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Transient wave propagation phenomena at visco-elastic half-
spaces under distributed surface loadings

Abstract

This article analyzes the transient wave propagation phe-

nomena that take place at 2D viscoelastic half-spaces sub-

jected to spatially distributed surface loadings and to dis-

tinct temporal excitations. It starts with a fairly detailed

review of the existing strategies to describe transient anal-

ysis for elastic and viscoelastic continua by means of the

Boundary Element Method (BEM). The review explores the

possibilities and limitations of the existing transient BEM

procedures to describe dynamic analysis of unbounded vis-

coelastic domains. It proceeds to explain the strategy used

by the authors of this article to synthesize numerically fun-

damental solutions or auxiliary states that allow an accurate

analysis of transient wave propagation phenomena at the sur-

face of viscoelastic half-spaces. In particular, segments with

spatially constant and linear stress distributions over a half-

space surface are considered. The solution for the superposi-

tion of constant and discontinuous adjacent elements as well

as linear and continuous stress distributions is addressed.

The influence of the temporal excitation type and duration

on the transient response is investigated. The present study

is based on the numerical solution of stress boundary value

problems of (visco)elastodynamics. In a first stage, the so-

lution is obtained in the frequency domain. A numerical

integration strategy allows the stationary solutions to be de-

termined for very high frequencies. The transient solutions

are obtained, in a second stage, by applying the Fast Fourier

Transform (FFT) algorithm to the previously synthesized

frequency domain solutions. Viscoelastic effects are taken

into account by means of the elastic-viscoelastic correspon-

dence principle. By analyzing the transient solution of the

stress boundary value problems, it is possible to show that

from every surface stress discontinuity three wave fronts are

generated. (continued on next page...)
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(Abstract continued from previous page...)

The displacement velocity of these wave fronts can be associated to compression, shear and Rayleigh waves. It is shown

that the half-space transient displacement solutions present abrupt jumps or oscillations which can be correlated to the

arrival of these wave fronts at the observation point. Such a detailed analysis connecting half-space transient responses to

the wave propagation fronts in viscoelastic half-spaces have not been reported in the reviewed literature.

1 INTRODUCTION

In this introduction the main developments regarding the transient analysis of elastic and

viscoelastic, bounded and unbounded domains by the Boundary Element Method is reviewed.

In spite of the many attempts to develop Finite Element Methodologies (FEM) able to

perform linear dynamic analysis of unbounded elastic domains [10, 11, 25, 49] the study of

such domains requiring the satisfaction of the Sommerfeld radiation condition [61] is, “par ex-

cellence”, the realm of the Boundary Element Method [8, 9, 26]. The most striking advantages

of the BEM concerning the dynamic analysis of unbounded domains is the natural fulfillment

of the Sommerfeld radiation condition and the reduction of the problem dimension by one. To

take full advantage of these properties the BEM must be formulated using an auxiliary state

(a fundamental solution, a Green’s function or similar state) that satisfies simultaneously the

operator under analysis and the Sommerfeld radiation condition. An account of the main

currently available strategies to perform the dynamic analysis of unbounded domains may be

found in Mesquita and Pavanello [48].

The first publication on transient Boundary Element schemes for scalar wave propagation

problems are due to Mansur and Brebbia [35, 36]. For two-dimensional elastic problems, a

time stepping procedure was introduced by Mansur [34] as well as by Mansur and Brebbia

[37]. Three-dimensional transient elastic BE formulation was first presented by Karabalis and

Beskos [29]. In this article the authors used Stokes solution with a Heaviside time impulse

function together with constant spatial and temporal discretizations.

As early as 1985, Antes has also produced a time-stepping algorithm for the 2D elastody-

namic analysis [1]. Antes and his co-workers continued the development of transient analysis

and also produced strategies to coupled BEM-FEM problems [62, 63]. The introduction of a

Dirac’s Delta as a time excitation function in 3-D transient elastic analysis was due to Banerjee

et al. (1986),[2].

From this point on, several variants for the transient analysis were introduced, aiming to

improve accuracy and stability of the time domain procedures. A 3-D non-singular transient

formulation in space and time based on Stokes fundamental solution and presenting a Heaviside

window as a temporal excitation function was given by Coda and Venturini in 1995,[14]. A

smoother polynomial temporal excitation function was introduced by Coda and Venturini in

1996,[15]. A multi-domain strategy for 3D transient problems able to couple bounded and

unbounded domains described, respectively, by the BEM and FEM was presented by Coda,

Venturini and Aliabadi in 1999,[17].

Boundary element analysis of transient viscoelastic and non-linear plastic phenomena was
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reported by Coda and Venturini [16]. They used a static fundamental solution together with

domain integration, performed by means of cells, to include inertia effects as well as non-elastic

phenomena, i.e., viscoelasticity and plasticity. The most evident limitation of this procedure

is that it is limited to bounded domains. It cannot model unbounded domains or fulfill the

Sommerfeld radiation condition.

Rizos and his co-workers followed a different path. Rizos and Karabalis [52] developed a

B-spline fundamental solution for the transient 3D elastic isotropic problem. The numerical

solution of the resulting BIE was based on higher order temporal and spatial discretizations.

Using the B-Spline fundamental solution, or auxiliary state, Rizos and his co-workers developed

strategies to coupled the BEM with the FEM or with rigid bodies to allow for transient

analysis of 3D elastic bonded and unbounded domains[50, 51, 53, 54]. Carrer and Mansur,[12]

determined stresses and velocities in 2D transient dynamic analysis.

All previously described transient formulations are time stepping algorithms. Within each

new time step a new system matrix is generated and must be stored. For analysis consisting

of large time periods with many time steps these procedures demand high storage capacities.

The previous paragraphs described significant moments regarding the development of tran-

sient boundary element methodologies mainly for an ideally elastic media. Next the research

efforts to include viscoelastic phenomena into the transient BEM analysis is addressed. It is

well known that many materials exhibit viscoelastic properties which play an important role in

the continuum dynamic response. The soil [27, 33], concrete [60] and polymers [28] are typical

examples of these materials.

To perform a transient viscoelastic analysis by the boundary element method, in which

only the boundary of the domain would need to be discretized and in which the Sommerfeld

radiation condition would be satisfied, a viscoelastic transient fundamental solution or equiv-

alent auxiliary state would be necessary. Unfortunately, there are many viscoelastic material

models and the continuum also presents a large spectrum of viscoelastic properties[20]. So it

is not possible to synthesize “the one transient viscoelastic fundamental solution”. For every

viscoelastic model, or for every measured set of viscoelastic parameters, a new fundamental

solution would be necessary. This complexity of models and material behavior is what makes

the solution of transient viscoelastic problems by the BEM a challenging problem.

Although there is no “single fundamental solution” for transient viscoelastic analysis, re-

searchers have spent a lot of effort to develop strategies to face this challenge. There are

two main approaches to model linear viscoelastic phenomena. The first approach is to use

differential operators to describe the viscoelastic behavior [13, 20]. In this case the viscoelas-

tic model is usually given in the frequency domain. The second approach is to make use of

the so-called relaxation functions [13, 20]. The relaxation functions are viscoelastic properties

given in the time domain. A connection between the description by differential relations and

by the relaxation functions can be established [33].

One classical approach to solve transient problems is to use the Laplace transform. The

time domain equations are transformed into the frequency domain. In this transformed do-

main, the elastic-viscoelastic correspondence principle [13] may be used to exchange the elastic
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constitutive parameters by its viscoelastic counterparts. The inverse Laplace transform, back

to the original time domain, will yield the transient solution of the viscoelastic problem. This

has been used by many authors to yield transient solutions, see for instance [64]. There are at

least two limitations in this approach that must be mentioned. The first one is the difficulty to

include time varying boundary conditions in the analysis[38]. The second is that the numerical

algorithms available to perform the inverse Laplace domain are not able to furnish very small

time steps and sometimes fail to give a very detailed description of the transient phenomena.

In 1992, Gaul, Schanz and Fiedler reported an article in which the transient viscoelastic

analysis was performed by the Laplace transform method and by the use of elastic-viscoelastic

correspondence principle,[23]. The modeling capabilities of the differential operator approach

was enhanced by including fractional order derivatives in the model. This allowed a better

matching of the viscoelastic properties with smaller number of parameters. They reported a

time domain viscoelastic fundamental solution for the Maxwell model[23]. This is an important

result, but it is well known that the Maxwell model is not appropriate to model solids [20].

Another alternative was proposed by Gaul and Schanz in 1997[22]. The analysis employed

the elastic-viscoelastic correspondence principle with fractional differentiation to describe the

constitutive equations. But the implementation of the viscoelasticity was provided within each

time step, in the Laplace domain. The results for distinct inverse algorithms, including Talbot

and Durbin and Crump, were presented.

A new approach to describe transient problems by the BEM was introduced by Schanz and

Antes. They developed the Operational Quatrature Method proposed by Lubich[31, 32] to be

incorporated into the realm of the BEM for transient analysis. They named their approach

Convolution Quadrature Method (CQM). The first work was concerned with the transient re-

sponse of elastic problems [57]. At the same year the work was extended to include viscoelastic

effects[58]. This very promising strategy does not require a time domain fundamental solution

and avoids very sensitive fundamental solutions, which may yield not very stable results. This

approach has been extended to distinct class of problems such as poroelasticity[56]. Later,

Schanz applied successfully the CQM to quasi-static viscoelastic problems [59].

A different research line was pursued by Coda and his co-workers. Using constitutive differ-

ential equations for viscoelastic models Coda and his co-workers presented a quasi-stationary

formulation based on cell discretization for the Kelvin[43] and for the Boltzmann[42] viscoelas-

tic models. This formulation leads to a matrix differential equation, the solution of which

does not require the storage of a new system matrix at every time step. It also allowed the

inclusion of time varying boundary conditions. But since domain discretization through cells

was required, no unbounded domains could be modeled.

In a later work they improved their formulation to eliminate the domain integrals, result-

ing in a quasi-static viscoelastic formulation for Kelvin and Boltzmann models. The two-

dimensional case was treated in[41] and the 3-D case was discussed in the paper of 2003[42].

Through the use of differential viscoelastic relations they did avoid the use of relaxation func-

tions and the convolutional solution procedure. This improved procedure made possible the

analysis of unbounded domains. Here the resulting matrix differential equation could be solved
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by a time marching scheme without the need to store system matrices at every time step. They

also presented a new Finite Element formulation for viscoelasticity [39, 40] and a coupling pro-

cedure for BEM-FEM [41].

The works by Coda and his co-workers have many advantages, as has already been men-

tioned. The main disadvantages are related to the quasi-static character of the problems that

can be handled, when analyzing unbounded domains. That means no inertia terms can be

considered, hence no wave propagation problems may be described. The other aspect to be

commented is that for every viscoelastic model a new formulation must be written. The au-

thors show the steps to be followed for other viscoelastic models, but the work must still be

done.

During the last 20 years the Brazilian research group, to which most of the authors of

this article belong, have been involved in the development of Green’s functions and auxiliary

distributed load solutions for full-spaces, half-spaces, and layered media. Initially frequency

domain solutions for 2-D and 3-D viscoelastic half-spaces were developed [44]. A solution for

a layer on rigid bottom or over a half-space was developed by Romanini[55]. Green’s functions

for horizontally multi-layered 3D soil profiles were presented by Barros,[7]. Green’s functions

for transverse isotropic full-spaces and half were synthesized by Barros and Mesquita,[5].

The synthesized solutions were concentrated load solutions, known as Green’s functions,

and non-singular load solutions [4] as well as singular-ended distributed load solutions,[5].

These frequency domain non-singular solutions were incorporated in a direct version of the

BEM [6] as well as in indirect BE formulations [3].

The common mathematical basis for the previously mentioned synthesized frequency do-

main solutions was the Fourier integral transform. Viscoelastic effects were taken into account

by the elastic-viscoelastic principle, which for the stationary, frequency domain, case is rather

straight forward. Efficient numerical Fourier inversion strategies were developed leading to

frequency domain solutions which can be accurately obtained at very large distances or at

very high frequencies [30],[18].

The main features of this semi-numerical Fourier integral approach can be listed. First, the

numerically synthesized transient Green’s Functions or auxiliary states were originally obtained

in the Frequency Domain, so any linear viscoelastic model, which has a frequency domain

representation, may be included in the analysis. This includes experimentally determined

viscoelastic constitutive parameters.

Second, the synthesized transient solutions are dynamical, that means that all inertia effects

are already included in the solution. This type of solution may be incorporated in a boundary

integral scheme which does not require domains discretizations and neither cell integrations.

The resulting transient BE scheme is a convolutional scheme in which time varying boundary

conditions may be incorporated without any difficulty.

Third, the reported methodology is able to determine a viscoelastic isotropic and anisotropic

transient solutions, which could not be obtained by the other reviewed strategies. The larger

limitation of this approach is that the synthesis of frequency domain solutions may be compu-

tationally expensive. But the solutions may well be determined using distributed computation
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on a cluster of machines or on combined CPU-GPU systems [18, 19]. The synthesized 2D

solutions were successfully used to determine short time and long time response of layered

unbounded viscoelastic media[46].

Based on the previous developments, the idea of the present article is to show that the

viscoelastic frequency domain solutions numerically synthesized by the authors can describe

transient phenomena at very small time-steps and can accurately depict the wave propagation

phenomena, including sharp wave fronts. The viscoelastic transient response obtained can be

correlated to the arrival of the distinct wave front existing at the transient half-space response.

For the best of the authors’ knowledge such a detailed recovery of the wave propagation

phenomena was not reported in the reviewed literature.

The analysis performed in this article is based on the transient solution of two stress

boundary value problems of visco-elastodynamics. Spatially distributed constant and linear

traction loads at the half-space surface are considered. The spatially distributed loads may

by applied as a Dirac delta temporal loading or through Heaviside type time windows with

various durations.

The stress boundary value problems are solved in the frequency domain with the aid of

the Fourier integral transform. A numerical integration strategy is developed, which allows

half-space Frequency Response Functions (FRFs) to be synthesized for very high frequencies.

The application of the FFT algorithm on these high frequency solutions will yield time

domain solutions with very small time steps. These numerical solutions are capable of recover-

ing, in great detail, the wave propagation phenomena that take place at the half-space surface

and at its vicinity.

It will be shown that the transient response depends strongly on the number of load ele-

ments applied at the half-space surface as well as on the type of temporal excitation. Dirac

delta excitation type will result in displacement oscillations every time a wave front, generated

by a stress discontinuity, impinges the observation point. These phenomena occur for both

constant and discontinuous but also for linear and continuous load elements. The number

of jumps or oscillations at the observation point is related to the number of surface stress

discontinuities.

In particular the article shows that for half-spaces excited by spatially constant stress

distributions applied at time intervals of finite duration, the transient response will depend

largely on the loading duration. If the loading time span is smaller than the time required

for all wave fronts to overcome the distance between the observation point and the farthest

surface stress discontinuity, then the transient response will still present some oscillations. A

smoother transient behavior is obtained for loads applied at time windows of larger durations.

The relative importance of spatial discretization and temporal excitation on the transient

response will be discussed in detail.
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2 STATEMENT OF THE PROBLEM

2.1 Equations of motion for the viscoelastic continuum

The equations of motion governing the transient behavior of a 2D plane strain homogeneous,

isotropic and viscoelastic continuum expressed in terms of the displacement components ui(t)
(i=x,z ) are given by[13]:

t

∫
−∞

µ (t − τ)
∂ui,jj (τ)

∂τ
dτ +

t

∫
−∞

[λ (t − τ) + µ (t − τ)]
∂uk,ki (τ)

∂τ
dτ + bi − ρ

∂2ui

∂t2
= 0 (1)

In equation (1), the relaxation functions for the isotropic continuum are given by µ(t)

and λ(t), whereas the continuum density is ρ and bi represents the body forces acting in

the domain. Neglecting the body forces, bi=0, and assuming a harmonic time dependence

ui (x, t) = ūi (x) eiωt, the frequency domain counterpart of equation (1) can be written as[13]:

µ∗ (ω)ui,jj + [λ∗ (ω) + µ∗ (ω)]uk,ki + ρω2ui = 0 (2)

In equation (2), the variable ω is the circular frequency, λ∗ (ω) and µ∗ (ω) are the com-

plex and frequency dependent Lamé constants containing the linear viscoelastic model of the

continuum. For linear viscoelastic models the complex Lamé contants may be expressed as:

λ∗ (ω) = λ∗S (ω) + iλ∗L (ω) = λ∗S (ω) [1 + iηλ(ω)] (3)

and

µ∗ (ω) = µ∗S (ω) + iµ∗L (ω) = µ∗S (ω) [1 + iηµ(ω)] (4)

The storage and loss moduli of the continuum, defined in equations (3) and (4), are,

respectively, λ∗S (ω), µ∗S (ω)and λ∗L (ω), µ∗L (ω). The damping factors ηλ (ω)and ηµ (ω) shown
in equations (3) and (4) are defined as:

ηλ(ω) =
λ∗L (ω)
λ∗S (ω)

; ηµ(ω) =
µ∗L (ω)
µ∗S (ω)

(5)

2.2 Boundary conditions

In this article, two sets of boundary conditions will be used to synthesize the necessary auxiliary

solutions. Both auxiliary problems are stress boundary value problems in which vertical,

spatially constant and a spatially linear traction distributions are prescribed at a half-space

surface. The surface stress boundary conditions are show in figure 1.

The mathematical formulation for the linear traction distribution of width 2a applied at

the half-space surface ΓS is:
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Figure 1 Stress boundary conditions at the half-space surface

tz(x, z = 0) = {
( tz1+tz2

2
) + (−tz1+tz2

2a
)x if ∣x∣ ≤ a

0 if ∣x∣ > a (6)

In equation (6), tz1 and tz2 represent the vertical tractions amplitude, respectively, at

points x1 and x2. The constant distribution is included with tz1 = tz2.

3 DISPLACEMENT SOLUTION IN THE FREQUENCY DOMAIN

The described stress boundary value problems have been solved in the frequency domain with

the aid of the Fourier integral transform. The final solution step involves a numerical evaluation

of the inverse Fourier transform with respect to the pair (x,β), in which x represents the space

and β the wave number domain variables. For the case of the vertical displacement component

uzz(x, z, ω), originated due to a vertical surface traction distribution tzi(x, z = 0, ω) (i = 1,2),
the solution is given by the following expression [4]

uzz(x, z = 0, ω) = 1
π

+∞
∫
−∞

Hzz (β,ω)×

[( tz1+tz2
2
) sin(βa)

β
+ i (−tz1+tz2

2
) (βa cos(βa)−sin(βa)

β2a
)] exp(iβx)dβ

(7)

A detailed expression for the kernel Hzz (β,ω) of equation (7) can be found in Appendix 1.

An important part of this research is the development of an integration strategy for equation

(7) based on the Longman [30] algorithm for improper integration combined with an adaptive

quadrature scheme [21]. The strategy is able to perform accurate integrations of equations

with structures resembling that of (7) for very high values of the circular frequency ω. This

integration strategy may be dramatically accelerated by the use of graphics hardware [18].

A typical stationary displacement solution uzz is shown in figures 2 and 3. For these

solutions, the half-space was loaded with a spatially constant stress distribution tz1 = tz2 =
1 [N]. The solution was determined at the central point of the loading surface with coordinates

x = z = 0.0 The other parameters are: load half-width a = 1 [m], density ρ = 1 [kg/m3],

Poisson ratio ν = 0.33 and the Lamé constant µ∗S (ω) = µ = 1 [N/m2]. The case of constant
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hysteretic viscoelastic model with damping factor ηµ = ηλ = 0.01 was considered. The real

and imaginary parts of the displacement solution are expressed as function of dimensionless

frequency parameter A0 = ω a/cS in which cS = (µ/ρ)1/2 is the shear wave velocity of the elastic

continuum.

Figure 2a shows the real part of the displacement solution uzz for low values of the dimen-

sionless frequency A0. Figure 2b depicts the same solution for very high frequency values. The

low frequency behavior of the imaginary part of uzz can be seen in figure 3a. Figure 3b shows

the high frequency content of the same imaginary part in log scale. The low frequency content

of these solutions have already been validated in [4]. Figures 2 and 3 demonstrate the capa-

bility of the developed integration strategy to determine the half-space solutions at very high

frequencies. It should also be noted that for most stationary civil engineering applications the

analysis is limited to low frequencies, A0<10 [24]. The high frequency results are determined

to ensure transient responses with very short time steps by the FFT algorithm[45, 47].

 
Figure 2 Real part of the stationary displacement solution uzz- a) low frequency behavior, - b) high frequency

behavior

 
Figure 3 Imaginary part of the stationary displacement solution uzz - a) low frequency behavior, - b) high

frequency behavior
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3.1 Superposition of linear elements in the frequency domain

The stationary displacement at point xi, uzzi(ω) = uzz(xi, ω), due to a series of n linear ele-

ments acting simultaneously at the half-space surface, as shown in figure 4, can be determined

by superposition of the solution given in equation (7)

uzz(xi, z, ω) = I
1

zz(xi − x01, z, ω) tz1+
n−2
∑
j=1
[I 2

zz(xi − x0j , z, ω) + I
1

zz(xi − x0j+1, z, ω)] tzj+1+

I
2

zz(xi − x0n−1, z, ω) tzn

(8)

In expression (8), tzi (i = 1, n) are the traction amplitudes the load points with coordinates

xi (i = 1, n). The coordinate of the center of the i-th loading element is given by x0i =
(xi +xi+1)/2. The coefficients I

k

zz(x−x0i, z, ω)with (k = 1,2) and (i = 1, n−1) can be regarded

as influence functions that are to be determined numerically from equation (7).

 

Figure 4 Scheme for the superposition of linear solutions

4 TRANSIENT SOLUTIONS

The transient solutions are obtained by applying the Fast Fourier Transform (FFT) algorithm

with respect to the pair (ω, t) or (A0, t) to the previously synthesized frequency domain so-

lutions. Prior to being submitted to the FFT algorithm, the signal of the stationary solution

uzz(ω) must undergo a processing as described in [45]. The signal processing involves the de-

termination of a cut-off frequency, the construction of a smooth transition to vanishing values

above the cut-off frequency, the addition of zeros at the high end of the spectrum as well as

the elimination of the rigid body component present in the 2D half-space solution.

If the applied external traction excitation remains with constant unit amplitude for all

circular frequencies, tzj(ω) = 1, then the stationary solution measured at point xi due to an

excitation applied at point xj is the frequency response function (FRF) of the continuum for

this stress boundary value problem, uzz(xi, xj , tzj = 1, ω) = Hzz(xi, xj , ω). It corresponds to
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the spectrum of the transient continuum response due to a temporal Dirac delta excitation of

unit amplitude. In order to obtain transient solutions for a general temporal excitation fz(t), it
is first necessary to obtain the spectrum or the Fourier transform of the forcing function, F z(ω).
The product of the frequency response function Hzz(ω) with the excitation spectrum F z(ω)
will provide the frequency displacement solution to the general transient loading, uzz(ω) =
Hzz(ω)F z(ω). Finally, the application of the FFT algorithm to the frequency domain signal

uzz(ω) will lead to the transient solution uzz(t). It will be shown that this procedure results

in accurate solutions which are able to capture all the essential features of the underlying

transient wave propagation phenomena.

One important issue of the Discrete Fourier Transform (DFT) algorithm is the relation

∆A0 = 2π/Tmax between the frequency step ∆A0 = A0k+1 − A0k (k = 0, nmax) and the max-

imum time reachable by the transient process, Tmax. Equally important is the relation

∆t = 2π/A0max, connecting the time step ∆t and the maximum sampling frequency A0max.

This implies that to reproduce transient phenomena with very small time steps ∆t the maxi-

mum sampling frequency A0max must be correspondently high.

In this section, the transient solution of several stress boundary value problems (SBVP)

will be investigated. The temporal excitations to be considered are the Dirac delta and time

windows of various finite durations. The spatial traction distributions at the half-space surface

are the constant element, the linear element as well as superposition of constant and linear

elements.

With the values of the parameters a = 1 [m], µ∗S (ω) = µ = 1 [N/mm
2], ν = 0.33 and

ρ = 1 [kg/m3] the velocity of the compression (cP ), shear (cS) and Rayleigh (cR) waves of the

elastic continuum are, respectively: cP = 2 [m/s], cS = 1 [m/s] and cR ≈ 0.932 [m/s].
Considering a temporal discretization with time step ∆t, the numerical realization of the

Dirac delta δN (t) applied to the time instant t=ta is implemented according to the following

simplifying rule:

δN (t, ta) = {
1
∆t

if ∣t − ta∣ ≤∆t/2
0 if ∣t − ta∣ >∆t/2 (9)

4.1 Transient response to a Dirac Delta. Constant element

The frequency domain solutions shown in figures 2 and 3 were submitted to the signal process-

ing treatment described above and to the FFT algorithm. Initially, a Dirac temporal loading

applied at ta = 0 [s] is considered. Figure 5 shows the long term transient vertical displacement

response uzz(t) for the point with coordinates x = z = 0. After an abrupt initial displacement,

the solution decreases monotonically towards the zero value of the initial undisturbed solution.

Although this solution is consistent with the expected behavior, in the initial time instants

there are complex phenomena taking place which deserve a more detailed analysis.

Figure 6 shows in detail the initial time instants of the solution due to a constant spatial

loading. It corresponds to the initial time steps of the solution depicted in figure 5. It can

be seen that, at the very initial time steps, there is a massive displacement which takes place

Latin American Journal of Solids and Structures 9(2012) 453 – 473



464 E. Mesquita et al / Transient wave propagation phenomena at visco-elastic half-spaces under distributed surface loadings

 

Figure 5 Long term transient response uzz(x = z = 0, t) - spatial constant load, temporal Dirac delta excitation

with the largest velocity of the continuum, cP . After a very short time t < 0.1 [s], the solution
reaches a plateau and is kept constant up to the time t ≈ 0.5 [s]. This is precisely the time

required by the compression wave to cover the distance from the loading edges x = ∣a∣ to the

center point x = 0, tP (a) = 0.5 [s]. Then the solution reaches and stays at a new plateau

until other disturbances arrive. These new disturbances are, respectively, the shear cS and the

Rayleigh cR wave fronts also originated at the traction discontinuous loading edges, x = ∣a∣.
The arrival times of these wave fronts, respectively, tS(a) = 1.0 [s]and tR(a) ≈ 1.07 [s], are
marked in figure 6. It can be seen that the maximum displacement takes place when the

Rayleigh waves, stemming from the traction discontinuities at the edges x = ∣a∣, arrive and are

superposed at the observation point x = z = 0. After the passage of the Rayleigh waves the

solution decays monotonically.

 

Figure 6 Short term displacement response uzz(x = z = 0, t)and arrival of wave fronts
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4.2 Transient response to a Dirac delta. Superposition of constant elements

To substantiate this analysis, two more numerical investigations are conducted. The first is

the superposition of three constant elements of equal traction amplitude, tz1=tz2=tz3=tz4=1

[N]. For this example, the element half-width is a = 1/3 [m]. This case is depicted in figure

7. The coordinates of the element edges are given by xi (i = 1,4). The central point of the

elements are designated by x0j (j = 1,3).

 
Figure 7 Superposition of 3 constant elements of equal traction amplitude

The traction discontinuities are located at the points x = x1 and x = x4. At these points

the wave fronts are generated. Figure 8 shows the transient response measured at the origin of

the coordinate system x = x02. The wave fronts, starting at the edges x = x1 and x = x4, have

to travel the distance ∣x1 − x02∣ = ∣x4 − x02∣ = 3a to reach the observation point x = x02. The

time required for the distinct waves (P,S,R) to propagate the distances 3a are tP (3a) = 0.5 [s],
tS(3a) = 1.0 [s], and tR(3a) = 1.07 [s], respectively. These time instants are marked in figure 8.

The solution pattern of the former example is again recognizable, see fig.6. After the initial

displacement with velocity cP , the solution stays in a constant plateau until the remaining two

wave fronts (S,R) impinge the observation point.

Figure 9 shows the transient response at point x01, which has two distinct distances from

the loading edges: ∣x1 − x01∣ = a and ∣x4 − x01∣ = 5a. The time required for the waves (P,S,R)

to propagate the distances a and 5a are tP (a) = 0.167 [s], tS(a) = 0.333 [s], tR(a) = 0.358 [s],
tP (3a) = 0.83 [s], tS(3a) = 1.67 [s] and tR(3a) = 1.79 [s], respectively. These time instants are

again marked in figure 9. In this picture the maxima displacements stemming from the passage

of the two Rayleigh wave fronts at the observation point x01 are clearly recognizable.

Next, the response to a spatial linear loading, as shown in figure 10, is analyzed. For this

case the largest load intensity, at point x4, has the amplitude tz4 = 1[N]. For this boundary

condition, the only stress discontinuity is at point x = x4. Accordingly, only from this point

the wave fronts should be generated. Figure 11 depicts the transient response uzz(x1, t) at
point x = x1. The distance from the load discontinuity to the observation point is ∣x1 − x4∣ =
6a = 2m. The time required for the different wave fronts to overcome this distance is tP (6a) =
1.0 [s], tS(6a) = 2.0 [s], and tR(6a) = 2.15 [s], respectively. These time instants are indicated
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Figure 8 Half-space transient response at point x02 due to 3 equal constant loads. Dirac delta excitation

 

Figure 9 Half-space transient response at point x01 due 3 equal constant loads. Dirac delta excitation

in figure 11. As expected, the only wave fronts noticeable in the transient response are those

corresponding to the time required by the waves to travel the distance ∣x1 − x4∣ = 6a. In this

solution the passing of the Rayleigh wave front is again vividly observed.

The results, presented so far, point out that the procedure developed to obtain the transient

displacement solution of half-space problems subjected to stress loadings is very accurate,

produces very small time steps, and allows to recover the complex wave propagation phenomena

generated by a temporal Delta loading. Furthermore, it also permits to show that under a

distributed spatial traction and a temporal Dirac delta loading, the maximum displacement

amplitude at any surface point is generated by the passing of the Rayleigh waves. The arrival

of the Rayleigh waves at a given observation point causes a sudden and large increase in the

displacement amplitude.
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Figure 10 Three linear loading elements at the half-space surface

 

Figure 11 Transient response uzz(x1, t) due to a superposition of continuous linear loadings

4.3 Transient response to a time loading of finite duration. Spatially constant stress
distribution

In this section, the transient half-space displacement response due to a time window of fi-

nite duration is analyzed. The surface stress boundary conditions have the following time

dependency:

f(t) =H(t − ti) −H(t − tf) (10)

In equation (10), H(t) represents the Heaviside or unit step function. The time window is

characterized by its duration, ∆tw = tf − ti, where the initial and final window times are given

by ti and tf , respectively.

A single element of width 2a = 2 [m] and constant spatial surface stress distribution

tz1 = tz2 = 1 [N] is subjected to temporal excitations of finite duration. Figure 12 shows

the transient displacement response for the point at the loading center, uzz(x = z = 0, t), for
time window of distinct durations: ∆tw1 = 0.464 [s], ∆tw2 = 0.928 [s], ∆tw3 = 1.392 [s] and
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∆tw4 = 2,321 [s]. For these cases the initial time is ti = 0 [s]. The response due to a Dirac delta

time excitation is also shown. Due to the fact that larger time excitation durations introduce

larger momentum in the half-space and, consequently, produce larger response amplitudes,

the results shown in figure 12 are normalized by the maximum amplitude of each response,

uzz(t,∆tw)/uzzmax(∆tw).
Figure 12 shows that the temporal windows of finite duration produce displacement pat-

terns which are very different from those of the temporal Dirac delta excitation. During the

time that the excitation is applied, ti < t < tf , a massive displacement takes place with the

largest velocity of the medium, cP . This massive displacement overrides the displacement

fluctuations originally caused by the arrival of the wave fronts generated at the stress discon-

tinuities. There are still some small fluctuations that can be associated to the arrival of the

wave fronts, but the strong amplitude peaks stemming from the passage of the Rayleigh wave

are no longer present.

In analyzing figure 12 is important to notice that if the time window is smaller then the

time required for a given wave front to arrive at the observation point, this and the subsequent

wave fronts cause some abrupt changes or oscillations in the transient response. On the other

hand, if the time window duration ∆tw is larger than the time required for the last wave front

to impinge the observation station, the solution is smoothed by the integrated displacement

response stemming from the Heaviside type excitation.

 

Figure 12 Transient response uzz(t,∆tw) due to distinct windows excitations with distinct durations ∆tw.

5 CONCLUDING REMARKS

In the present work a review of existing strategies to solve transient elastic and viscoelastic

problems for bounded and unbounded domains with the Boundary Element Method is given.

Furthermore, transient stress boundary value problems of (visco)elastodynamics have been

numerically solved. Spatially constant and linear vertical stress distributions applied at the

surface of an isotropic 2D half-plane have been considered. Initially the problem is solved in the
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frequency domain. Accurate Frequency Response Functions (FRFs) for the stress boundary

value problem are synthesized for very large frequencies. These FRFs are used in conjunction

with the Fast Fourier Transform (FFT) algorithm to yield transient half-space displacement

solutions to temporal excitations ranging from a Dirac delta to time windows of various finite

durations. The presented procedure is able to depict, accurately, the complex wave propagation

phenomena that take place in the transient half-space solution.

Considering a temporal Dirac delta excitation, it is shown that 3 wave fronts are gener-

ated at those surface points where stress discontinuities are present. These wave fronts can

be associated to compression, shear and surface Rayleigh waves. By solving and analyzing

spatially constant and linear surface stress distributions and also a superposition of these load-

ings, it has been possible to correlate the transient displacements at any observation point on

the half-space surface with the arrival of the mentioned wave fronts. The half-space displace-

ment solution due to a temporal Dirac delta excitation presents various oscillations. These

oscillations can be correlated to the arrival of the wave fronts at the considered observation

point. The amplitude and the time instants of the oscillations depend on the half-space surface

discretization scheme. For both constant and linear elements the larger oscillations will occur

when the Rayleigh wave fronts impinge the observation point.

When constant temporal forces are applied within time windows of finite durations, the

resulting displacement pattern is completely different from the responses due to a Dirac time

loading. If the time window is smaller then the time required for any wave front to arrive at

the observation point, this and the subsequent wave fronts cause oscillations in the transient

response. If the time window duration is larger than the time required for the last wave front

to impinge the observation station the solution is smoothed by the integrated displacement

response stemming from the finite duration time window.

The accuracy of the transient solution strategy obtained in the very simple superposition

schemes do suggest that these numerically synthesized solutions may be used in more general

problems within the context of the Boundary Element Method.
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através de equações integrais de contorno. (Synthesis of Green and influence functions to analyse dynamic soil
structure interaction by boundary integral equations). PhD thesis, University of Campinas, Unicamp (in Portuguese),
1995.

[56] M. Schanz. Wave Propagation in Viscoelastic and Poroelastic Continua - A Boundary Element Approach. Springer
Verlag, Berlin, 2001.

[57] M. Schanz and H. Antes. Application of ’operational quadrature methods’ in time domain boundary element methods.
Meccanica, 32:179–186, 1997.

[58] M. Schanz and H. Antes. A new visco- and elastodynamic time domain boundary element formulation. Computational
Mechanics, 20:452–459, 1997.
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APPENDIX: EXPRESSION FOR THE KERNEL HZZ (β)

Considering the wave number β relating the circular frequency ω and the continuum wave

velocity c, β= ω/c, the integration kernel Hzz (β) of equation (7) is given by:

Hzz (β) =
αL (β2 − α2

S)

µ∗ [(2β2 − k∗2S )
2 − 4β2αLαS]

(11)

with

αL = (β2 − ω2

c∗2L
)

1
2

(12)

αS = (β2 − ω2

c∗2S
)

1
2

(13)

And

c∗2L =
λ∗(ω) − 2µ∗(ω)

ρ
(14)

c∗2S =
µ∗(ω)

ρ
(15)
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