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Numerical experiments with the Generalized Finite Element Method 
based on a flat-top Partition of Unity 

Abstract 
The Stable Generalized Finite Element Method ሺSGFEMሻ is essentially an 
improved version of the Generalized Finite Element Method ሺGFEMሻ. 
Besides of retaining the good flexibility for constructing local enriched 
approximations, the SGFEM has the advantage of presenting much better 
conditioning than that of the conventional GFEM. Actually, bad 
conditioning is well known as one of the main drawbacks of the GFEM, 
while affecting severely the precision of the numerical scheme used for 
solving the linear system associated to the problem. Despite of its 
consistent mathematical basis, the numerical experiments so far conducted 
on using SGFEM are not yet clearly conclusive, especially regarding the 
robustness of the method. Therefore, the main purpose of the present 
paper is to give a contribution in this direction, through further 
investigating the SGFEM accuracy and stability. In particular, the so called 
Flat-Top SGFEM is a recent proposed version of the method hereby 
considered. As a flat-top Partition of Unit ሺPoUሻ is used for constructing the 
augmented approximation space with polynomial enrichments this version 
of the method is called SGFEM with flat-top PoU, or simply FT-SGFEM. 
Some computational aspects are briefly addressed, as the ones related to 
the implementation and integration of the flat-top for 2-D analysis. The 
numerical simulations consist essentially of linear analysis of panels 
presenting edge cracks and reentrant corners on its boundaries. Our 
findings from the numerical tests done are highly relevant regarding 
accuracy of the SGFEM versions, which present order of convergence 
similar to the conventional GFEM. Moreover, the measure of stability given 
by the scaled condition number presented in particular by the FT-SGFEM is 
comparable to the conventional FEM order. 

Keywords: Generalized Finite Element Method. Flat-top Stable Generalized Finite Element Method. h-
convergence. Scaled condition number.  

1 INTRODUCTION 

The Generalized Finite Element Method ሺGFEMሻ is a Partition of Unity ሺPoUሻ based Galerkin method, 
according to which the basic approximation space provided by a PoU is enlarged by shape functions constructed 
trough the product of the PoU by functions with good approximation skills, referred to as enrichment functions. 
The key concept behind such procedure is that the product of the PoU functions with any given enrichment 
function can exactly reproduce it. In fact, this concept was primarily introduced in the Partition of Unity Method 
ሺPUMሻ framework, Melenk and Babuška ሺ1996ሻ. 

The GFEM and the eXtended Finite Element Method ሺXFEMሻ, Belytschko et al. ሺ2009ሻ, are both PoU based 
methods sharing the same fundamentals. In particular, a mesh of finite elements is used to provide a PoU, which is 
commonly defined through the piecewise linear Lagrangian shape functions embodied in the elements. Owing to 
such special feature and also considering that the unity is always taken as the first component of the set of 
enrichment functions, the GFEM/XFEM can also be understood as an extension of the conventional Finite Element 
Method ሺFEMሻ for which the local approximations provided by the shape functions are enlarged by means of 
enrichment functions. 

The GFEM/XFEM enrichment framework, while dispensing with costly mesh refinements, has proved to be 
efficient in a variety of applications, mainly when the solution’s local behavior is of major interest and, therefore, 
must be properly reproduced. Problems of the Linear Fracture Mechanics likely are among the most benefited by 
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the method. For instance, crack tip stress concentrations are better mimicked through branch functions 
enrichment of the approximation imposed at patches nearby the tip, as suggested for instance in Oden and 
Duarteሺ1997ሻ, Belytschko and Black ሺ1999ሻ, Moës et al. ሺ1999ሻ, Duarte et al. ሺ2001ሻ, Pereira et al. ሺ2009ሻ, 
Sukumar et al. ሺ2000ሻ and Sukumar et al. ሺ2003ሻ. Furthermore, mesoscale cracking modeling of polycrystalline 
materials, as well as modeling of solids containing interfaces, voids and inclusions, see Simone et al. ሺ2006ሻ and 
Alfaiate et al. ሺ2003ሻ, are further classes of problems in which the GFEM/XFEM features are advantageous with 
respect to conventional FEM modeling. 

Even though the GFEM is being successfully applied to solve a wide class of mechanical problems, an 
improper choice of the enrichment functions can cause bad conditioning of the global stiffness matrix, therefore 
affecting severely the precision of the numerical scheme used for solving the linear system associated to the 
discretized weak form of the problem. So, the conditioning of the GFEM could be much worse than that of the 
standard FEM and, ultimately, have a deleterious effect on the robustness of the method. 

The Stable Generalized Finite Element Method ሺSGFEMሻ, Babuška and Banerjee ሺ2011ሻ, is essentially an 
improved version of the GFEM and was conceived to overcome the conditioning issue. In effect, besides of 
retaining the good flexibility for constructing local enriched approximations, the main advantage of the SGFEM is 
to present a much better conditioning than that of the conventional GFEM. Despite of its consistent mathematical 
basis, the numerical experiments so far conducted on using SGFEM are not yet clearly conclusive, especially 
regarding the robustness of the method. Therefore, the method still demands further practical investigation on 
the accuracy and stability properties compared to the standard GFEM and also to the conventional FEM 
approaches. 

The main purpose of the present paper is to give a contribution concerning the investigation of the SGFEM 
accuracy and stability by means of computational experiments. In particular, the recent proposed version of the 
method, called higher order SGFEM, is hereby considered, Zhang et al. ሺ2014ሻ. In line with this reference only 
second degrees complete and incomplete shifted polynomial functions are used as enrichment of the 
approximation. Moreover, a ‘flat-top’ PoU function is used for constructing the enrichment part of the augmented 
approximation space instead of the usual piecewise linear hat functions, Sato ሺ2017ሻ, that are still preserved for 
the basic part of the approximation space. In order to highlight such particular feature, the SGFEM with flat-top 
PoU, or simply FT-SGFEM, is hereby referenced instead of the higher order SGFEM. 

Some computational aspects are briefly addressed, as the ones related to the implementation and integration 
of a flat-top partition of unit locally at the element level. The problems considered for the computational 
experiments hereby reported consist of two-dimensional linear analysis of panels presenting edge cracks and 
reentrant corners. Actually, these problems are typically useful to demonstrate the efficacy of the GFEM for 
exploring special enrichments. However, as already mentioned only polynomial enrichments are considered, 
since the good conditioning provided by the use of the flat-top PoU is the main concern hereby emphasized. 

Our findings from the computational experiments done are highly relevant while confirming the favorable 
features of good conditioning and order of convergence, which can be proved analytically, Zhang et al. ሺ2014ሻ, 
once certain assumptions on the augmented approximation space are satisfied. In particular, regarding the issue 
of numerical stability the resulting scaled condition numbers similar to the ones exhibited by the conventional 
FEM indicate the advantage of the FT-SGFEM compared to the standard GFEM. 

The remaining of the paper is organized in the following way. In Section 2, the weak form of the Boundary 
Value Problem ሺBVPሻ is addressed followed by an introduction on the GFEM and SGFEM main features. In section 
3 the SGFEM with a flat-top PoU is described. Next, some computational aspects are briefly emphasized, as the 
ones related to the implementation and integration of a flat-top partition of unit for constructing the augmented 
approximation space with polynomial enrichments. In section 4, the results of the computational experiments 
selected for analysis are shown. Finally, in Section 5, some important conclusions on the accuracy and numerical 
conditioning provided by the SGFEM using flat-top PoU are emphasized. 

2 THE WEAK FORM OF THE BOUNDARY VALUE PROBLEM ሺBVPሻ 

The weak statement of the static equilibrium problem of a linear elastic solid is hereby provided in a Galerkin 
approach by the Principle of Virtual Work, which reads: find the small displacement field tu V  such that for 

u V   
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:
N

s su u d f u d t u d  
  
            ሺ1ሻ 

where tV  is the standard space of trial functions for the elasticity problem and V the space of test functions, 

respectively defined as 

  1 : ( , )t DV u H u u X t for X  on       ሺ2ሻ 

  1 0V w H : w for X  on    D   ሺ3ሻ 

In the relations above Ω denotes the domain occupied by the body, with boundary N D  and 

N D   . N  and D denote the Neumann and Dirichlet boundaries, respectively. u  is the virtual 

displacement vector from the equilibrium position,  .s  is the symmetric part of the gradient operator used to 

construct both compatible strain and virtual strain second order tensors,  is the linear elastic rigidity tensor of 
fourth order, f  is the body forces vector and t  is the vector of prescribed tractions at the static part ሺNeumannሻ 
of the solid’s boundary. 

The Finite Element Method ሺFEMሻ provides a discretization for the weak form of the BVP through a strategy 
for defining trial/test approximations for the displacement fields involved. At the element level an approximation 
is constructed by a linear combination of n  nodal element shape functions e

  taking as parameters the nodal 

values eu  of the trial displacement field, as follows: 

( ) ( )
n

e e eu x x u


 


   ሺ4ሻ 

Basically, as shown on what follows, the main difference between the standard FEM and the GFEM is in the 
definition of the element shape functions. 

2.1 The GFEM local and global approximations 

To comprise the possibility that the solution can change from one part to another of the domain, in the GFEM 
the approximation is constructed into subdomains called patches. A mesh of finite elements linking N nodes and 
discretizing the solid domain is used for defining the nodal patches. The gain of approximation is achieved 
through augmenting the basic FEM approximation space by exploring the concept of Partition of Unity ሺPoUሻ for 
constructing the local enriched approximations. A variety of PoU can be used, however in the GFEM the PoU is 
directly supplied by the FEM mesh. Often piecewise linear ‘hat’ functions provided by the triangular finite element 
mesh or bilinear functions provided by quadrilateral elements are commonly explored as PoU for 2-D analysis 
purposes. One important characteristic of the GFEM is that the underlying mesh keeps unchanged. 

As already mentioned before, the shape functions ሺ i ሻ are defined locally in a domain called nodal patch 

ሺset of elements having a common node as vertexሻ. Inside of each patch ሺαሻ, the shape functions are constructed 
by the product between the so-called enrichment functions ሺ iL ሻ and the partition of unity functions belonging to 

the elements in the patch and attached to the vertex. Therefore, the shape functions for the GFEM are written as: 

i iL      ሺ5ሻ 

where  1, , N    identifies the nodal patch and  1, ,i ne   identifies the enrichment function  ne   is 

the total number of enrichment functions adopted for the patchሻ. In the GFEM, normally the first component of 
the enrichment functions set is assumed as equal to the unity, i.e. 1 1L  . Therefore, the FEM approach always 

belongs to the approximation space of the GFEM. 
The enrichment functions can be found from a polynomial basis, if the aim is approximating smooth solutions 

or from the available information about the non-smooth solution when special features are involved in the 
problem to be considered. However, for the sake of readiness only an enrichment scheme aiming to achieve a 
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certain complete polynomial degree is hereby used. Accordingly, the general form of the polynomial enrichment 
component basis can be expressed by the shifted arrangement as follows 

   
( , )

m n

m n

X X Y Y
L m n

h
 



 


  ሺ6ሻ 

where Xα and Yα are the coordinates of the patch vertex node α and h is a scaling factor given, for instance, by the 
radius of the circle centered at the vertex and circumscribing the largest element of the patch. One of the most 
remarkable advantages of the shifted enrichment functions is that they are zero in the node where they are 
imposed. It follows that the physical significance of the original degree of freedom associated to the basic part of 
the approximation at such a node is preserved. Moreover, this feature enables one, in principle, to directly enforce 
displacement boundary conditions in the same way as in the FEM. 

As a rule, in 2-D analysis the enrichment functions are common to both displacement components. Once the 
enriched approximations are set in each patch a partition of unity is used to paste the local approximations 
together forming a global regular approximation. Therefore, by restricting only to 2-D problems, the GFEM global 
approximation for each component of the displacement field is given by the following relations: 

1 1 2

ˆ
N N nl

i i
i

u u b   
 
 

  
  

  ሺ7ሻ 

1 1 2

ˆ
N N nl

i i
i

v v c   
 
 

  
  

  ሺ8ሻ 

where u  and v are parameters associated with usual degrees of freedom of the FEM, ib and ic are additional 

nodal parameters introduced by enrichment. In the previous relations a convenient splitting of the GFEM 
approximation space is explored, putting in evidence the basic part provided by the FEM and the enrichment part. 
Therefore, being S1 the basic space and S2 the enrichment space, formally the GFEM approximation space 
ሺSGFEMሻ can be represented as follows: 

1 2GFEMS S S 
  ሺ9ሻ 

1 1
1

2
1 2

:

:

N

N nl

i i
i

S a

S L a

 


  


  

  



 

   
 
   
 



 
  ሺ10ሻ 

Once trial/test functions given by the approximation space are inserted in the Principle of Virtual Work 
relation, the resulting discretized weak form provides the specific values for the set of nodal parameters, 
therefore associating the finite dimensional global approximation to the exact solution of the BVP. 

Of course, the accuracy of the global approximate solution depends on the favorable properties of the local 
approximation spaces. In this regard, there are no restrictions to the type and number of enrichment functions to 
be attached to a given node. Hence, the number of degrees of freedom is totally flexible. Consequently, at the 
element level, the size of the resulting element stiffness matrix may change drastically, depending on the adopted 
enrichment scheme. Moreover, once a Galerkin approach is used, the element equivalent forces vectors also 
present variable sizes. 

Notwithstanding the favorable aspects mentioned above, the polynomial enrichment approach may 
introduce linear dependencies in the resulting system of equations, therefore affecting the numerical stability and 
accuracy of the method. This kind of issue is well-known as one of the most significant drawbacks of the GFEM. 
However, as shown in this work, once certain assumptions are satisfied for constructing the shape functions the 
polynomial enrichment approach can be explored efficiently. 

2.2 The SGFEM local and global approximations 

In the SGEFM the local enrichment functions of the GFEM are modified through a piecewise linear interpolant 
function such that the values of the enrichment function result zero at each node belonging to the patch. 



Fernando Massami Sato et al. 
Numerical experiments with the Generalized Finite Element Method based on a flat-top Partition of Unity 

Latin American Journal of Solids and Structures, 2018, 15ሺ11 Thematic Sectionሻ, e65 5/16 

More precisely, the enrichment functions for a patch ሺαሻ are constructed by the difference between the 
original enrichment function ሺ iL ሻ and the piecewise linear or bilinear finite element interpolant function of it 

ሺ I
 ሻ. Therefore, 

 mod
i i iL L I L

       ሺ11ሻ 

At the element level the interpolant function can be written as: 

 
1

,
n

j i j j
j

I L X Y


 


    ሺ12ሻ 

where ሺ ,j jX Y ሻ are the coordinates of node j of the element in question. 

The conventional procedure for constructing the GFEM shape functions is then used to define the SGFEM 
shape functions ሺ mod

i ሻ. Hence, 

mod mod
i iL      ሺ13ሻ 

Thus, it is convenient to represent the SGFEM approximation space as follows: 

mod
1 2SGFEMS S S    ሺ14ሻ 

 

1 1
1

mod mod
2

1 2

:

:

N

nlN

i i
i

S a

S L a

 




  


  

  



 

   
 
 

  
 



 
  ሺ15ሻ 

The interpolant function and the resulting shape function considered in SGFEM are highlighted in Figure 1. 

 
Figure 1: Construction of an enrichment function and a shape function used in SGFEM, adapted from Figure 2 of Gupta 

et al. ሺ2013ሻ. 

 

It can be shown, Babuška and Banerjee ሺ2011ሻ, that the SGFEM retains the good approximation property of 
the GFEM. Moreover, as the mesh refinement increases, the conditioning of the SGFEM is asymptotically not 
worse than that of the conventional Finite Element Method. However, those good features require satisfaction of 
the linear independence among the enriched shape functions. Such an aspect is addressed next. 
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3 THE SGFEM WITH FLAT-TOP PARTITION OF UNITY 

As proposed in Zhang et al. ሺ2014ሻ, the higher order SGFEM yields higher order convergence and presents 
good conditioning derived from a further specific modification of the enrichment space, which is simple enough 
for retaining the good flexibility for constructing local enriched approximations as in the standard SGFEM. 

Such an additional modification aims to guarantee that the shape functions of the enriched space be locally 
linearly independent. Essentially, the procedure hereby adopted consists of using another PoU for constructing 
the mod

2S space, different from the piecewise hat functions that however are preserved for constructing the basic 

S1 space. Thus, the SGFEM with ‘flat-top’ PoU approximation space is represented as follows: 

mod
1 2SGFEMS S S    ሺ16ሻ 

 

1 1
1

mod mod
2

1 2

:

:

N

nlN

i i
i

S a

S N L a

 




  


  

 



 

   
 
 

  
 



 
  ሺ17ሻ 

In the mod
2S space definition, mod

iL  is constructed just as indicated in relation ሺ11ሻ, while N represents the 

so called flat-top function, Sato ሺ2017ሻ, hereby adopted as PoU. 
The flat-top function can be constructed element-wise. In 1-D it can be easily defined by considering a 

unitary domain, (0,1)   discretized by N nodes equally spaced. If h is the distance between a pair of nodes, then 

the nodal coordinates are given by:  0

N

i i
x ih


 . For a parameter 0 0.5   and a positive integer l, the 

element-wise flat-top PoU is defined as follows: 

     

  1

1 ,

1 , 1
1 2

0 1 ,

j j

ll

j
Left j j

j j

x x x h

x x h
N x x x h x h

h

x x h x






 



 

    
                     


     

  ሺ18ሻ 

     

  1

0 ,

1 1 , 1
1 2

1 1 ,

j j

ll

j
Right j j

j j

x x x h

x x h
N x x x h x h

h

x x h x






 



 

    
                      


     

  ሺ19ሻ 

In the relations above, x is a local coordinate with origin at the left node of the element ሺxjሻ,  LeftN x  is for 

the PoU component attached to the node xj and  RightN x  is the PoU component attached to node xj൅1. 

In 2-D the flat-top can be constructed on the master element trough the tensorial product between the 1-D 
components above indicated. The flat-top functions for 1-D and 2-D quadrilateral master element hereby 
considered in the FT-SGFEM are represented in Figure 2. The cases depicted correspond to 0.25  and 1l  . 
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Figure 2: Flat-top partition of unity, 1-D and 2-D illustrations 

 

To deal with the numerical integration of the stiffness matrix components as well of the equivalent nodal 
forces vector with flat-top functions, an appropriate strategy is hereby conceived, Sato ሺ2017ሻ. Therefore, 
subdomains are attributed in agreement with the piecewise definition of the flat-top function inside the element. 
Then, standard quadrature integration rules are applied in each subdomain. 

 
Figure 3: Split in subdomains for flat-top PoU  
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Accordingly, four characteristics subdomains of the flat-top PoU component can be revealed when 
considering the master element domain, as shown in Figure 3ሺaሻ, each one being expressed by a polynomial 
function. The areas 1 and 4 have constant values 1 and 0 respectively, the areas 2 are described by a ‘ramp’ 
function, and the area 3 is described by a higher order polynomial function. 

Therefore, the element can be split in nine parts, as shown in Figure 3ሺbሻ, next applying the Gauss 
quadrature rule to each subdomain for computing the components of the stiffness matrix and equivalent nodal 
force vector. Moreover, the numerical integration encompasses only the regions 1 to 3. Essentially, this is the 
strategy hereby adopted for generating the results of the examples presented later on. 

The implementations were done using a Python based computational code for the GFEM following the object-
oriented programing paradigm, described in Piedade Neto et al. ሺ2013ሻ. 

4 NUMERICAL EXAMPLES 

In what follows, two numerical examples are presented. In each of them, only structured meshes and 
enrichment schemes with shifted polynomial functions were investigated. 

The first example is an L-shaped panel. The main aim is to verify accuracy of results in displacements and 
stress provided by the SGFEM with flat-top PoU. Moreover, convergence order and scaled condition number are 
presented by confronting the results of the standard GFEM and SGFEM. 

The second example aims to illustrate the potential of the GFEM versions even if a crack is included at one 
edge of a panel. Again, the accuracy and stability of the method are shown through the analysis of the convergence 
order and scaled condition number. 

Despite of local non-smoothness implicit in both examples, it is shown that the method provides asymptotic 
convergence with mesh refinement. 

4.1 L-shaped panel 

The first example consists of an L-shaped panel under uniform distributed loading at the longer edges, as 
depicted in Figure 4. Sliding supports are prescribed at the Dirichlet’s boundaries. The material has a linear elastic 
response, being adopted Young’s Modulus of 100 and Poisson’s ratio of 0.3 as elastic parameters. Moreover, 
unitary thickness and plane stress conditions are assumed. 

Six structured meshes varying from coarse to fine and composed by bilinear quadrilateral elements are used 
in this case. These meshes present the following grid sizes, indicated according to the number of elements in the 
longer and shorter edges, respectively as: ሺ4 X 2ሻ, ሺ8 X 4ሻ, ሺ16 X 8ሻ, ሺ32 X 16ሻ, ሺ64 X 32ሻ and ሺ128 X 64ሻ. 

  
Figure 4: L-shaped panel 

 

Shifted complete and incomplete second degree polynomial options of enrichment are considered and 
applied to the whole set of nodes. Accordingly, the complete case is configured by adopting in relation ሺ6ሻ the set 
of parameters: ሺm ൌ 2; n ൌ 0ሻ, ሺm ൌ 0; n ൌ 2ሻ, ሺm ൌ 1; n ൌ 1ሻ. The incomplete case takes only the first two sets of 
parameters, corresponding to the quadratic terms. Furthermore, Dirichlet’s boundary conditions were imposed 
trough penalization technique. 
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In this example, a comparison between the GFEM versions is presented. The main aspects evaluated are rate 
of convergence based on the estimate errors on displacements and scaled condition number. 

The relative error on displacements is computed using the L2 norm as follows: 

2

2

ref L

ref L

u u
relative error

u





  ሺ20ሻ 

In the relation above, uref is for the reference solution computed by FEM using a very refined mesh ሺ2048 X 
1024ሻ and ũ is for the approximate solution. 

Firstly, since the split strategy of numerical integration described in the last section is adopted for the SGFEM 
with flat-top PoU, values for   between limits 0 and 0.5, as well the number of integration points can be chosen 
arbitrarily. Therefore, a preliminary study considering different values of   is presented next to verify its 
efficacy. 

The analysis of the results is made by confronting the convergence rates of relative error on displacements 
for   values equal to 0.1, 0.2, 0.3 and 0.4. 

Another important measure to compare is the scaled condition number ሺSCNሻ. Following Babuška and 
Banerjee ሺ2011ሻ, this value is given by the ratio between the highest and the lower eigenvalues of the scaled 
stiffness matrix of the linear system associated to the GFEM version chosen. Representing by K the stiffness 
matrix, the scaled one is defined as: 

K̂ D K D   ሺ21ሻ 

where D is a diagonal matrix in which the diagonal terms are computed as: 1/ 2
ii iiD K  . 

The h-convergence curves in a log x log graphs are presented in Figure 5. 

 
Figure 5: L-shaped panel: h-convergence for different values of   

 

It can be concluded that the lower the   value is, the better the solution becomes. Actually, by strongly 
decreasing the   value, the flat-top approaches to the hat-function PoU. Consequently, the FT-SGFEM turns into 
the SGFEM. 

On the opposite sense, the scaled condition number increases once the complete polynomial enrichment is 
used. To illustrate such an effect, the SCN is presented in Figure 6. It can be seen that there is practically no 
difference when comparing the SCN values for different parameters   adopted, therefore the h-convergence 
curves result practically coincident. Moreover, the SCN values are of order h-2, i.e., for h decreasing of one order 
ሺ10-1ሻ, SCN increases of 102. 
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Figure 6: L-shaped panel: scaled condition number for   analysis 

 

In conclusion, since 0 1.   was shown to have the lowest value of relative error, this value will be selected 
for the next analyses. 

The relative errors obtained for the case of incomplete enrichment are reported in Table 1. 
 

Table 1: L-shaped panel. Relative error for incomplete polynomial 

Mesh h FEM GFEM SGFEM 
FT SGFEM 

1.0  

4x2 0.25 0.1423 0.08988 0.07063 0.078560718 

8x4 0.125 0.06743 0.03542 0.032 0.034963031 

16x8 0.0625 0.03046 0.01567 0.01483 0.016122405 

32x16 0.03125 0.0137 0.00711 0.00682 0.007415862 

64x32 0.01563 0.00615 0.00318 0.00306 0.003339863 

128x64 0.00781 0.00271 0.00135 0.0013 0.001429723 

 
The log x log graphs depicted in Figure 7 show the h-convergence of the relative error for the case of 

incomplete enrichment. It must be pointed out that this is not a regular problem, once the reentrant corner of the 
L-shaped panel induces stress singularity. Even so, it can be observed that comparing GFEM and SGFEM versions 
to the FEM, the convergence rates are pretty much of the same order. 

 

 
Figure 7: L-shaped panel: h-convergence for incomplete polynomial 
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In terms of comparative gains, the relative errors provided by the GFEM versions are very close in values to 
the ones obtained through FEM, however, demanding a mesh one level coarser. Therefore, when analyzing the 
number of degrees of freedom involved in this example, the GFEM versions have spent less DoF for obtaining the 
same relative error, as shown in Table 2. Of course, such reduction in the DoF implies in a low processing time. 

 
Table 2: L-shaped panel. Degrees of freedom for incomplete polynomial 

Mesh h FEM GFEM/SGFEM 
4x2 0.25 42 126 

8x4 0.125 130 390 

16x8 0.0625 450 1350 

32x16 0.03125 1666 4998 

64x32 0.01563 6402 19206 

128x64 0.00781 25090 75270 

 
The Figure 8 shows the SCN for the methods using the incomplete enrichment. It is observed that the values 

obtained for the GFEM versions are close to the FEM values. Moreover, the SGFEM versions do not present any 
advantage over the GFEM, since the incomplete enrichment verifies the linear independence condition already for 
the GFEM. 

 
Figure 8: L-shaped panel. Scaled condition number for incomplete polynomial 

 

However, as reported in Table 3, when a complete enrichment is considered, the SCN is strongly affected in 
the SGFEM, which remains comparable to the bad condition level shown by GFEM. This is evidence that the 
resulting enriched space lacks of linear independence property. On the other hand, linear independence property 
is recovered by the enrichment space when using flat-top PoU. Such good advantage is well marked in Table 3 by 
the corresponding dropping of the SCN values comparable to the level presented by the FEM ones. 

 
Table 3: L-shaped panel. Scaled condition number for complete polynomial 

Mesh h FEM GFEM SGFEM 
FT SGFEM 

1.0  

4 x 2 0.25 2.16E൅02 3.87556E൅16 4.00E൅16 4.02E൅02 

8 x 4 0.125 9.43E൅02 1.37449E൅17 2.19E൅15 1.59E൅03 

16 x 8 0.0625 3.87E൅03 1.69705E൅17 8.10E൅15 6.34E൅03 

32 x 16 0.03125 1.56E൅04 4.05187E൅17 6.59E൅17 2.53E൅04 
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Although the employment of the flat-top PoU results in a well-conditioned matrix, as consequence of its 
limited capacity of approximation, the relative error is a little higher than that obtained through SGFEM. Despite 
of that, the SGFEM using flat-top PoU benefits from the mesh refinement. 

However, in face of results, as the FT-SGFEM with complete ሺquadratic polynomialsሻ and the SGFEM with an 
incomplete set both provide good condition numbers and accuracy, it is interesting to compare their plots. This is 
precisely what is shown in Figure 9. 

 
Figure 9: Effect of mesh refinement for the incomplete SGFEM ሺaboveሻ and complete FT-SGFEM ሺbelowሻ 

 

4.2 Panel with an edge crack 

The selected problem for analysis is presented in Figure 10. 

 
Figure 10: Edge cracked panel 
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Sliding supports are prescribed at the Dirichlet’s boundaries. The material has a linear elastic response, being 
adopted Young’s Modulus of 100 and Poisson’s ratio of 0.3 as elastic parameters. Moreover, unitary thickness and 
plane stress conditions are assumed. 

Six structured meshes varying from coarse to fine and composed by bilinear quadrilateral elements are used 
in this case. These meshes present the following grid sizes, indicated according to the number of elements in the 
horizontal and vertical directions, respectively as: ሺ4 X 4ሻ, ሺ8 X 8ሻ, ሺ16 X 16ሻ, ሺ32 X 32ሻ, ሺ64 X 64ሻ and ሺ128 X 
128ሻ. 

Analogous to the previous example, shifted complete and incomplete second degree polynomial options of 
enrichment are considered and applied to the whole set of nodes. Again, a comparison between GFEM versions is 
presented. The main aspects evaluated are rate of convergence based on the estimate errors on displacements 
and scaled condition number. In particular a reference solution was computed by FEM using a very refined mesh 
ሺ2048 X 2048ሻ. 

The relative errors on displacements computed using the L2 norm for the case of incomplete enrichment are 
reported in Table 4. 

 
Table 4: Edge cracked panel. Relative errors for incomplete polynomial enrichment 

Mesh h FEM GFEM SGFEM FT SGFEM 0 1.   

4x4 0.25 0.26134 0.17022 0.15184 0.166581834 

8x8 0.125 0.14344 0.08548 0.08275 0.089600582 

16x16 0.0625 0.07421 0.04378 0.04392 0.047327711 

32x32 0.03125 0.03741 0.02209 0.02247 0.024203718 

64x64 0.01563 0.01853 0.01088 0.01113 0.012011457 

128x128 0.00781 0.00898 0.00515 0.0053 0.005740655 

 
The log x log graphs depicted in Figure 11 show the h-convergence of the relative errors. Even if this is not a 

regular problem, as the crack tip induces heavy stress singularity, it can be observed that the convergence rates 
are pretty much of the same order comparing GFEM versions with FEM. 

 
Figure 11: Edge cracked panel: relative error values for incomplete polynomial and mesh refinement 

 

In Figure 12 the scaled condition number is compared still considering the incomplete enrichment case. It 
can be seen that the values obtained with GFEM versions are of the same order as the values provided by FEM 
analysis. Once the shape functions resulting from the incomplete enrichment space verifies the linear 
independence condition, actually, the flat-top option does not add any advantage with respect to the SGFEM. 
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Figure 12: Edge cracked panel: scaled condition number for incomplete polynomial and mesh refinement 

 

However, when considering complete second degree polynomial enrichment, the SCN for SGFEM is strongly 
affected, becoming comparable to the bad condition level shown by GFEM, as reported in Table 5. This is a 
consequence of the linear dependence among the shape functions introduced by the crossed term of the 
enrichment functions vector. However, linear independence is preserved when using Flat-Top PoU for 
constructing the enrichment space. Such an advantage is remarkable when noticing the low SCN values, which are 
comparable in order to the values obtained through FEM. 

 
Table 5: Edge cracked panel. Scaled condition number for complete polynomial 

Mesh h FEM GFEM SGFEM FT SGFEM 0 1.   

4 x 4 0.25 1.16E൅02 1.02282E൅16 3.07E൅17 2.44E൅02 

8 x 8 0.125 4.89E൅02 2.89938E൅15 1.75E൅16 8.58E൅02 

16 x 16 0.0625 2.05E൅03 1.13806E൅16 2.62E൅14 3.43E൅03 

32 x 32 0.03125 8.42E൅03 1.05935E൅17 2.76E൅14 1.38E൅04 

 
Finally, it is pointed out that the SGFEM using Flat-Top PoU benefits from the mesh refinement. Once again, 

as shown in Figure 13, FT-SGFEM with complete ሺquadratic polynomialsሻ and the SGFEM with an incomplete set 
are compared through the stress Syy plots. 
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Figure 13: Effect of mesh refinement for the incomplete SGFEM ሺaboveሻ and complete FT-SGFEM ሺbelowሻ 

 

4 CONCLUSIONS 

The numerical investigation carried out with the GFEM versions has included the use of a flat-top partition of 
unity for constructing the augmented or enriched approximation space. Only shifted polynomial functions were 
considered for the enrichment of the partition of unity. As polynomial enrichments can introduce linear 
dependencies, affecting numerical stability, the main purpose of this investigation was to give a contribution in 
this direction by further investigating the GFEM stability through computing the condition number of the 
resulting system of equations. 

It was shown that the construction of the approximation space through enrichment of a flat-top PoU provide 
scaled condition numbers of the same order as the one provided by the conventional finite element method, 
therefore minimizing discretization errors. Moreover, the resulting orders of convergence comparable to the 
conventional GFEM indicate favorably to the gains of numerical accuracy. 
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