layer numbers from 3 to 10 i.e. symmetric layup (2, 5, 7, 9) and non-symmetric layup (4, 6,

8, 10) to investigate the effect of bending-extension coupling. The thickness of each layer is

assumed to be equal. The properties of materials [30] used in this problem are shown in the
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Table 1(Example 2). The critical buckling load has been calculated by considering different

thickness ratios and varying the number of layers. The effect of bending-extension coupling

may be seen from Table 3, which reduces the buckling load.

Table 3 Comparison of buckling stresses of multi-layered laminated beams.

Reference l/h Number of layers
3 4 5 6 7 8 9 10

Present 2 1.0492 1.1088 1.2854 1.1922 1.2694 1.2309 1.3260 1.2582
Matsunaga [30] 1.4226 1.0664 1.3167 1.1262 1.3710 1.2332 1.4094 1.2646
Present 5 5.8635 4.2252 5.5916 4.5553 5.4529 4.9517 5.3428 4.8167
GLHT [51] 5.8486 3.8518 5.5781 4.2894 - - - -
ZZT [51] 5.9331 3.9751 5.6033 4.3117 - - - -
Matsunaga [30] 5.9721 3.9626 5.7471 4.5375 5.9544 4.9837 6.0264 5.0951
Present 10 13.1725 8.2188 12.0674 8.6765 11.3758 9.1590 10.9242 8.9767
Matsunaga [30] 13.3483 7.4772 12.2423 8.4901 11.9213 9.0408 11.6275 9.2045

The results are shown in Table 3, along with the results reported in the literature based

on global local higher order theory (GLHT) and ZZT [51] and GLHT [30]. It may be observed

from Table 3 that the present results based on the higher order zigzag theory for the critical

buckling load are on the lower side as compared to the other results based on ZZT [51] and

GLHT [30], while it shows a good agreement with the results based on GLHT [51] .

3.3 Three layer soft core sandwich beam

A three layer simply supported sandwich beam is analyzed in this example using the present

FE model. The ratio of the thickness of core to thickness of face sheets (tc/tf ) is considered

to be 5, 25 and 50. The material properties [16] for the face sheets and core are given in Table

1 (Example 3). In Table 4, the non dimensional critical buckling load is reported for different

thickness ratio (l/h). Results reported by Dafedar and Desai [16] based on higher order mixed

formulation and the results reported by Zhen and Wanji [51] based on GLHT and ZZT along

with the results obtained by using Abaqus (Ver.6.8) software package are considered for the

comparison.

To model the laminated sandwich beam in Abaqus, 8000 eight node 3D shell elements

(S8R) are used. From Table 5, it can be concluded that the present model performance is

quite satisfactory as compared those presented by Zhen and Wanji [51] and Dafedar and Desai

[16]. The present 1D results based on the refined theory are expected to be closer to the 3D

analysis results. This is observed in Table 5 as the present results are quite close to the 3D

analysis results obtained by using Abaqus.

3.4 Multilayered laminated soft-core sandwich beam

A multilayered laminated sandwich beam (0○/90○/0○/90○/C/90○/0○/90○/0○) is analyzed in this

example which is a new problem. Material properties [37] are as shown in Table 1 (Example

4). The values of non-dimensional buckling load are presented in Table 5 for different thickness
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Table 4 Comparison of critical loads for three layered soft-core sandwich beam.

tc/tf l/h DD [16] Present GLHT [51] ZZT [51] Abaqus
5 2 0.006222 0.001540 0.006719 0.006794 0.001582

5 0.014320 0.010300 0.014840 0.014860 0.009765
10 0.041084 0.041830 0.041820 0.041820 0.036990
50 0.343190 0.364800 0.364800 0.364800 0.342700

25 2 0.001529 0.001532 0.001601 0.001601 0.001511
5 0.009031 0.009143 0.009142 0.009143 0.009019
10 0.031096 0.031685 0.03168 0.031680 0.031110
50 0.143850 0.155800 0.155800 0.155800 0.116800

50 2 0.001441 0.001510 0.001510 0.001510 0.001497
5 0.008555 0.008692 0.008692 0.008692 0.008614
10 0.026762 0.027565 0.027560 0.027560 0.026860
50 0.083230 0.090730 0.090720 0.090720 0.060720

ratio (l/h) ranging from 5 to 100 by considering the ratio of the thickness of core to thickness of

face sheets as 25 for a simply supported boundary condition. To check the accuracy of present

FE model to this new problem of multilayered sandwich beam, present results are compared

with those obtained by using finite element software package Abaqus (Ver.6.8).

Table 5 Comparison of critical loads for multilayered soft-core sandwich beam.

tc/tf l/h Present Abaqus
25 5 0.00855 0.00843

10 0.03353 0.03299
50 0.49894 0.49398
100 0.80155 0.80085

The variation of critical buckling load for different boundary conditions mainly; Hinge-

Hinge (H −H), Clamped-Hinge (C −H), Clamped-Clamped (C −C) and Clamped-Free

(C − F ) over different thickness ratio (l/h) is shown in the Figure 4 (a − b). The ratio of

thickness of core to thickness of the face sheets is considered to be 5 and 50 for the plot. The

plot shows expected variation.

4 CONCLUSION

The stability behavior of laminated sandwich beam having a soft core is studied in this paper

by using a C0 efficient finite element (FE) model developed by the authors. A refined higher

order zigzag shear deformation theory is used to model the in-plane displacement field and a

quadratic displacement field is used to define the transverse displacement in the proposed FE

model. The nodal field variables are chosen in an efficient manner to overcome the problem of

continuity requirement of the derivatives of transverse displacements; and there is no need to

use penalty functions in the formulation as used by many previous researchers. Many numerical

examples on stability of laminated composite and sandwich beams are solved for different
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 Figure 4 Variation of critical buckling load.

problems. The results obtained by using the present FE model are successfully compared with

many published results and also with the results obtained by using FE based software package

Abaqus. Many new results are also presented which should be useful for future research.
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