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Novel equivalent function for deadzone nonlinearity: applied
to analytical solution of beam vibration using He’s Parameter
Expanding Method

Abstract

This study intends to introduce the novel and efficient exact

equivalent function (EF) for well-known deadzone nonlinear-

ity. To indicate the effectiveness of this EF, the nonlinear

vibration of cantilever beam in presence of deadzone nonlin-

ear boundary condition is studied. The powerful analytical

method, called He’s Parameter Expanding Method (HPEM)

is used to obtain the exact solution of dynamic behavior of

mentioned system. It is shown that one term in series expan-

sions is sufficient to obtain a highly accurate solution. Com-

parison of the obtained solutions using numerical method

shows the soundness of this analytical EF.
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1 INTRODUCTION

The nonlinear free vibration of beams is of considerable interest to engineers and has been

much studied. From the engineering point of view and to be more accurate, structures such as

bridges, buildings, and space-craft arms should be considered as flexible beams. In some cases

natural responses of these structures are essentially nonlinear and hence are described by non-

linear equations. Otherwise, the application of different numerical techniques is unavoidable.

The sources of nonlinearity of vibration systems are generally considered as due to the

following aspects: (1) the physical nonlinearity, (2) the geometric nonlinearity and, (3) the

nonlinearity of boundary conditions. As it is reported in many research papers, the dead-

zone nonlinearity is an on-differentiable function. This input characteristic is ubiquitous in a

wide range of mechanical and electrical components such as valves, gear vibration, DC servo

motors, and other devices. However, approximation of this nonlinear condition to obtain

analytical solution of behavior of mentioned systems is always the major difficulty of engi-

neer’s computations. Marcio and Leandro [16] used the error function as an approximation

of deadzone-type nonlinearity in deriving analytical models for the Least Mean Square (LMS)

adaptive algorithm. Chengwu and Rajendra [7] used the arctangent function to approximate
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the non-analytical deadzone relationship in preloaded spring in a mechanical oscillator. To an-

alyze the drillstring vibrations in a near vertical hole, Hakimi and Moradi [13] modeled contact

between the drillstring and formation wall by series of springs with deadband gap using DQM.

Recently, considerable attention has been directed towards analytical solutions for nonlinear

equations without small parameters. Many new techniques have been appeared in the liter-

ature such as perturbation techniques [11, 20, 29], variational iteration method [6], iteration

perturbation method [9], He’s Improved Amplitude-Formulation (IAFF)[6], HAM [24], HPM

[8], MHPM [18], Meshless analysis [14], Modified wave approach [2] and Min-Max method

[5] are used to solve nonlinear problems. He’s Parameter expanding method (HPEM) is the

most effective and convenient method to analytically solve of nonlinear differential equations.

HPEM has been shown to effectively, easily and accurately solve large nonlinear problems with

components that converge rapidly to accurate solutions. Tao [28] suggested He’s parameter

expanding method for strongly nonlinear oscillators and propose frequency–amplitude relation-

ship of nonlinear oscillators using He’s Parameter expanding method. Furthermore, during the

past decades, the nonlinear vibrations of Euler-Bernoulli beams have received considerable at-

tention by many researchers [4, 10, 12, 15, 17, 19, 21–23, 25–27, 27, 29, 30]. But, heretofore,

deadzone nonlinearity, as a nonlinear boundary condition, due to its inherent difficulty, hasn’t

been modeled exactly by researchers.

The main objective of this paper was to obtain analytical expressions for geometrically

nonlinear vibration of Euler–Bernoulli beam using HPEM, with deadzone nonlinear boundary

condition, by introducing novel and efficient EF. First the nonlinear partial differential equation

of motion reduced by implementation of Bubnov-Galerkin method, and then mentioned EF

has been used for deadzone nonlinear boundary condition. As we can see, the results presented

in this paper reveal that the method is very effective and convenient for nonlinear oscillators

for which the highly nonlinear boundary condition exists. To validate the EF, it’s shown that

one term in series expansions is sufficient to obtain a highly accurate solution of the problem.

2 EQUATION OF MOTION

Figure 1 shows a clamped-free flexible beam of length L, a cross-sectional area A, the mass

per unit length of the beam m, a moment of inertia I, and a modulus of elasticity E. Linear

spring with constant K is in contact at free end of cantilever beam with a deadzone clearance

δ. Assume that the beam considered here is the Euler–Bernoulli beam. The symbol w denotes

the displacement of a point in the middle plane of the flexible beam in y direction.

The governing equation of motion for the uniform beam shown in Fig. 1 is given by [29]:

m
∂2w

∂t2
+EI

∂4w

∂x4
− EA

2L

∂2w

∂x2 ∫
L

0
(∂w
∂x
)
2

dx = 0 (1)

which is subjected to the following boundary conditions

w (0, t) = ∂w

∂x
(0, t) = 0, ∂2w

∂x2
(L, t) = 0, EI

∂3w

∂x3
(L, t) = Fdz (L, t) (2)
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Figure 1 Cantilever beam with deadzone nonlinear boundary condition.

where Fdz (L, t) is described by the following nonlinear deadzone formula

Fdz (L, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K (w (L, t) − δ) w (L, t) > δ
0 − δ ≤ w (L, t) ≤ δ

K (w (L, t) + δ) w (L, t) < −δ
(3)

Assuming w (x, t) = q (t) φ (x), where φ (x) is the first eigenmode of the clamped-free beam

and can be expressed as:

φ (x) = cosh (λx) − cos (λx) − α (sinh (λx) − sin (λx)) (4a)

and

α = cosh (λL) + cos (λL)
sinh (λL) + sin (λL)

(4b)

where λ = 1.875 is the root of characteristic equation for first eigenmode. Applying the

Bubnov-Galerkin method yields:

L

∫
0

⎛
⎜
⎝
m
∂2w

∂t2
+EI

∂4w

∂x4
− EA

2L

∂2w

∂x2

L

∫
0

(∂w
∂x
)
2

dx
⎞
⎟
⎠
φ (x)dx = 0 (5)

to implement the end nonlinear boundary condition, applying integration by part on equation

(5), it is converted to the following

L

∫
0

⎛
⎜
⎝
m
∂2w

∂t2
− EA

2L

∂2w

∂x2

L

∫
0

(∂w
∂x
)
2

dx
⎞
⎟
⎠
φ (x)dx +

L

∫
0

EI
∂4w

∂x4
φ (x)dx = 0 (6)
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L

∫
0

⎛
⎜
⎝
m
∂2w

∂t2
− EA

2L

∂2w

∂x2

L

∫
0

(∂w
∂x
)
2

dx
⎞
⎟
⎠
φ (x)dx + EI

∂3w

∂x3
φ (x)∣

L

0

L

∫
0

EI
∂3w

∂x3
d (φ (x)) = 0 (7)

and the nonlinear equation of motion can be written as

d2q

dt2
+ β1q (t) + β2 (q (t))3 + Fdz = 0 (8)

where

β1 = 12.362EI/mL4, β2 = −1.994EA/mL4 (9)

To solve nonlinear ordinary equation (8) analytically, the deadzone conditionFdz, must

be formulated, properly. We introduce suitable and novel exact equivalent function for this

nonlinearity as:

Fdz =K/2 (2w (L, t) + ∣w (L, t) − δ∣ − ∣w (L, t) + δ∣) (10)

Figure 2 shows the equivalent function for Fdz with deadzone clearance δ, graphically.

 

Figure 2 Plot of EF deadzone nonlinearity.

Using this new definition of Fdz, equation (9) is written as follows:

d2q

dt2
+ β

′

1q (t) + [β2 (q (t))3 + β3 {∣2q (t) − δ∣ − ∣2q (t) + δ∣}] = 0 (11)

where

β
′

1 = β1 + 4K/mL , β3 =K/mL (12)
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3 SOLUTION PROCEDURE

Consider the equation (11) for the vibration of a cantilever Euler-Bernoulli beam with the

following general initial conditions

q (0) = A , q̇ (0) = 0 (13)

Free oscillation of a system without damping is a periodic motion and can be expressed by

the following base functions

cos (mωt) , m = 1,2,3, ... (14)

We denote the angular frequency of oscillation by ω and note that one of our major tasks

is to determine ω (A),i.e., the functional behavior of ω as a function of the initial amplitude

A. In the HPEM, an artificial perturbation equation is constructed by embedding an artificial

parameter p ∈ [0,1] which is used as an expanding parameter.

According to HPEM the solution of equation (11) is expanded into a series of p in the form

q (t) = q0 (t) + pq1 (t) + p2q2 (t) + ... (15)

The coefficients 1 and β
′

1 in the equation (11) are expanded in a similar way

1 = 1 + pa1 + p2a2 + ...
β
′

1 = ω2 − pb1 − p2b2 + ...
1 = pc1 + p2c2 + ...

(16)

where ai, bi, ci (i = 1, 2, 3, ...)are to be determined. Whenp = 0, equation (11) becomes a

linear differential equation for which an exact solution can be calculated forp = 1. Substituting
equations (15) and (16) into equation (11)

(1 + pa1 + p2a2) (q̈0 (t) + pq̈1 (t) + p2q̈2 (t)) + (ω2 − pb1 − p2b2) (q0 (t) + pq1 (t) + p2q2 (t))
+ (pc1 + p2c2) [β2 (q0 (t) + pq1 (t) + p2q2 (t))

3 + β3fdz
(q0 (t) + pq1 (t) + p2q2 (t))] = 0

(17)

where

fdz (q (t)) = ∣2q (t) − δ∣ − ∣2q (t) + δ∣ (18)

in equation (18) we have taken into account the following expression

fdz (q) = fdz (q0 + pq1 + p2q2 + ...) = ...
... fdz (q0) + pq1f ′dz (q0) + p2 [q2f ′dz (q0) +

1
2
q21f

′′
dz (q0)] +O (p3)

(19)

where

f ′dz (q) =
dfdz
dq
= 2 ∣2q (t) − δ∣

2q (t) − δ
− 2 ∣2q (t) + δ∣

2q (t) + δ
, f ′′dz (q) = f ′′′dz (q) = ... = 0 (20)
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collecting the terms of the same power of p in equation (17), we obtain a series of linear

equations which the first equation is

q̈0 (t) + ω2q0 (t) = 0, q0 (0) = A, q̇0 (0) = 0 (21)

with the solution

q0 (t) = A cos (ωt) , (22)

substitution of this result into the right-hand side of second equation gives

q̈1 (t) + ω2q1 (t) = (b1A − 3
4
c1β2A

3 + 4c1β3A + a1Aω2) cos (ωt)
+ 16

3π
c1β3A cos (2ωt) − 1

4
c1β3A cos (3ωt) , (23)

In the above equation, the possible following Fourier series expansion have been accom-

plished

fdz (q0) = fdz (A cos (ωt)) = ∑∞n=1 hn cos (nωt) = h1 cos (ωt) + h2 cos (2ωt) + ...
f ′dz (q0) = f ′dz (A cos (ωt)) = ∑∞n=1 vn cos (nωt) = v1 cos (ωt) + v2 cos (2ωt) + ...

(24)

where

hn = 2
π ∫

π/2
−π/2 fdz (A cos θ) cos (nθ)dθ,

vn = 2
π ∫

π/2
−π/2 f

′
dz (A cos θ) cos (nθ)dθ,

(25)

and the functions fdz, f
′
dz are substituted from equations (18) and (20). The first terms of the

expansion in equations (25) are given by

h1 = 2
π ∫

π/2
−π/2 fdz (A cos θ) cos (θ)dθ = −4A

v1 = 2
π ∫

π/2
−π/2 f

′
dz (A cos θ) cos (θ)dθ = −16

π

(26)

No secular terms in q1 (t) require eliminating contributions proportional to cos (ωt)on the

right-hand side of equation (23)

b1A −
3

4
c1β2A

3 + 4c1β3A + a1Aω2 = 0 (27)

But equation (16) for one term approximation of series respect to pand for p = 1 yields

a1 = 0, b1 = ω2 − β
′

1, c1 = 1 (28)

From equations (27) and (28) we can easily find that the solution ωis

ω (A) = ±
√

β
′
1 +

3

4
β2A2 − 4β3 (29)

Replacing ω from equation (29) into equation (22) yields:
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q (t) ≈ q0 (t) = A cos
⎛
⎝

√
β
′
1 +

3

4
β2A2 − 4β3 t

⎞
⎠

(30)

To demonstrate the soundness of the obtained analytical results, the authors also calculate

the variation of non-dimensional amplitude A/δ vs. τ = ω t, numerically. As can be seen in

the figures 3a and 3b the first order approximation of q (t) obtained using the HPEM with EF

for deadzone nonlinearity has an excellent agreement with numerical results using fourth-order

Runge–Kutta method.

 

(a) Comparison of the approximate first order peri-
odic solution (continuous line) with the numerical so-
lution (circles) with A/δ = 1.5.

 

(b) Comparison of the approximate first order peri-
odic solution (continuous line) with the numerical so-
lution (circles) with A/δ = 2.

Figure 3

4 CONCLUSION

In this study deadzone discontinuous nonlinearity has been considered as a boundary condition

of a cantilever beam and redefined exactly using the basic continuous functions. Using the novel

and efficient EF for the deadzone nonlinearity, an excellent first-order analytical approximate

solution by HPEMwas obtained which can predict the nonlinear frequency of mentioned system

as a function of amplitude. It was demonstrated that the introduced EF can significantly make

the analytical study of dynamic behavior of the nonlinear problems to be easier. We can see

that the introduced method has special potential to be applied to the other strongly nonlinear

oscillators with deadzone nonlinearity.
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