
Original Article 
 

 
 
 

 Latin American Journal of Solids and Structures, 2018, 15(2), e14 

An axisymmetric nodal averaged finite element 

Abstract 
A nodal averaging technique which was earlier used for plane strain and 
three-dimensional problems is extended to include the axisymmetric one. 
Based on the virtual work principle, an expression for nodal force is found. 
In turn, a nodal force variation yields a stiffness matrix that proves to be 
non-symmetrical. But, cumbersome non-symmetrical terms can be rejected 
without the loss of Newton-Raphson iterations convergence. An approxi-
mate formula of volume for a ring of triangular profile is exploited in order 
to simplify program codes and also to accelerate calculations. The proposed 
finite element is intended primarily for quasistatic problems and large irre-
versible strain i.e. for metal forming analysis. As a test problem, deep rolling 
of a steel rod is studied. 
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1 INTRODUCTION 

The finite element method (FEM) is widely used in science and engineering for numerical analysis of problems 
which beggar analytical methods. The specific character of solid mechanics tasks is that (except for porous media) 
a body shape can be varied greatly while body’s volume alters insignificantly. But, the approximating functions 
proposed by classical FEM (see for example the textbook Zienkiewicz (1971)) do not comply with the incompress-
ibility requirement. At first sight, this does not induce any drawback because the convergence theorems have been 
proven for many FEM calculation schemes. Nevertheless, in practice (mainly when a personal computer is used) an 
approximate solution can be found to be too far from an exact one and such tasks were really discussed in last 
decades. This circumstance forced to revise all the classical approximations of tensor fields. Many new approaches 
have been developed but they require a special review. Plane strain, three-dimensional, and shell problems have 
been involved but the axisymmetric one remains out of consideration so far and the present work aim is elimination 
of this gap. 

The first attempt to overcome the volumetric locking difficulties was the application of selective reduced inte-
gration schemes to displacement-based nonlinear finite elements (bi-linear, tri-linear, second order, and third or-
der). The deviatoric items of a variational equation are integrated by larger number of Gauss points P1,…,Pn while 
the volumetric items – by less number of points Q1,…,Qm (m<n). In general, it is impossible to meet the incompress-
ibility requirements at all the points Pi but it is possible to do it at points Qi. This method suffers from many short-
comings: sizable computer memory is needed to store the state parameters such as stress, strain, damage, etc. at 
Gauss points; problems appear when transferring data from one finite element mesh to another during the remesh-
ing procedure; and so on. Nevertheless, the reduced-integration technique came into further development in Reese 
(2002, 2005) but is not popular now. 

Mixed formulations (see for example Simo et al. (1985)) are numerous and widespread. They are employed in 
many commercial software products: ANSYS, NASTRAN, ABAQUS, SUPERFORGE, etc. Degrees of freedom comprise 
both nodal coordinates and nodal stresses. As a variant, only the hydrostatic component of the stress tensor is used 
in Sussman and Bathe (1987). A finite element matrix appears to be sign-indefinite and may be ill-conditioned such 
that some preconditioner may be required. The convergence analysis of mixed formulations is presented in mono-
graph by Brenner and Scott (2008). The comparative analysis of a mixed constant pressure hexahedral element 
Q1P0 and a stabilized nodally integrated tetrahedral by Puso and Solberg (2006) had shown that the results were 
identical in some tests while the benchmark “Cook membrane” demonstrated the advantage of element by Puso 
and Solberg. The Q1P0 element converges slowly in this problem due to poor bending performance. 
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The mixed methods came into further development. A second order stabilized Petrov-Galerkin finite element 
framework was introduced by Lee et al. (2014). This formulation, written as a system of conservation laws for the 
momentum and the deformation gradient, yields equal order of convergence for displacements and stresses. In Gil 
et al. (2014), the formulation is enhanced for nearly and truly incompressible materials with some novelties. Un-
fortunately, that work is restricted by hyper-elastic scenarios. 

Enhanced-assumed strain approach has produced many treatments – see for example Simo and Armero 
(1992), Simo et al. (1993), Puso (2000), and Areias et al. (2003). An attractive variant was presented by Broccardo 
et al. (2009) where the assumed strain technique is combined with the nodal average strain formulation but only 
elastic and hyper-elastic scenarios were under consideration. 

Nodal integration, or nodal averaging, yields a particle-type method where stress and material history are lo-
cated exclusively at the nodes and can be employed when using meshless or finite element shape functions. This 
particle feature is desirable for large deformation settings because it avoids the remapping or advection of the state 
parameters required in other methods. The nodal integration relies on fewer stress point evaluation than most 
other methods (Puso et al. (2008)). Three classical nodal integration schemes are known: nodal strain method by 
Beissel and Belytschko (1996), stabilized conforming nodal integration by Chen et al. (2001), and nodal averaging 
by Dohrmann et al. (2000). The enhanced versions of these schemes are given in Puso et al. (2008) where the 
stability of nodal integration for both meshless and finite element approximations was investigated. 

Meshfree, or meshless, methods do not employ a finite element base functions therefore these methods do not 
suffer from the mesh distortion. More complex (in comparison to finite element) meshfree base functions provide 
with smooth solutions but computational cost may appear to be too high. A comparative study of the three meshless 
approaches was carried out in Quak et al. (2011) and a comprehensive review is given by Cueto and Chinesta 
(2015). 

Taking into account all the aforecited, one can conclude that there exist many ways to design an axial symmet-
ric finite element involving super-large strain and high gradients of tensor fields. Therefore, to make an appropriate 
choice, some special requirements are needed. In this work, the following requirements are determinative: 

1) the volumetric locking is damped; 
2) the locking due to bending is damped; 
3) spurious modes are absent; 
4) a finite element passes the “patch test”; 
5) a theoretical framework is simple; 
6) a program code is short. 
A finite element by Puso and Solberg (2006) meet all the requirements and its formulation (based on the nodal 

integration technique – see above) will be extended on the axial symmetric event here. Unfortunately, two short-
comings are inherent to the formulation. First, mesh distortion causes bad performance and a remeshing procedure 
together with a data transfer procedure (from an old mesh to a new one) are needed is such case. This problem is 
studied and resolved in Zhang and Dolbow (2017) specially for the nodal averaged stabilized element by Puso and 
Solberg (2006). Second, despite exhibiting very good behavior in terms of displacements the formulation tends to 
exhibit non-physical hydrostatic pressure fluctuations – see Pires et al. (2004) and Gee et al. (2009). In order to 
overcome this drawback, a smoothing procedure is applied at the final stage of numerical analysis – see Puso and 
Solberg (2006). Smoothed pressures are evaluated by averaging nodal pressures at element centers and then re-
averaging these element pressures back out to the nodes. If it is necessary, this procedure is repeated several times 
in order to smooth the isoline pattern. So, both the shortcomings of the nodal averaged stabilized element can be 
rectified. 

An approximation based on the simplest finite element (the linear triangle) and the nodal averaging procedure 
over triangles of a nodal complex is proposed in this work. Due to many reasons, finite elements of low order prove 
to be preferable for non-linear problems and large deformation. Besides, mesh generators provides triangles and 
tetrahedrons as a rule; more complex figures especially for irregular meshes cause serious problems. The proce-
dure of nodal averaging was first formulated by Dohrmann et al. (2000) and further analyzed by Bonet et al. (2001). 
As it turns out, nodal averaging provides weakened constraints such that coarse mesh accuracy can often be 
achieved for near incompressible materials. It was pointed out also that the formulation was prone to spurious low-
energy modes. In order to suppress them, Puso and Solberg (2006) proposed to enter stabilizing terms into a dis-
crete form of variational equation. A number of different formulations have been developed to rectify poor perfor-
mance of low-order elements under incompressible and near incompressible conditions but the approach by 
Dohrmann et al. (2000) alleviates both the volumetric locking and locking due to bending. However, some modern 
methods give the same result as in Puso and Solberg (2006) – see for example Puso et al. (2008). But, stabilized 
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nodal averaging is the simplest among them from the point of view of both a theoretical framework and a program 
code. The present work extends that formulation on the axisymmetric problem. 

This work has one more aspect associated with an impotent industrial application – numerical simulation of 
the deep rolling working. Such the treatment creates a near-surface hardened layer and compressive residual stress 
preventing from crack generation in metallic parts. Traditionally, this simulation is performed in three dimensional 
setting. But, in some events it is possible to simplify a model to an axisymmetric one and to reduce the computa-
tional cost drastically – see Section 3. 

2 FINITE ELEMENT FORMULATION 

Let an arbitrary triangulation (i.e. N nodes NAA ,...,1 and M triangles MTT ,...,1 ) of a plane region is given. Let a 

nodal complex nC  be a set of triangles sharing node nA . Denote by  n  a set of triangle numbers in complex nC ; 

by  np  – a set of triangle numbers in intersection of complexes nC  and pC  (i.e.  pnnp ); by [ ]n  – 

a set of vertex numbers in complex 
nC ; by ] [m  – a set of node numbers of triangular 

mT . Figure 1 illustrates these 

denotations. 
 

 
 

Figure 1: Nodal complexes. 

 

 
 

Figure 2: Nodal finite elements with 7 and 9 nodes. 

 

The idea of stabilized nodal averaging can be demonstrated by the simplest example – plane strain problem 

with small elastic strain. Let  )( 21,uu=u  be a FEM-approximation of the displacement field. Define average defor-

mation nε  at node nA  and average area nS  as 





ni

iin w εε  and 3/nn SS   (1) 

where iε  – deformation on triangle iT  ( consti ε  because 
iT  is a linear finite element); nii Ssw /  – weight 

coefficient; is  – area of iT ; nS – area of nC . Write the discretized variational equation taking into account (1): 

ufεCεεCCε  


mm

M

m
mnn

N

n
n sS



11

)(  (2) 



P.G. Morrev et al. 
An axisymmetric nodal averaged finite element 

Latin American Journal of Solids and Structures, 2018, 15(2), e14 4/11 

where the first sum corresponds with nodal complexes while the second one – with triangles; f is an external load; 

C  is the isotropic elasticity tensor and C


 is the stabilization tensor (on optimal choice of C


 see Puso and Solberg 
(2006)). 

It is clear that the influence of the stabilization tensor drops as a finite element mesh is refined but for a coarse 

mesh tensor C


 becomes to be necessary. Formally, one can consider that the tessellation procedure follows the 
meshing one and new finite elements appear while each of them is a one-third of a nodal complex – see Figure 2 
where one-thirds of triangles (each of triangles is dissected into three parts of equal area) form a new (nodal aver-
aged) finite element. Note that all the nodes except for the central one are located outside the new finite element. 

As for the axisymmetric event, a volume formula for a ring of triangular profile is not so trivial as for triangular 
or tetrahedron. This results in too cumbersome expressions for both nodal force and stiffness matrix. In the present 
work, an approximate formula of volume for such a ring is exploited in order to simplify a program code and to 

accelerate calculations. Turn to the axisymmetric formulation itself. In cylindrical coordinates = ry1 , = hy2 , 

= y3 , the Cauchy stress tensor and the small strain one take the form (here, the small displacement field 

),( hr uuu  at any time interval [ , ]t t t   is meant) 
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It is necessary to rewrite the variational principle (2) taking into account large irreversible (plastic) strain and 
the cpecific form (3) of tensors σ and ε (the Euler approach is adopted throughout the work i.e. all tensor fields 
refer to the current configuration rather than the initial one): 

ufεσεσ  


m

M

m
mmn

N

n
nn vV

11


 (4) 

where 



ni

iin w σσ  – average stress at node nA ; 

mσ


 – stabilizing stress on triangle mT ; 





ni

iin w εε  – average strain at node nA ; 

nii Vvw /  – weight coefficient of iT  in nodal complex nC ; 

3/nn VV   – averaged nodal volume; 





nm

mn vV – volume of nodal complex nC ; 

mmm srv 2  – approximate volume for a ring of triangular profile mT ; 

3/)( 321 rrrrm   – average radius of a ring of triangular profile mT . 

Equation (4) has to be supplemented by a constitutive equation. As far as metals and alloys refer to near rigid-
plastic materials, it is convenient to write that equation by means of any corotational rate “r” (for example, Yau-
mann’s rate “j”): 

dCCσ  )(
r , dCσ 

r  (5) 

where d is the deformation rate tensor. Therefore, two stress tensors take part in step-by-step numerical analysis: 
real stress σ  and stabilizing stress σ


. 

Introduce a FEM-approximation for the displacement field u, its gradient , and circular 

deformation 33 : 

),( 21 yyNuu n
i
n

i  ; )2,(1  ),( 21
,,  jiyyNuu jn

i
n

i
j ; 1211

33 /),(/ yyyNuru nnr   (6) 

where the summation over repeated indexes is implied ; the differentiation sign is separated by a comma; 

),( 21 yyNn  – shape function corresponding to node nA ; ),( 21
nn uu  – nodal displacement of  nA . In the sequel, a shape 

)2,1( /  jiyu ji
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function will be numerated by a pair of indexes: ),( 21 yyN m
n  where n corresponds to node nA  and m – to triangle

mT . Define an average nodal gradient as 





nm

im
j

n
m

in
j jiuwu )2,(1 )(

,
)(

,  (7) 

where 
in

ju )(
,  and 

im
ju )(

,  correspond to node An and triangle Tm respectively. FEM-approximation of (7), based on 

approximation (6), yields 

  
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while the summation in the last but one sum runs over the intersection of nodal complexes pC  and nC  (this 

intersection can be empty, consists of one or two triangles or coincides with the entire nodal complex if pn  ); 

matrix )(nB  is of the form 


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m
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n
m

n
pj NwB ,  (9) 

Circular deformation 33  is calculated according to 
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where vector )(~ nB  is of the form 
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Due to the approximate formula for volume mv , expression (9) yields 
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where mm sD 2 ; m
pj

pnm
m

n
pj brb 


 ; )(mb  is the well-known in FEM matrix of coordinate differences of triangle 

vertices (three nodes are numerated by 1,2,3 counter clockwise and index m is omitted): 
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As for expression (11), taking into account the one-point integration scheme for the classical linear triangle 

element, function 121 /),( yyyN m
p  should be evaluated at the center of triangle mT  where this function equals to 

)3/(1 mr  such that 
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Now, return to variational principle (4). Substituting the displacement gradient approximation (8) and the 

approximation of circular deformation (10), find a nodal force at node pA : 



P.G. Morrev et al. 
An axisymmetric nodal averaged finite element 

Latin American Journal of Solids and Structures, 2018, 15(2), e14 6/11 

)2,1(    /  
~ 1331

,
][ ][

331    
  

jiyNσvσNvσBVσBVf
pm pm

m
pmm

iij
m

m
jpm

pn pn
n

n
pn

iij
n

n
pjn

i
p


 (15) 

where ij  is Kronecker’s delta-symbol. Substituting (12) and (14) into (15) and taking into account 3/nn VV  , 

obtain 
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Point out that this expression is simpler than (15) because all volumes (both nodal and of rings of triangular 

profile) disappeared due to the successful choice of the approximate formula for volume mv  (see the elucidations 

to equation (4)). Finally, a stiffness matrix is obtained by means of the nodal force variation. To this goal, find the 
stress tensor variation from the constitutive equation (5) with Yaumann’s rate: 

σωωσdCCσωωσσσ  )(


 j ; (17) 

σωωσdCσωωσσσ
  j  (18) 

where 2/)( Tvvω   is the vortex tensor. According to (17), the nodal stress variation at node nA  is 
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where n  denotes “no summation” over index n. Besides, matricies nb  (see (12), (13)), matrix b
~

 (see (14) with 

comments), and scalars mr , ms  are also dependent variables and subjected to variation. Therefore, the total 

expression for the nodal force (16) variation is too cumbersome and consists of two items: symmetrical and non-
symmetrical. In practice of metal forming analysis, a non-symmetrical item can be rejected without the loss of 
convergence. A symmetrical positively defined item of the stiffness matrix of the nodal finite element is obtained 

by the first item in the right hand of (19) and is of the form (p and q are node numbers of complex nC ) 
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while if 1i  or 1k   then some special items should be added to the stiffness matrix respectively: 
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and if 1i k   then one more item should be added: 
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When assembling the global stiffness matrix, the stabilizing matrices are also taking into account (they are 
calculated according to classical expressions in Zienkiewicz (1971) and constitutive equation (18)). This completes 
the nodal averaged axisymmetric finite element formulation. 

3 NUMERICAL EXAMPLES 

The following two example problems demonstrate the abilities of the new finite element. The first test is a 
benchmark involving large strain, elastoplasticity, and specific “stone wall” boundary conditions. The second ex-
ample shows a possible industrial application when a three dimensional model is reduced to an axisymmetric one 

with considerable cost saving. As for the stabilizing tensor C


, the natural choice CC ~


 is not optimal. Better results 
may be obtained by letting (see Puso and Solberg (2006)) 
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))(( jkiljlikklijijkl pC 


 (23) 

where p is a small penalty parameter (p=0.05 is recommended) and Lame’s constants 


 and 


 are defined in the 

following way. For elastic material with Lame’s constants   and : 




 and )25,min( 


. (24) 

For plastic materials, a shear modulus based on the plastic tangent modulus ET is used: 

2/TE


 and )25,min( 


. (25) 

A contact problem statement conforms to Morrev (2007, 2009, and 2011). Only the symmetrical positively 
defined items (20), (21), (22) of the finite element matrix are evaluated. 

3.1 Cylindrical billet upsetting 

 

 
 

Figure 3: Upsetting of cylindrical billet. Effective plastic strain is shown for three different thicknesses: (a) 2 in; (b) 0.82 
in; and (c) 0.5 in. 

In this example, which is adopted in Puso and Solberg (2006), performance on a large deformation, confined 
plasticity problem is evaluated. The undeformed steel (E =2.987×104 ksi, ν=0.3) billet is 2 in in height and diame-
ter and quarter symmetry triangular mesh model is used for simulation as seen in Figure 3. The billet is squashed 
by two parallel rigid plates to thickness 0.5 in. A contact surface of type “stone wall” (i.e. with infinite frictional 
coefficient) is used to vertically constrain the outer boundary as it expands (bulges) horizontally. The material is 
elastoplastic with the power law hardening of the form 

0113.0)112/41( ksi, )(112)( 227.0/10227.00  pp
y . (26) 

In this example, the tangent modulus ET , which is used in stabilizing tensor C


, was the tangent of the power 
law equation evaluated at εp=0: 

ksi813)0113.0)(227.0(112)0(
d

d 773.0 



 

p
y

TE . (27) 
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The only difference from the original work by Puso and Solberg (2006) in the problem statement is the optimal 
penalty parameter value p=0.01 instead of p=0.05. That is, the axisymmetric finite element and the tetrahedral one 
are not identical in spite of identical meshes and common theoretical framework! The results are presented in Fig-
ure 3 where the smoothing procedure (see Section 1) was applied twice to both the isoline patterns. It is difficult 
to compare these isolines with the results by Puso and Solberg (2006) because in that work color pictures were 
used to visualize the tensor fields. Nevertheless, the qualitative similarity is evident. 

3.2 Deep rolling of a steel rod 

A surface hardening process of a steel rod by means of deep rolling (DR) is studied. DR is an extremely complex 
process (see for example Radchenko et al. (2015) and Gryadunov et al. (2015)) because of high gradient values of 
tensor fields and due to the induced non-uniformity of a material. As a rule, such problems are solved in a three-
dimensional statement (despite a workpiece looks like an axisymmetric body) when a small representative part of 
a detail is considered together with some reasonable boundary conditions. In contrast to this approach, the pro-
posed axisymmetric finite element permits to consider the entire detail in some events. The point is that a shape of 
a contact zone depends on ratio R/r where R is longitudinal roller’s radius and r is transversal one. If rR  then the 
contact zone is, roughly speaking, round and the material flows in all directions from under the roller. But, if rR 
then the contact surface is of the form of a very oblong oval hence the material flow is negligible in the direction of 
rolling and predominates in the direction of the workpiece axis, i.e. the flow character is the same as in axial sym-
metric models. Consequently, a three dimensional model can be reduced to axial symmetric one if radius R is suffi-
ciently large. The computation time diminishes drastically in such case. Turn to an appropriate example. A steel rod 

of radius 20 mm and of length 100l  mm is rolled by two rollers of transverse radius 908.0r mm and of longitu-
dinal one rR   while the rollers move in opposite directions (Figure 4). Note once again that if rR   then the 
problem cannot be considered as an axial symmetric one. Rolling depth 15.0h  mm; rolling step d=0.5 mm; num-

ber of passes is equal to 1. Material is steel AISI 4340; hardening law is nb 0  (i.e., slightly different from 

(26), (27)) where 7920  MPa; 510b MPa; 26.0n ; Young’s modulus 210E GPa; Poisson’s ratio 324.0 . 

 

 
 

Figure 4: Symmetrical deep rolling 

 

 
 

Figure 5: Finite element mesh 

The operation shown in Figure 4 is not realistic but this process possesses the bilateral symmetry therefore 
the total number of nodes may be reduced twice. In practice, the working is carried out by a single roller or by two-
three rollers rotating in a common plane. The finite element mesh is presented in Figure 5 where the finest discreti-
sation is marked out by black; the size of this region is 5×1mm and the splitting numbers here are 50×10; the total 
number of nodes is 2349. The feature of this example is too high gradient values of tensor field (due to local char-
acter of deformation) such that a great value 2/E  in (23), (24), (25) appears to be necessary instead of 
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2/TE . The penalty parameter value p=0.05 instead of p=0.01 in the previous example. The residual stress 

component along the rod axis is to be found. 
A like problem was investigated in Majzoobi et al. (2010) with the only difference: longitudinal radius was 

equal to 5.2R  mm. The results of both the works are compared in Figure 6. The peak values are almost equal. 
The difference between the two plots is explained by different values of radius R. It is obvious that if rR   then 
the contact zone is of the form of a very oblong oval and is much larger than in case 5.2R  mm. Correspondingly, 
the penetration depth of plastic deformation is larger too when rR  . It should be pointed out that the three-
dimensional model in Majzoobi et al. (2010) was calculated up to depth 3 mm only and in the present work an 
extrapolation of those results up to depth 4 mm is used. The developed finite element permits to evaluate the re-
sidual stress without any restriction in depth and a proper result is presented in Figure 7. 

 

 
 

Figure 6: Axial residual stress up to deph 4mm 

 

 
 

Figure 7: Axial residual stress along the entire deph 

4 CONCLUSIONS 

A stabilized nodal averaged axisymmetric finite element was developed. It based on the virtual work principle 
for large irreversible strain together with a nodal averaged approximation and an approximate formula for a ring 
of triangular profile. An additional stabilizing stress tensor appears to be necessary for incremental numerical anal-
ysis. Simple expressions for nodal force and stiffness matrix permit to obtain fast algorithms and short program 
codes. The finite element can be exploited successfully for numerical solving the most complicated task of solid 
mechanics – multiple periodic local deformations as it takes place in the DR process. The axisymmetric finite ele-
ment and the tetrahedral one are not completely identical in spite of identical meshes and common theoretical 
framework. In some cases (when the restriction in radii rR   holds), it becomes possible to calculate an entire 
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detail under working rather than its small three-dimensional part with considerable reduction in computation time 
and input data preparing. 

ACKNOWLEGEMENTS 

Special thanks to E. Yu. Beregovaya for her assistance in program code debugging and for developing of pre- 
and post-processors. 

The work was carried out within the bounds of the Russian Federation government target 1.5265.2017/БЧ 
Nº1.5265.2017/8.9. 

References 

Areias, P. M., Antonio, C. A., Fernandes, A. A. (2003). Analysis of 3d problems using a new enhanced strain hexahe-
dral element. International Journal for Numerical Methods in Engineering. 58: 1637–1682.  

Beissel, S., Belytschko, T. (1996). Nodal integration of the element-free Galerkin method. Computer Methods in Ap-
plied Mechanics and Engineering. 139: 49–74.  

Bonet, J., Marriot, M., Hassan, O. (2001). An averaged nodal deformation gradient linear tetrahedral element for 
large strain explicit dynamic applications. Communications in Numerical Methods in Engineering 17: 551–561 

Brenner, S. C., Scott, L. R. (2008). The Mathematical Theory of Finite Element Methods (Third Edition). Springer. 
New York.  

Broccardo M., Micheloni M., Krysl P. (2009) Assumed-deformation gradient finite elements with nodal integration 
for nearly incompressible large deformation analysis. International Journal for Numerical Methods in Engineering. 
78:1113-1134.  

Chen, J. S., Wu, C. T., Yoon, S., You, Y. (2001). A stabilized conforming nodal integration for Galerkin mesh-free meth-
ods. International Journal for Numerical Methods in Engineering. 50: 435–466.  

Cueto, E., Chinesta, F. (2015). Meshless methods for the simulation of material forming. International Journal of 
Material Forming. 8: 25–43.  

Dohrmann, C. R., Heinstein, M. W., Jung, J., Key, S. W., Witkowski, W. R. (2000). Node-based uniform strain elements 
for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engi-
neering 47: 1549–1568.  

Gee, M.W., Dohrmann, C.R., Key, S.W., Wall, W.A., (2009). A uniform nodal strain tetrahedron with isochoric stabili-
zation, International Journal for Numerical Methods in Engineering. 78: 429–443.  

Gil, A. J., Lee, C. H., Bonet, J., Aguirre, M. (2014). A stabilised Petrov–Galerkin formulation for linear tetrahedral 
elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in 
Applied Mechanics and Engineering. 276: 659–690.  

Gryadunov, I. M., Radchenko, S. Yu., Dorokhov, D. O., Morrev, P. G. (2015) Deep Hardening of Inner CylindricalSur-
face by Periodic Deep Rolling - Burnishing Process. Modern Applied Science 9: 251–258.  

Lee, C. H., Gil, A. J., Bonet, J. (2014). Development of a stabilised Petrov–Galerkin formulation for conservation laws 
in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering. 268: 40–64.  

Majzoobi, G.H., Teimoorial Motlagh S., Amiri, A. (2010). Numerical simulation of residual stress induced by roll-
peening Transactions of The Indian Institute of Metals 63: 499–504.  

Morrev, P. G. (2007). A Version of Finite Element Method for Frictional Contact Problems. Mechanics of Solids 4: 
640–651.  

Morrev, P. G. (2009). A rate variational principle of quasistatic equilibrium for absolutely rigid body in contact 
problems. Fundamental and applied problems of technique and technology 6: 30–32. [in Russian]  

Morrev, P. G. (2011) A variational statement of quasistatic “rigid-deformable” contact problems at large strain in-
volving generalized forces and friction. Acta Mechanica 222: 115–130.  

Pires, F., de Souza Neto, E. A., de la Cuesta Padilla, J. L. (2004). An assessment of the average nodal volume formula-
tion for the analysis of nearly incompressible solids under finite strains, Communications in Numerical Methods in 
Engineering. 20: 569–583.  



P.G. Morrev et al. 
An axisymmetric nodal averaged finite element 

Latin American Journal of Solids and Structures, 2018, 15(2), e14 11/11 

Puso, M. A. (2000). A highly efficient enhanced assumed strain physically stabilized hexahedral element. Interna-
tional Journal for Numerical Methods in Engineering. 49: 1029–1064.  

Puso, M. A., Solberg, J. (2006). A formulation and analysis of a stabilized nodally integrated tetrahedral. Interna-
tional Journal for Numerical Methods in Engineering 67: 841–867.  

Puso, M. A., Chen, J. S., Zywicz, E., Elmer, W. (2008). Meshfree and finite element nodal integration methods. Inter-
national Journal for Numerical Methods in Engineering 74: 416–446.  

Quak, W., van den Boogaard, A. H., Gonsales, D., Cueto, E. (2011). A comparative study on the performance of mesh-
less approximations and their integration. Computational Mechanics. 48: 121–137.  

Radchenko, S.Yu., Dorokhov, D.O., Gryadunov, I. M. (2015). The volumetric surface hardening of hollow axisymmet-
ric parts by roll stamping method. Journal of Chemical Technology and Metallurgy 50: 104–112.  

Reese, S. (2002). On the equivalence of mixed element formulations and the concept of reduced integration in large 
deformation problems. International Journal of Nonlinear Sciences and Numerical Simulation 3: 1–33.  

Reese, S. (2005). On a physically stabilized one point finite element formulation for three-dimensional finite elas-
toplasticity. Computer Methods in Applied Mechanics and Engineering 194: 4685–4715.  

Simo, J. C, Armero, F. (1992). Geometrically nonlinear enhanced strain mixed methods and the method of incom-
patible modes. International Journal for Numerical Methods in Engineering. 33: 1413–1449.  

Simo, J. C, Armero, F., Taylor, R. L. (1993). Improved versions of assumed enhanced strain tri-linear elements for 
3d-finite deformation problems. Computer Methods in Applied Mechanics and Engineering. 110: 359–386.  

Simo, J. C, Taylor, R. L., Pister, K. S. (1985). Variational and projection methods for the volume constraint in finite 
deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 51: 177–208.  

Sussman, T., Bathe, K. J. (1987). A finite-element formulation for nonlinear incompressible elastic and inelastic anal-
ysis. Computers and Structures 26: 357–409.  

Zhang, Z., Dolbow, J. E. (2017). Remeshing Strategies for Large Deformation Problems with Frictional Contact and 
Nearly Incompressible Materials. International Journal for Numerical Methods in Engineering. 109: 1289–1314.  

Zienkiewicz, O. C. (1971). The Finite Element Method in Engineering Science, McGraw-Hill, London.  


