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Far-field dynamic behavior of a half-space under an inertial strip
foundation subjected to a time-harmonic force

Abstract

Recent research works demonstrated that the interaction be-

tween the loads and the carrying structure’s boundary which

is related to the inertia of the load is an influential factor on

the dynamic response of the structure. Although effects of

the inertia in moving loads were considered in many works,

very few papers can be found on the inertial effects of the

stationary loads on structures. In this paper, an elastody-

namic formulation was employed to investigate the dynamic

response of a homogeneous isotropic elastic half-space under

an inertial strip foundation subjected to a time-harmonic

force. Fourier integral transformation was used to solve the

system of Poisson-type partial differential equation consider-

ing the boundary conditions and the inertial effects. Steep-

est descent method was employed to obtain the approximate

far-field displacements and stresses. A numerical example is

presented to illustrate the methodology and typical results.
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1 INTRODUCTION

Understanding the dynamic response of half-space subjected to different surface loads is of

considerable practical interest for scientists and engineers. Dynamic response of a half-space

subjected to concentrated loads at the surface or inside the half-space which was investigated

by Horace Lamb [20] is the first well-known work in this field. The use of complex contour

integration in this work yielded the wave motions generated at the surface of the elastic half-

space. Following study in this area is the work of Miller and Pursey [1], in which Lamb’s

method was changed to provide definite integral representations of the field at an arbitrary

point in an isotropic half-space due to the surface tractions. Asymptotic expansions were

obtained and the results for the displacement components were achieved by polar diagrams.

Finally the radiation impedances were acquired by numerical procedures for a number of cases.
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Due to the practical importance of the research in this area, a great number of research

works have been accomplished on the response of half-space subjected to different types of

loads. Guangyu and Kaixin [21] studied a two-dimensional Lamb’s problem subjected to an

impact loading prescribed on a finite strip area of the surface. An exact algebraic solution

was obtained by employing the integral transformation method and utilizing an inversion

technique. The results were used to study the excitation and propagation processes of stress

waves, including the longitudinal wave, the transverse wave and Rayleigh-wave.

Dynamic stresses of a half-space subjected to a moving wheel-type load prescribed on a

finite patch were investigated by Dehestani et al [9]. In their paper, influences of the different

types of load transfer mechanisms from the moving object to half-space have been studied.

The main theoretical aspects of analysis of moving loads in a local coordinate frame were

studied in a paper by Andersen et al [4]. They discussed the steps in the finite-element and

boundary element method formulations. Also, the problems in describing material dissipation

in the moving frame of reference were addressed. Finally, a methodology for the coupling of

a local finite element model with a boundary-element model of an exterior, or open, domain

was illustrated.

For moving loads on simple structures, the inertial influences of the loads have been investi-

gated in many papers e.g. [7, 8, 10, 26]. Moving loads with inertial effects are known as moving

masses in this area. Final results in these papers revealed that the influence of the inertia of

the moving object in some cases can affect the dynamic response of the structure significantly.

Dynamic responses of structures under moving loads were addressed in a comprehensive book

by Fryba [13] in which the problem was considered in vast applicable conditions.

Although there are several works on moving inertial loads (masses) on structures, very few

studies were reported on stationary inertial foundation subjected to dynamic load. Rades [23]

introduced a Kerr-type inertial foundation model in order to obtain the approximate dynamic

response of a particular kind of vibration isolator. The analytical model was established upon

the simplest 2D problem regarding the steady-state motion of an elastically supported rigid

beam, considering permanent contact and a distributed mass of the shear layer.

Hryniewicz [17] investigated the vertical, horizontal and rocking vibrations of a rigid strip

foundation on the surface of an elastic half-space and evaluated the numerical results for the

steady-state response of the rigid strip foundation over wide ranges of the parameters without

making a priori assumption concerning the contact stresses.

Harmonic analysis of short and tall structures supported on a soil layer was carried out

by Balendra & Heidebrecht [6] and the influences regarding the soil-structure interaction were

clarified. Final results revealed that the soil-structure interaction reduces the natural frequen-

cies of the structure with respect to those for the fixed base condition. The maximum base

shear and maximum tip displacement of frame, wall and shear wall-frame systems were de-

creased. The depth of foundation influences the short structures more than the tall structures.

Also, it is reported that the soil-structure interaction effect is more significant for short and

squatty structures than for tall and slender structures.

The dynamic response of rigid square foundations embedded in a viscoelastic half-space was

Latin American Journal of Solids and Structures 10(2013) 453 – 471



M. Dehestani et al / Far-field dynamic behavior of a half-space under an inertial strip foundation 455

investigated by Mita and Luco [3]. They have used a hybrid approach to describe the general-

ized force-displacement relationship for the foundation as well as the response of the foundation

to plane waves with different angles of incidence. They have also validated the results by com-

parison with the corresponding results for cylindrical foundations with an equivalent circular

base.

Direct BEM in the frequency domain in conjunction with quadratic quadrilateral elements

and the half-space surface Green’s function were used in a study by Qian and Beskos [24] to

investigate the interaction between two square, rigid, massless or massive surface foundations

subjected to obliquely incident harmonic waves. Final results were shown in the form of

response amplitudes and frequency for various values of the mass ratios, the separation distance

and the vertical and horizontal incident wave angles.

A transient Green function for half-space response to suddenly applied line loads was devel-

oped by Guan et al [15]. It can be used in transient elastodynamic problems without modeling

of the free surface. Also, the aforementioned Green’s function can also be implemented to

construct transient boundary elements for problems in elastodynamics involving a half-space.

Wang et al [27] investigated the bending problem of a transversely loaded rectangular

thick raft with free edges, resting on an elastic half-space by employing the Ritz method. Ap-

proximating the displacement functions by complete two-dimensional polynomials of sufficient

degree in the Ritz method revealed the accuracy of the technique in solving some types of

raft-soil interaction problems. They also studied the effect of transverse shear deformation on

the bending results for various raft thicknesses and loading conditions.

The three-dimensional contact problem for a periodic two-layered half-space within the

homogenized model with microlocal parameters was investigated by Kaczyski and Matysiak

[5]. Pawlik and Rogowski [22] derived equations to describe the compliance of the elastic

transversely isotropic half-space loaded by a rigid indenter in the adhesive contact problem.

Paolucci and Spinelli [25] investigated the dynamic Betti–Rayleigh reciprocity theorem

as well as the spectral element method as two of the most powerful methods for calculating

ground motion induced by constant speed moving loads. These methods were considered in

three dimensions in their paper.

A 3-D time domain boundary element formulation for viscoelastic solids was employed by

Galvin and Dominguez [14] to analyze the soil motion due to high speed train passage. They

have used a decaying law considering the internal soil material damping. The coupling with

nearby structures that may have a nonlinear behavior can be considered in their approach.

Most of the applicable loads on half-spaces are prescribed on foundations. Due to the fact

that time-dependent deflection of the contact boundary is inevitable, regarding the interaction

between the foundation and the boundary, the inertia of the foundation should be taken into

account as well.

In the field of moving masses Dehestani et al [11] have used a direct semi-analytical model

to investigate the dynamic response of an elastic homogenous half-space subjected to a landing

moving mass. They have shown that the inertial effects of a landing moving load should be

considered in design purposes.
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The solution of 3D inertial soil-structure interaction problems via a direct time domain

BEM formulation was proposed by Karabalis and Huang [12] and, through numerical results,

a number of parametric studies was performed.

Recently, Guenfoud et al. [16] performed a detailed study of Green’s function, intending

the surface displacements of a half-space with inertial properties subjected to vertical load.

A two-dimensional theoretical model of the surface vibration due to a point load moving

along a beam in the layer has been investigated employing a wavelet approach by Koziol et al

[18]. They placed an infinitely long beam inside the solid parallel to the surface and the lower

layer is considered to be a half space. Then, the response due to a harmonically varying load

is investigated for different load frequencies.

The response of a solid for fast moving trains using models related to real situations such

as a load moving in a tunnel and a load moving on a surface was investigated by Koziol and

Mares [19]. They used a wavelet approximation method based on application of coiflet filters

for the derivation of displacements in physical domain.

In this paper, an elastodynamic formulation is used to investigate the dynamic response

of a half-space under an inertial strip foundation which is subjected to a time-harmonic force.

The approximate two-dimensional displacements and stresses for points located at far distances

from the surface strip foundation are obtained by utilizing the steepest descent method. The

original contribution of this study is to present a simple semi-analytical approach which yields

the far-field dynamic behavior of the half-space considering the inertial influences regarding

the massive strip foundation.

2 PROBLEM DEFINITION

Consider an elastic, homogeneous and isotropic half-space y ≥ 0 under an inertial strip foun-

dation with total mass per unit lengthM , material density ρ′, height h and width 2a as shown

in Fig. 1. No temperature effect is considered for the problem. The foundation is subjected

to a time-harmonic uniform force denoted by

f (x, t) = feiωt {H (x + a) −H (x − a)} (1)

where ω andH are the angular frequency and the Heaviside function, respectively.

 

h 

v 

p(x,t) 

f(x,t) 

x 

y 

M 

2a 
 

Figure 1 Inertial strip foundation under a time harmonic uniform loading on a half-space
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Therefore the surface of the half-space is under the action of tractions for which

y = 0 ∶ { σ22 = −p (x, t)
σ12 = 0

(2)

where p (x, t) is the traction acting on the surface of the half-space and should be obtained

considering the inertial effects of the strip foundation. Variation of p (x, t) is assumed to be

negligible on the width of the strip foundation and is assumed to be in the form

p (x, t) ≅ beiωt {H (x + a) −H (x − a)} (3)

b is a constant which should be obtained regarding the inertial effects of the strip foundation.

On the other hand, the solution of the problem should be obtained such that the stresses and

the displacements vanish as y approaches to the infinity.

3 SOLUTION

Navier’s equation of motion for a homogeneous, isotropic and elastic medium without body

forces is

ρü = µ∇2u + (λ + µ)∇∇.u (4)

where ρ and u represent the density of the half-space’s material and displacement vector,

respectively. λ and µ are Lame’s elastic constants for plane strain condition and are expressed

as

λ = Eυ

(1 + υ) (1 − 2υ)
(5)

µ = E

2 (1 + υ)
(6)

where E and υ are elastic modulus and Poisson’s ratio, respectively. Taking note of the

harmonic time variation of the displacements exp (iωt) in the 2D case leads to

u (x, y, t) = u (x, y) eiωt (7)

v (x, y, t) = v (x, y) eiωt (8)

Consider the vector identity

∇2u = ∇∇.u −∇ ×∇ × u (9)

and let

φ = ∇.u (10)
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χ⃗ = −∇ × u (11)

where φ and χ are scalar and vector displacement potential functions, respectively. Hence

equation (4) in the 2D case will change to system of Poisson-type partial differential equations

∇2φ + k21φ = 0 (12)

∇2χ + k22χ = 0 (13)

where χ is the third component of the vector displacement potential. Also

k21 =
ω2

c21
, k22 =

ω2

c22
, k2 = k22

k21
= λ + 2µ

µ
, c21 =

λ + 2µ
ρ

, c22 =
µ

ρ
(14)

c1 and c2 indicate the propagation velocity for longitudinal and torsional waves, respectively.

Employing the Hooke’s Law for an elastic body yields

σ11 (x, y) = −
µ

k21
(k2∂

2φ

∂x2
+ (k2 − 2) ∂

2φ

∂y2
+ 2

k2
∂2χ

∂x∂y
) (15)

σ22 (x, y) = −
µ

k21
((k2 − 2) ∂

2φ

∂x2
+ k2∂

2φ

∂y2
− 2

k2
∂2χ

∂x∂y
) (16)

σ12 (x, y) = −
µ

k22
(2k2 ∂2φ

∂x∂y
− ∂2χ

∂x2
+ ∂2χ

∂y2
) (17)

Fourier integral transformation for the displacement potential functions can be expressed

as

φ̃ (ξ, y) = ∫
∞
−∞φ (x, y) eiξxdx→ φ (x, y) = 1

2π ∫
∞
−∞ φ̃ (ξ, y) e−iξxdξ

χ̃ (ξ, y) = ∫
∞
−∞ χ (x, y) eiξxdx→ χ (x, y) = 1

2π ∫
∞
−∞ χ̃ (ξ, y) e−iξxdξ (18)

Taking Fourier transformation of equations (12) and (13) and considering the boundary

conditions for infinite distances from the surface imply

φ̃ (ξ, y) = A (ξ) exp(− (ξ2 − k21)
1
2 y)

χ̃ (ξ, y) = B (ξ) exp(− (ξ2 − k22)
1
2 y)

(19)

where A (ξ) and B (ξ) are functions to be obtained from the surface boundary conditions. Em-

ploying surface boundary conditions of equation (2), equations (16) and (17) in the transformed

form yields the system of equations

⎧⎪⎪⎨⎪⎪⎩

k2 (2ξ2 − k22)A (ξ) − 2iξ (ξ2 − k22)
1
2 B (ξ) = 2bk2

2 sin(ξa)
ξµ

2k2iξ (ξ2 − k21)
1
2 A (ξ) + (2ξ2 − k22)B (ξ) = 0

(20)
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from which

A (ξ) =
2bk21 (2ξ2 − k22) sin (ξa)

µξF (ξ)
(21)

B (ξ) =
−4bk22iξ (ξ2 − k21)

1
2 sin (ξa)

µξF (ξ)
(22)

and

F (ξ) = (2ξ2 − k22)
2 − 4ξ2 (ξ2 − k21)

1
2 (ξ2 − k22)

1
2 (23)

Displacement potential functions can be used to obtain the transformed displacement and

stresses in the 2D case as

ũ (ξ, y) = 2bi sin (ξa)
µ

(G1 (ξ) e−(ξ
2−k2

1)
1
2 y +G2 (ξ) e−(ξ

2−k2
2)

1
2 y) (24)

ṽ (ξ, y) = 2bi sin (ξa)
µ

(G3 (ξ) e−(ξ
2−k2

1)
1
2 y +G4 (ξ) e−(ξ

2−k2
2)

1
2 y) (25)

σ̃11 (ξ, y) = 2bi sin (ξa) (G5 (ξ) e−(ξ
2−k2

1)
1
2 y +G6 (ξ) e−(ξ

2−k2
2)

1
2 y) (26)

σ̃22 (ξ, y) = 2bi sin (ξa) (G7 (ξ) e−(ξ
2−k2

1)
1
2 y +G8 (ξ) e−(ξ

2−k2
2)

1
2 y) (27)

σ̃12 (ξ, y) = 2bi sin (ξa)G9 (ξ) (e−(ξ
2−k2

1)
1
2 y − e−(ξ

2−k2
2)

1
2 y) (28)

where:

G1 (ξ) = (2ξ2 − k22) (F (ξ))
−1

(29)

G2 (ξ) = −2 (ξ2 − k21)
1
2 (ξ2 − k22)

1
2 (F (ξ))−1 (30)

G3 (ξ) = −i (2ξ2 − k22) (ξ2 − k21)
1
2 (ξF (ξ))−1 (31)

G4 (ξ) = 2iξ (ξ2 − k21)
1
2 (F (ξ))−1 (32)

G5 (ξ) = i (2k21 − k22 − 2ξ2) (2ξ2 − k22) (ξF (ξ))
−1

(33)

G6 (ξ) = 4iξ2 (ξ2 − k21)
1
2 (ξ2 − k22)

1
2 (ξF (ξ))−1 (34)
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G7 (ξ) = i (2ξ2 − k22)
2 (ξF (ξ))−1 (35)

G8 (ξ) = −4iξ2 (ξ2 − k21)
1
2 (ξ2 − k22)

1
2 (ξF (ξ))−1 (36)

G9 (ξ) = −2 (ξ2 − k21)
1
2 (2ξ2 − k22) (F (ξ))

−1
(37)

3.1 Inertial effects

Dynamic response of a half-space under a foundation subjected to time-varying forces has been

investigated in many research works. The problem considered in this study alters to a classical

one when the inertial effects of the massive foundation are neglected. Therefore, this section

is to propose convenient comparative parameters to illustrate the inertial effects which have

been considered rarely in the previous works. These parameters would represent the differences

between the results of the problem with and without considering the inertial effects.

The interaction load p (x, t) between the strip foundation and the half-space from the

prescribed time-harmonic load f (x, t) can be obtained considering the Newton’s second law

for the strip foundation

p (x, t) = f (x, t) + ρ′h(g − ∂2υ (x,0, t)
∂t2

){H (x + a) −H (x − a)} (38)

Because of higher rigidity of the foundation’s material with respect to the rigidity of the

material of the half-space, and the continuous contact between the foundation and the half-

space, it is convenient to assume

b ≅ f + ρ′h (ge−iωt + ω2υ (0,0)) (39)

For a strip foundation, the variation of the displacement under the width of foundation is

negligible. Thus from equation (25), the vertical component of the surface displacement field

is

v (0,0) = − b

πµ
j (a) (40)

where

j (a) = i∫
∞

−∞

k22 (ξ2 − k21)
1
2 exp (−iξa)

ξF (ξ)
dξ (41)

The integral of equation (41) can be obtained by replacing the integration along the real

axis by integrals around the branch cuts, in addition to the contributions from the poles. This

complicated procedure which is comparable with the procedure done by Lamb [20] yields the

final results as
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J (α) = 2π k2
√

γ2−1
γF̄ ′(γ) e−iγα

+ ∫
∞
0

2k2
√

η2+1
η((k2+2η2)2−4η2

√
η2+1

√
η2+k2)

e−ηαdη

+ ∫
1
0

−2k2
√

1−η2

η((k2−2η2)2+4η2
√

1−η2
√

k2−η2)
e−iηαdη

+ ∫
k
1

−8k2η(η2−1)
√

k2−η2

(k2−2η2)4+16η4(k2−η2)(η2−1)e
−iηαdη

(42)

where k1 has been chosen as the normalizing factor for all length parameters. Then α ∼ k1a,
J (α) ∼ k1j (a) and γ is the positive real root of F̄ (η) with

F̄ (η) = (k2 − 2η2)2 − 4η2 (η2 − k2)
1
2 (η2 − 1)

1
2 (43)

Assume that Q be the coefficient of the total load

Q = f + (Mg/2a) e−iωt (44)

Therefore the inertial load in equation (44) will produce static and dynamic influences.

Henceforth the effects of the second term which produces the static displacements are ignored

for the sake of simplicity. Using equations (39) and (40) gives rise to:

b = CIEQeiθIE (45)

where

CIE =Abs ((1 +Cmα−1J (α))−1) (46)

θIE =Arg ((1 +Cmα−1J (α))−1) (47)

and

Cm =
Mω2

2µπ
(48)

Here Cm is a dimensionless parameter. CIE and θIE indicate the coefficient of the inertia

effect and the phase angle, respectively. Dehestani et al [9] studied the inertial effect of a

moving object on the dynamic response of beams by introducing a coefficient of inertia effect,

CIE . This coefficient is the ratio of the dynamic response for loads with inertial effects to the

same loads without the inertial effects. The phase angle θIE is another representative factor

for the inertial effects of the foundation.
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3.2 Steepest descent approximation

Due to the fact that the direct inversion of the transformed stresses and displacements is a

rigorous procedure, steepest descent approximation has been considered. Now, a brief concep-

tual description of the steepest descent method will be presented from the book by Achenbach

[2]. Consider the integral

I (Ω) = ∫
Γ
G (ζ) exp (−Ωg (ζ))dζ (49)

where G (ζ) and g (ζ) are analytical functions on the path of integration Γ. Analytical function

g (ζ) in which ζ = β + iη can be expanded in complex form

g (ζ) = gr (β, η) + igi (β, η) (50)

where gr (β, η) > 0.
For large Ω, a small variation of gi (β, η) due to a small change of ζ results in swift fluctua-

tions of the trigonometric functions. If gi (β, η) is constant on the path of integration, the swift

fluctuations will be disappeared and then exp (−Ωgr (β, η)) will be the most rapidly varying

part of the integrand. In this case, the main contribution to the integral in equation (49) will

arise from the neighborhood of the point ζ = ζs, where gr (β, η) is smallest. It can be shown

that the path through ζ = ζs defined by gi (β, η) = const. is the path along which gr (β, η)
varies most rapidly, so that the requirement of concentrating the largest values of gr (β, η) to
the shortest possible segment of the integration path is optimized along the path on which

gi (β, η) = const.. The idea of the steepest descent approximation thus is to deform the path of

integration in the ζ-plane into a contour on which gi (β, η) = const.and which passes through

the point ζ = ζs, where gr (β, η) is stationary.
Employing the steepest descent method yields:

I (Ω) ∼ (2π
Ω
)

1
2

G (ζs) ∣g2∣−
1
2 exp (−Ωg0 + iθs) (51)

where the parameters ζs, gn and θs can be obtained form

dg (ζ)
dζ

= 0→ ζ = ζs (52)

gn =
dng (ζs)
dζn

(53)

Arg [0.5g2 exp (2iθs)] = 0 (54)

Now consider the integral

Inm (r, θ) = ∫
∞

−∞
Gn (ζ) exp (−rg(m) (ζ))dζ m = 1,2 n = 1,2, ..,9 (55)

where

Latin American Journal of Solids and Structures 10(2013) 453 – 471



M. Dehestani et al / Far-field dynamic behavior of a half-space under an inertial strip foundation 463

g(m) (ζ) = iζ cos θ + (ζ2 − k2m)
1
2 sin θ (56)

From equations (52), (53) and (54) we have

ζs = km cos θ 0 ≤ θ ≤ π (57)

θs =
π

4
(58)

g0 = ikm (59)

g2 = −
i

km sin2 θ
(60)

Hence from equation (51)

Inm (r, θ) ∼ (
2πkm sin2 θ

r
)

1
2

Gn (km cos θ) exp(i(π
4
− rkm)) (61)

Eventually, the displacements and the stresses in the 2D case take the form:

u (x, y) = b

2µπ
{I11 (r1, θ1) − I11 (r2, θ2) + I22 (r1, θ1) − I22 (r2, θ2)} (62)

v (x, y) = b

2µπ
{I31 (r1, θ1) − I31 (r2, θ2) + I42 (r1, θ1) − I42 (r2, θ2)} (63)

σ11 (x, y) =
b

2π
{I51 (r1, θ1) − I51 (r2, θ2) + I62 (r1, θ1) − I62 (r2, θ2)} (64)

σ22 (x, y) =
b

2π
{I71 (r1, θ1) − I71 (r2, θ2) + I82 (r1, θ1) − I82 (r2, θ2)} (65)

σ12 (x, y) =
b

2π
{I91 (r1, θ1) − I91 (r2, θ2) − I92 (r1, θ1) + I92 (r2, θ2)} (66)

where:

r21 = (x − a)
2 + y2 r22 = (x + a)

2 + y2 (67)

θ1 = tan−1 (
y

x − a
) θ2 = tan−1 (

y

x + a
) (68)
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Figure 2a Variation of the real part of the horizontal component of displacement for various points

4 NUMERICAL EXAMPLE

As an illustration of the proposed solution approach, consider a half-space with mechanical

properties:

µ = 50MPa, ρ = 1800kg/m3, υ = 1/3 (69)

Assume that the loading conditions on a foundation with a = 1m be

f = 10kPa,M = 1000kg/m, ω = 200π sec−1 (70)

Then, the parameters of inertial effects can be obtained from (46) and (47) as:

CIE = 0.75 , θIE = −0.28 (71)

Eventually, variations of the real and imaginary parts of the displacements and the stresses

are obtained and are shown in Fig. 2 and Fig. 3.
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Figure 2b Variation of the imaginary part of the horizontal component of displacement for various points

Figures show a fluctuating behavior for displacements and stresses with respect to the dis-

tances from the foundation. Values of the real parts and the imaginary parts in displacements

and stresses are in the same range indicating a phase-type difference between them.

In fact the main reason for this type of behavior is related to the definition of the prescribed

load. Harmonic force consists of two sinusoidal and co-sinusoidal parts which are different in

their phase angle.

As shown in the figures, the stresses and displacements tend to vanish as the distance to the

inertial strip foundation increases. Also with increase in the distance the fluctuating behavior

is reduced.

Most of the physical time-dependent functions can be approximated by a Fourier complex

series expansion on an arbitrary domain. Hence results obtained for time-harmonic loads in

this paper can be used to obtain the approximate stresses and displacements for arbitrary

time-dependent loadings in specified time domains. To this aim, any kind of time-varying

force on the foundation should be expanded by a complex Fourier expansion in its duration.

By evaluating the coefficients of the force function and the results of this paper, the final

displacements and stresses can be found by superposition method.

It should be noted that the solution procedure for obtaining the far field behavior cannot

be used for investigating near-field behavior. This is due to the fact that the convergence of

the integral which was obtained by steepest descent method cannot be warranted.
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Figure 2c Variation of the real part of the vertical component of displacement for various points

 

Figure 2d Variation of the imaginary part of the vertical component of displacement for various points
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Figure 3a Variation of the real part of the normal horizontal stress component for various points

 

Figure 3b Variation of the imaginary part of the normal horizontal stress component for various points
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Figure 3c Variation of the real part of the normal vertical stress component for various points

 

Figure 3d Variation of the imaginary part of the normal vertical stress component for various points
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Figure 3e Variation of the real part of the shear stress component for various points

 

Figure 3f Variation of the imaginary part of the shear stress component for various points

Latin American Journal of Solids and Structures 10(2013) 453 – 471



470 M. Dehestani et al / Far-field dynamic behavior of a half-space under an inertial strip foundation

5 SUMMARY AND CONCLUDING REMARKS

Dynamic behavior of a homogeneous, isotropic elastic half-space under an inertial strip foun-

dation subjected to a time-harmonic force was investigated in this study. To this aim, Navier’s

equation of motion for the half-space was altered to system of Poisson-type partial differential

equation. Fourier integral transformation was employed to solve the system of equation consid-

ering the boundary conditions. Influences of the inertia of the strip foundation were considered

in obtaining the surface boundary conditions. Steepest descent approximation was employed

to obtain the two-dimensional displacements and stresses in the 2D case. Values of the real

and imaginary parts of the stresses and the displacements were obtained for various horizontal

and vertical distances in a numerical example. Investigation of exact dynamic behavior of

half-space subjected to an inertial foundation can be considered for future work.
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