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An accelerated incremental algorithm to trace the nonlinear
equilibrium path of structures

Abstract

This paper deals with the convergence acceleration of iter-

ative nonlinear methods. An effective iterative algorithm,

named the three–point method, is applied to nonlinear anal-

ysis of structures. In terms of computational cost, each it-

eration of the three–point method requires three evaluations

of the function. In this study the effective functions have

been proposed to accelerate the convergence process. The

proposed method has a convergence order of eight, and it

is important to note that its implementation does not re-

quire the computation of higher order derivatives compared

to most other methods of the same order. To trace the equi-

librium path beyond the limit point, a normal flow algorithm

is implemented into a computer program. The three–point

method is applied as an inner step in the normal flow algo-

rithm. The procedure can be used for structures with com-

plex behavior, including: unloading, snap–through, elastic

post–buckling and inelastic post–buckling analyses. Several

numerical examples are given to illustrate the efficiency and

performance of the new method. Results show that the new

method is comparable with the well–known existing methods

and gives better results in convergence speed.
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1 INTRODUCTION

A lot of research has focused on presenting formulations for the nonlinear analysis of structures.

Various analysis methods have been proposed to estimate the real behavior of structures.

Some of the more interesting structural forms include lattice domes or shallow reticulated

caps that span long distances. These structures function as space frames, and are often used

in place of continuous shell–type structures. The most common mode of failure for lattice

domes or reticulated caps is instability, and the complex geometry used in their design usually

prevents a closed form solution for the critical load.
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Large deformation analysis requires the solution of a nonlinear system of equations. Non-

linear systems of equations are most commonly solved using iterative incremental techniques

where small incremental changes in displacement are found by imposing small incremental

changes in load on the structure. The resulting solutions are used to plot the equilibrium path

for the structure. An excellent review of nonlinear analysis solution techniques and their imple-

mentation is given by Crisfield and Shi[10, 11]. The most common technique for solving non-

linear finite element equations is the Newton–Raphson (N–R) method. The Newton–Raphson

method is famous for its rapid convergence but is known to fail at points (limit points) on the

equilibrium path where the Jacobian (tangent stiffness) is singular or nearly singular. Bathe

and Cimento[4] highlight some of the problems with the Newton–Raphson method and present

various forms of the method that involve accelerations or line searches to maintain convergence

during the solution process.

Arc–length methods have been used to overcome the problem of limit points. Arc–length

methods are similar to the Newton–Raphson method except that the applied load increment

becomes an additional unknown. A comparative study of arc–length methods is presented by

Clarke and Hancock[9]. The original idea behind the arc–length method was introduced by

Riks[20] and Wempner[26]. Eriksson[13] described a general setting for the evaluation of one–

dimensional generalized solution paths to augmented structural equilibrium problems. Saffari

et al.[21] introduced a new algorithm for passing the equilibrium path, known as modified

normal flow algorithm, for geometrically nonlinear analysis of space trusses. This algorithm

can reduce both number of iterations and computing time. Also, other methods have been

developed to surpass limit points: (a) the generalized displacement control method (GDC)

which is one of the most reliable numerical procedures for nonlinear static analysis[6]. Cardoso

and Fonseca[6] shown that the GDC method can be seen as an orthogonal arc-length method

with additional features. This method is originally proposed by Yang and Shieh[27]; (b) the

work control method which was proposed by Bathe and Dvorkin[5] to enforce a constant

value of work done in each iteration. This method avoids the limitations of the load control

and displacement control methods in tracing the equilibrium path; (c) Chan [7] proposed the

minimum residual displacement method (MRD) to remove the residual displacement or the

unbalanced force in each iteration.A new approach for nonlinear analysis of structures, which

accelerates the convergence rate, has been presented by Saffari and Mansouri[22]. In[22],

Saffari and Mansouri employed a mathematical method, namely two–point, to achieve the

convergence state; however, in[22] the equilibrium path is traced until the limit point. A

concept to accelerate the trend in nonlinear analysis and aimed to gain the ability for analysis

of complex structures has been introduced by Saffari et al.[23].

Among numerical methods for solving nonlinear equations, the Newton–Raphson method

dominates by reason of its quadratic convergence characteristics; however, in order to obtain

such a convergence speed, a large amount of computational effort is needed. This effort is

placed at each iteration in the construction of the tangent stiffness matrix and in the solving

of the linear system with the new matrix. To reduce the global computational cost, a modified

Newton–Raphson process with the same Jacobian at all iterations can be applied, but the
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quadratic convergence characteristic is then lost. After a few Newton–Raphson iterations, the

Jacobian is recalculated only at a constant interval. These two approaches save the Jacobian

calculation between the intervals. But at the same time the total number of Newton–Raphson

iterations increases. In some cases, if less computational effort is required at the iterations

which use the same Jacobian matrix than in the proceeding iterations, although the number

of Newton–Raphson iterations will increase, the overall computational time can be reduced.

Higher order methods which require the second or higher order derivatives can be time con-

suming. One such method is the Newton method; however the Newton method can suffer from

numerical instabilities. Thus, it is important to study the higher order variants of Newton’s

method, which require only function and first derivative calculations. In recent years, much

attention has been given to develop several iterative methods for solving nonlinear equations.

For instance, Two–point methods have been suggested by combining the well–known Newton’s

method with other one–point methods[18]. Though the authors claimed the methods to be

original, Petkovic and Petkovic[17] mentioned that these methods are found in Traub’s book

and are rediscovered in another way. Babajee and Dauhoo[2] analyzed the properties of these

variants. Some methods were also derived and rediscovered from the Adomian Decomposition

Method[8].

This paper presents an efficient method which accelerates the nonlinear analysis process.

In this method, some path–following algorithms have been used to pass the limit points. A

computer program is presented based on the concept developed herein which incorporates the

three–point method. The number of function evaluations in this method is three, and new and

effective functions have been introduced to evaluate the predictor phase. Numerical examples

are presented and solved using the developed program. Results show that the proposed method

is efficient in different kinds of path–following algorithms.

2 NONLINEAR ANALYSIS OF STRUCTURES

In the following sections, large deflection inelastic analysis of structures including both geo-

metric and material nonlinearities is briefly discussed. It is followed by a detailed description

of the concept developed in this study.

2.1 Geometrically nonlinear analysis

Consider an arbitrary framed structure loaded at the nodes only, and let δ denote the corre-

sponding deformed configuration. The equations of equilibrium of the system can be written

as:

{f(δ)} = {P} (1)

in which {f(δ)} is the resultant of the nodal internal forces and citation{P} represents the

external nodal forces. The member force deformation relationships denote that {f } is a highly

nonlinear function of {δ}.
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The load–deflection relations show that it is almost impossible to explicitly solve these

equations. For computational purposes, it is useful to apply the differential form of the equa-

tion:

{∆δ} = [τ]−1 {∆P} (2)

in which {∆δ} stands for incremental displacements,{∆P} represents load increments, and

[τ] = [∂fi
∂δj
] constitutes the system tangent stiffness matrix which is explained in the following

sections.

2.2 Material nonlinearity analysis

2.2.1 Truss element

The accuracy of the structure inelastic response depends on the accuracy of the member’s

load–displacement relationship used in the analysis. A number of models have been introduced

in the literature to predict the nonlinear behavior of space trusses. In this study, a stress–

strain relationship proposed by Hill et al.[15] is adopted to predict the inelastic post–buckling

behavior of the trusses.

The curve can be expressed by the following relationship:

–For tensile members:

Q = {
A.E
L

u for ∣u∣ < uy

A.Fy for ∣u∣ ≥ uy
(3)

where Fy denotes yield stress and uy= Fy.L/ E.

–For compressive members:

Q = {
A.E
L

u for u < ucr

Ql + (Qcr −Ql). e[−(X1+X2

√
u′/L)u′/L ] , for u ≥ ucr

(4)

The figure of force–strain curve (Q–u/L) assumed applicable for steel materials both in

tension and compression has been shown in[23].

Here Qcr = π2EI/L2(I=weak axis moment of inertia) and Ql is the asymptotic lower stress

limit defined as Ql=r.Qcr. The corresponding critical buckling displacement is ucr = Qcr.L

/(A.E ) while u’ is defined as u’ = u–ucr. Parameters X 1 and X 2 are constants depending on

the slenderness ratio of the compressive members.

When a member is in compression and u ≥ ucr, the tangent modulus, Et, has to be used in

place of E. The tangent modulus is obtained by:

Et = −
1

A
(Qcr −Ql).e[−(X1+X2

√
u′/L)u′/L ] . (X1 +

3

2
X2

√
u′/L) (5)

It can be seen that if loading path reaches point A, the member behavior follows relations in

Eq. (3).
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2.2.2 Frame element

A perfectly–plastic material assigned to plastic hinge zones is used in this study to consider

material non–linear effects. In an elastic perfectly–plastic material, the effects of strain hard-

ening are neglected. It further implies that once the yield moment Mp is reached, the material

yields and cannot withstand further stress. The material constitutive behavior is shown in

Fig. 1.

 
Figure 1 Material behavior

The yield moment is often defined through a yield criterion. A variety of yield criteria have

been introduced in structural engineering. For the steel elements in this paper, the AISC–

LRFD[1] criterion considering bending moment and axial force interaction is determined as

follows:

Mpc =
⎧⎪⎪⎨⎪⎪⎩

Mc (1 − ∣Q∣2Qc
) for ∣Q∣

Qc
< 0.2

9
8
Mc (1 − ∣Q∣Qc

) for ∣Q∣
Qc
≥ 0.2

(6)

in which, Mc = ϕbZFy, Mpc is the reduced plastic moment capacity in the presence of axial

force (Qc = ϕcQn);ϕbandϕc are the bending and axial resistance factors respectively; Fy is the

yield stress, and Z is the plastic section modulus.

In inelastic analysis, the tangent stiffness matrix introduced in section 2.2 has to be modi-

fied. A detailed discussion on the inelastic analysis can be found in[16].

3 THREE–POINT METHOD

For nonlinear problems, solving the nonlinear part of the system often requires the most compu-

tational effort. Since the Newton–Raphson method has quadratic convergence characteristics[22],

it is often used for solving nonlinear equations; however, the Newton method can suffer from

numerical instabilities. Because of this, it is important to study alternative methods, such as

multi–point Newton–Like methods[3].
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Multipoint methods without memory are methods that use new information at a number

of points. It is an efficient way of generating higher order methods free from second and higher

order derivatives. One classical problem in numerical analysis is the solution of nonlinear

equations where f (x ) = 0. Efficiently finding zeros in a single variable nonlinear equation is an

interesting and very old problem in numerical analysis with many applications to structural

engineering.

The three–point iteration scheme for solving nonlinear equations is expressed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn − f(xn)
f ′(xn)

zn = yn − f(yn)
f ′(yn)

xn+1 = φ(xn) = zn − f(zn)
f ′(zn)

(n = 0, 1, ...) (7)

It can be showed that the efficiency index of this approach is
√
2 = 1.4142 which is equal to

that of Newton’s method. In fact, Newton’s method is applied three times. Recently, Dzunic et

al.[12] have modified the above scheme in order to improve the computational efficiency of the

iterative method. The derivatives f ′(y)andf ′(z) are approximated using following relations:

f ′(yn) ≈
f ′(xn)
p(sn)

, f ′(zn) ≈
f ′(xn)
q(sn, tn)

(8)

in which

sn =
f(yn)
f(xn)

, tn =
f(zn)
f(yn)

(9)

It should be noted that the quantities s and t do not require new information since they

are expressed by the already calculated quantities. Now the three–point scheme (7) has the

form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn − f(xn)
f ′(xn)

zn = yn − p(sn) f(yn)
f ′(xn)

xn+1 = φ(xn) = zn − q(sn, tn) f(zn)
f ′(xn)

(n = 0, 1, ...) (10)

where p and q are arbitrary real functions with Taylor’s series of the form:

p(s) = 1 + 2s + 2s2 + γs3 + ... (11)

q(s, t) = 1 + 2s + t + 3s2 + 4st + γs3 + ... (γ ∈ R) (12)

It can be proved that the family of three–point methods (7) has the order eight, if p and

q conditions (11,12)[12]. Since the total number of function evaluations per iteration of the

method (3) is four, the efficiency index of proposed method is 4
√
8 = 1.6818 which is better

than that of classic Newton’s method.
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3.1 Choice of functions p and q

The functions p and q have been searched in a general rational form:

p(s) = 1 + (2 − β)s(1 + s)
1 − βs(1 − s)

(13)

q(s, t) = 2 + (6 + γ1)s2 + 2(t + γ2) + s(4 + 2γ1 + γ3t)
2 + 2γ1s − 3γ1s2 + γ2t + (γ3 − 2γ2 − 2γ1 − 8)st

(14)

which satisfies conditions given in Eqs. (11,12) and its parameters (β, γ1, γ2, γ3) have been

selected using trial and error approach.

In this way many different functions can be generated. In this paper functions p1 thru p3

and q1 thru q4 have been chosen from reference[12]. They are mentioned in the following:

p1(s) = 1 + 2s + 2s2 (15)

p2(s) =
1

1 − 2s + 2s2
(16)

p3(s) =
1 + s + s2

1 − s + s2
(17)

q1(s, t) = 1 + 2s + t + 3s2 + 4st (18)

q2(s, t) = (2s +
5

4
t + 1

1 + s + 3
4
t
)
2

(19)

q3(s, t) =
1 − 4s + t

(1 − 3s)2 + 2st
(20)

q4(s, t) =
1

1 − 2s + s2 + 4s3 − t
(21)

Another function for p and q is introduced in the proposed method, respectively:

p4(s) =
1 − 3s − 3s2

1 − 5s + 5s2
(22)

q5(s, t) =
2 + 2t + s(t − 8)

2 − 12s + 18s2 + 5st
(23)

Among these choices, the results show that choice of p4 and q5 has more efficient than the

other forms obtained by trial.
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4 THREE–POINT SCHEME IN STRUCTURAL ANALYSIS

The three–point technique can be applied to analysis of structures with complex behaviors,

including unloading, snap–through, elastic post–buckling and inelastic post–buckling analyses.

In this paper a modified normal flow algorithm[21] is used to trace the equilibrium paths. The

theory of this method is described in the following sections.

4.1 Modified normal flow algorithm

If i is the step number, j is the number of the modifying iteration, and the total load on the

structure is {P}ji , or its equivalent, the product of a total ratio λj
toti and a given reference

external load {Pref} is applied through a series of load increments. Mathematically, this is

written as:

{P}ji = λ
j
toti {Pref} (24)

A detailed discussion and the process of the normal flow algorithm have been represented

in reference[21].

A nonlinear system of equilibrium equations can generally be formulated as follows:

J(λj−1
i , δj−1i )S

j
i = −F (λ

j−1
i , δj−1i ) (25)

where J(λj−1
i , δj−1i ) is the Jacobian matrix of order N ×(N +1) and Sj

i is the Newton–Raphson

step size which is found through the following relationship:

J(λj−1
i , δj−1i ) = [

∂F (λj−1
i , δj−1i )
∂λ

∂F (λj−1
i , δj−1i )
∂δ

] (26)

In the normal flow algorithm, the Newton–Raphson step size is the minimum solution of

the system of Eq. (25) which is unique among an infinite number of solutions obtainable[21].

A particular solution {V } should be obtained from:

[τ]j−1i {V } =∆λj
i {Pref} − {∆Q}j−1i (27)

in which:

∆λj
i = −

[{δI}ji ]
T {∆δR}ji

[{δI}ji ]T {δI}
j
i

(28)

where {∆Q}j−1i is the vector of the unbalanced forces, {δI}ji is vector of tangential displacement

in the converged point; and {∆δR}ji is the vector of unbalanced displacements such that,

{∆Q}j−1i = {F}ji −
⎛
⎝
λconv
toti−1 + λ

j=1
i +∑

j=2
∆λj−1

i

⎞
⎠
{Pref} (29)

in which {F}ji is the vector of resultant internal forces at the nodes. The vector of unbalanced

force is computed through the following system of equations:

[τ]j−1i {∆δR}ji = −{∆Q}j−1i (30)
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Using the following equation the minimum solution of the norm is calculated:

{∆δ}ji = {V } −
{V }T {δI}ji
∥δI∥2

{δI}ji (31)

in which {δI}ji is the tangential displacement. A direct method of updating is adopted such

that, the load increment is related to the number of iterations. Also sign of determinant of

the tangential stiffness matrix of the previous step can be computed through the following

relationship:

λj
i+1 = ±λ

j
i (

JD
JM
)
γ

(32)

where exponent γis a certain number, JD is the number of iterations assumed at the beginning

of the calculations and JM is the number of iterations performed in the previous step.

4.2 Algorithm of nonlinear analysis based on three–point method

Here, a general flow chart for the iterative process is presented as follows:

Step 1) Initialization of variables and parameters.

Step 2) Input first incremental load, λ1
1, JD, JM , boundary conditions, connectivity, mate-

rial properties and structural geometry.

Step 3) For the first iteration at each increment step i :

3.1 Form the system tangent stiffness matrix [τ]0i .
3.2 Determine {V } using [τ]j−1i {V } = {Pref}.
3.3 Compute the load increment parameter λ1

i ; for i = 1, setλ1
i = λ1

1; for i ≥ 2 use Eq. (32).

Step 4) Compute the element force vector. Update the tangent modulus accounting for

inelastic effects. Update global stiffness matrix

Step 5) Solve for tangential displacement:[τ]j−1i {δI}ji = {Pref}. Solve for {∆δR}ji from Eq.

(30).

Step 6) Calculate {d1}ji = {δ}
j
i + {∆δR}ji .

Step 7) Update global nodal displacements and determine the unbalanced load: {∆Qd1
}ji =

{P}ji − {Fd1
}ji .

Step 8) Compute s:

sji =
{∆Q}ji

T
{∆Qd1

}ji
{∆Q}ji

T
{∆Q}ji

(33)

and construct p(s).

Step 9) Determine the new node locations:

{d2}ji = {d1}
j
i + pi [τ]

−1 {∆Qd1
}ji (34)

Step 10) Update global nodal displacements and determine the unbalanced load:
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{∆Qd2
}ji = {P}

j
i − {Fd2

}ji .
Step 11) Compute t :

tji =
{∆Qd1

}ji
T
{∆Qd2

}ji
{∆Qd1

}ji
T
{∆Qd1

}ji
(35)

and construct q(s,t).

Step 12) Determine the new node locations:

{δ}ji+1 = {d2}
j
i + qi [τ]

−1 {∆Qd2}
j
i (36)

Step 13) Determine the load increment parameter using Eq. (28) and update it.

Step 14) Check the convergence criteria by the following relation:

[{δ}ji ]
T {∆δ}ji

[{δ}ji ]T {δ}
j
i

≤ ε (37)

where ε is a predefined error in the course of calculations.

5 NUMERICAL RESULTS

A computer program is developed in this study which incorporates the three–point algorithm.

CPU times taken by calculation process can be measured conveniently when the corresponding

command prompt on the screen is set. All examples are solved using a 32–bit Pentium 2.00

GHz processor (Dual core). To examine the performance of the method proposed here and to

evaluate the results obtained, some examples are presented in this section. Newton–Raphson

method and other sub–stepping algorithms including three–point method are applied to three

cases of elastic, elastic post–buckling (EPB), and inelastic post–buckling (IPB) analyses of

typical and well–known structures. A predefined tolerance of ε=10−5 is also assigned to all

cases defined in the analysis. Parameters r, X 1, X 2 are assigned fixed values as r = 0.4, X 1

= 50 and X 2 = 100[25] and remain unchanged throughout the analysis. Newton–Raphson

method or three point procedure are used in inner steps of the path-following algorithms.

Comparison between these two approached are listed in the following Tables.

5.1 Example 1

The geometric dimensions of the geodesic dome truss shown in Fig. 2 are adopted from Ramesh

and Krishnamoorthy[19].

This truss has a total of 61 nodes and 156 members with identical cross–section (A =

6.5 cm2 and I = 1 cm4) located at the outer supports are restrained as pin supports. A

concentrated vertical load of P = 8 kN is applied to the center of dome as shown in Fig.

2. Parameters of Eq. (32) are selected such that∆λ1
1 = 0.01, λmax = 0.5, γ = 0.1, JD = 10,

Jmax = 100. The elevation of the truss is defined by the following equation:

x2 + y2 + (z + 7.2)2 = 60.84 (38)
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Figure 2 Geodesic dome truss, dimensions are given in cm

The material properties are E = 6895 kN/cm 2 and Fy = 400 kN/cm 2. The load–

displacement curves obtained from four cases of analysis are shown in Fig. 3.

Table 1 presents a summary of the CPU time taken for application of classic Newton–

Raphson method and the three–point method in three cases of analysis for various path–

following methods.

Table 1 Comparison of CPU time (sec) for example 1

Normal flow GDC method Arc-length method MRD method
algorithm[8] [6] [5] [12]

Analysis N-R three-point N-R three-point N-R three-point N-R three-point
Elastic 27.5305 18.9418 28.1102 19.4392 29.4565 20.0414 28.9681 19.1125
EPB 34.6207 20.8456 36.3418 21.7725 37.2304 23.3566 35.8653 21.0582
IPB 48.0764 25.6491 50.1317 27.0136 51.1186 27.9652 49.0037 46.0125

Table 2 Comparison of number of iterations for example 1

N-R method used in Three–pint method used in decrease
normal flow algorithm normal flow algorithm percentage

135 80 40.74

Number of iterations is shown in Table 2. Results show that for all cases analyzed, three–

point approach has better performance as compared to the Newton–Raphson method.
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Figure 3 Load–displacement curves of geodesic dome truss at apex

5.2 Example 2

A circular dome truss taken from reference[25] is shown in Fig. 4. This structure has 168

elements and 73 nodes for a total of 147 degrees–of–freedom. The structures is subjected to

a vertical load P = 500 kN at the apex. The out–of–plane motion has been constrained with

pin supports appended to each end of the truss.

The cross–sectional properties for area (A) and moment of inertia (I ) are 50.431 cm2 and

52.94 cm4 respectively for all members. The elastic modulus (E ) for all members is 2.04×104
kN/cm2 and Fy= 25 kN/cm2.

For Eq. (32), parameters∆λ1
1 = 0.01,λmax = 2,JD = 5, Jmax = 100,γ = 0.1 are selected.

Fig. 5 illustrates the numerical responses obtained from the proposed formulation for four

cases of analyses in a manner similar to Example 1. The comparisons between the results

of applying the two methods (Newton–Raphson and three–point) are listed in Table 3 and

Table 4.

Table 3 Comparison of CPU time (sec) for example 2

Normal flow GDC Arc-length MRD
algorithm[21] method [6] method[20] method[7]

Analysis N-R three-point N-R three-point N-R three-point N-R three-point
Elastic 26.8613 14.8848 27.1618 15.0435 27.8791 15.0561 27.6411 15.2743
EPB 62.9116 34.6559 65.0505 34.2702 65.3090 35.2936 64.2039 36.1415
IPB 87.2952 47.6567 90.6501 48.7870 89.1506 46.5981 88.6908 48.3487

Fig. 5 shows the significant shortcoming of Newton–Raphson method in passing limit

point.

From Table 3, the three–point algorithm requires the least computational time for conver-

gence compared to Newton–Raphson method.
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Table 4 Comparison of number of iterations for example 2

N-R method used in Three–pint method used in decrease
normal flow algorithm normal flow algorithm percentage

187 101 45.98

 
Figure 4 Circular dome truss solved in example 2 (dimensions are given in cm)

 Figure 5 Load–displacement curves of circular dome truss at node 2
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5.3 Example 3

Schewdeler’s truss[14], shown in Fig. 6 having 264 elements and 97 nodes with pin supports at

the outer nodes provides a good opportunity to evaluate the efficiency of the method discussed

herein.

 
Figure 6 Schewdeler’s dome truss, dimensions are given in cm

The axial stiffness (EA) for all members is taken as 640 ×103 kN, Fy = 25 kN/cm 2, and

I = 30.04 cm 4. The external loading was a typical equipment loading of the magnitude P

= 50 kN at the crown node. For Eq. (32) parameters∆λ1
1 = 0.01, λmax = 1, γ = 0.1,JD = 2,

Jmax = 100 are used.

Fig. 7 shows variation of vertical displacement at central node with the load P obtained

in three cases of analysis.

 

Figure 7 Central node vertical load–displacement

Latin American Journal of Solids and Structures 9(2012) 425 – 442



H. Saffari et al / An accelerated incremental algorithm to trace the nonlinear equilibrium path of structures 439

When each of these four cases is analyzed using the four different iteration algorithms,

a total of 16 sets of results are obtained. For the purpose of this study, it is interesting to

investigate the summary of the results and compare the computational time taken by all of

methods. Table 5 provides a summary of all results for convenience.

It is important to note that all computations were carried out with the smallest step possible

and with high precision.

Table 5 Comparison of CPU time (sec) for example 3

Normal flow GDC Arc-length MRD
algorithm[21] method[6] method[20] method [7]

Analysis N-R three-point N-R three-point N-R three-point N-R three-point
Elastic 115.6921 56.3722 119.8305 58.25922 119.2752 58.08051 120.3278 58.69566
EPB 144.2047 80.7417 148.0804 82.40212 147.7251 82.1779 146.1286 83.26964
IPB 184.1164 104.4722 186.7869 103.5209 188.9921 106.3163 193.1962 107.9256

Table 6 Comparison of number of iterations for example 3

N-R method used in Three–pint method used in decrease
normal flow algorithm normal flow algorithm percentage

212 113 46.69

From Table 6, the minimum number of iterations is associated with the three–point scheme.

5.4 Example 4

The last example shown in Fig. 8 has been analyzed by Spiliopoulos and Patsios[24]. For all

members E = 220000 kN/m 2. Section properties for columns are I = 0.000313 m 4, A =

0.022 m 2. Beam sections (including the inclined members) given as: I = 0.0000249 m4, A =

0.00543 m2. The load increment, ∆P, is 0.795 kN and P = 31.80 kN. The frame was analyzed

using the three–point method developed in this paper.

Fig. 9 shows the load–displacement curve obtained by applying the method developed in

the present study and Newton–Raphson method, respectively.

The results show that the number of iterations and the computing time used in deploying

the classic Newton–Raphson approach is more than that used by applying the developed

method. The results are presented in Table 7.

Table 7 Comparison of CPU time (sec) for example 4

Analysis/Method elastic EPB IPB
N-R 6.9654 8.7566 10.1735

Three–point 4.3016 5.00684 5.7323

Table 8 shows that three–point scheme also can reduce the computational effort in nonlinear

analysis of frames.

Latin American Journal of Solids and Structures 9(2012) 425 – 442



440 H. Saffari et al / An accelerated incremental algorithm to trace the nonlinear equilibrium path of structures

 
Figure 8 Five–storey frame

 Figure 9 Load–displacement curve for five–storey frame

Table 8 Comparison of number of iterations for example 4

N-R method used in Three–pint method used in decrease
normal flow algorithm normal flow algorithm percentage

69 34 50.72

Latin American Journal of Solids and Structures 9(2012) 425 – 442



H. Saffari et al / An accelerated incremental algorithm to trace the nonlinear equilibrium path of structures 441

6 CONCLUSIONS

This paper provides a simple and accurate high order approach which can be used in complex

structural analysis. A mathematical method which was named three–point method can reduce

the global computational time of nonlinear analysis and number of iterations by near 40–

50% when compared with other more commonly used methods. In the three–point method

using two functions, the acceleration of convergence was increased. Several functions and a

new function were proposed and results were compared with those obtained by deploying the

classic Newton–Raphson method. A computer program was developed to numerically solve a

system of nonlinear equations in an incremental form. The numerical examples represented a

good compromise between reducing the computing time, reducing the number of the iterations

and obtaining results sufficient accuracy.
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