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Comparison of semi and fully-implicit time integration schemes  
applied to a damage and fatigue phase field model 

Abstract 
In this work, we apply semi and fully-implicit time integration schemes to 
the damage and fatigue phase field presented in Boldrini et al. (2016). The 
damage phase field is considered a continuous dynamic variable whose evo-
lution equation is obtained by the principle of virtual power. The fatigue 
phase field is a continuous internal variable whose evolution equation is 
considered as a constitutive relation to be determined in a thermodynami-
cally consistent way. In the semi-implicit scheme, each equation is solved 
separately by suited implicit method. The Newton’s method is used to line-
arize the equations in the fully-implicit scheme. The time integration meth-
ods are compared and the results of damage and fracture evolution under 
the influence of fatigue effects are presented. The computational cost asso-
ciated to the semi-implicit scheme showed be lower than the fully counter-
part. 
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1 INTRODUCTION 

The effects of the fatigue are of great concern when designing mechanical components, as they account for the 
majority of mechanical failures. Modeling and simulation of fatigue accumulation can lower development time and 
reduce prototype and testing costs (Lemaitre and Desmorat, 2005). However, some aspects such as crack initiation 
are rather difficult to handle in the classic models. The correct and robust assessment of such issues is challenging, 
but the introduction of phase field models for the evolution of damage and fatigue can overcome the main difficul-
ties. 

Originally, the phase field model was developed by John W. Cahn and John E. Hilliard to describe the phase 
separation in fluids through the fourth-order Cahn-Hilliard equation (Cahn and Hilliard, 1958). Later on, Sam Allen 
and John Cahn developed the classical Allen-Cahn equation (Allen and Cahn, 1972), a second-order nonlinear par-
tial differential equation modeling phase separation in iron alloys. Both equations are based on the Ginzburg-Lan-
dau free energy functional. Recently, researchers have given more attention to phase field models, using them in a 
wide range of applications such as biology and medicine fields. Some of the different uses of phase field models 
include the study of tumor growth (Silva, 2009), vesicle-fluid interation (Du et al., 2007) and fluid-structure inter-
action problems (Sun et al., 2014). 

Damage, crack propagation and fatigue have also used phase field models in recent years. The works on brittle 
fracture showed accurate crack propagation patterns for different benchmarks (Miehe et al., 2010a; Miehe et al., 
2010b; Borden et al., 2014), see Ambati et al. (2015a) for an enlightening review on the phase field models of brittle 
fracture in elastic solids. Duda et al. (2015) extends the phase field damage model to describe brittle fracture in 
elastoplastic materials. Effects of ductile fracture are captured by the models proposed in Ambati et al. (2015b) and 
Borden et al. (2016). Impressive numerical results broadening the previous phase field models are presented. Dam-
age and fatigue phase field models were developed by Fabrizio et al. (2006), Amendola and Fabrizio (2014) and, 
Caputo and Fabrizio (2015). In those models, an expression for fatigue is given from the beginning making gener-
alization for more complex situations rather difficult. More recently, Boldrini et al. (2016) proposed a damage and 
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fatigue model similar to Amendola and Fabrizio (2014). However, in this case, fatigue is treated as an internal var-
iable with a constitutive law found in a thermodynamically consistent way. Disregarding the fatigue variable in 
Boldrini et al. (2016), a model which is closely related to, but more general than Miehe et al. (2010a), is obtained. 

Boldrini et al. (2016) present a thermodynamically consistent model for non-isothermal evolution of damage 
and fatigue. The difference between the damage phase field   and the fatigue internal variables   is in their scales: 

the first variable is related to meso/macro-cracks and the second one associated to micro-cracks. The results are 
for 1D examples, solved using high-order finite elements (Bittencourt, 2014), and the explicit Runge-Kutta time 
integration scheme. The results had expected convergence rates for the p -refinement by using manufactured solu-

tion. The simulations also showed that fatigue effects play a major role to drive the crack initiation under cyclic 
loading with small stresses (we remark, however, that fatigue may also evolve even under monotonic loading as 
discussed in Section 5.1). Temperature rises were also observed in simulations of the non-isothermal equations, in 
agreement with experimental observations. 

Although the 1D results showed expected behavior and the explicit Runge-Kutta time integration method per-
formed well, the solution of 2D and 3D problems is more complex due to the high computational costs. The use of 
an explicit time integration scheme requires smaller time increments to achieve stability, compared to the implicit 
methods. In this way, high dimensional problems demand finer meshes and smallest time increments for better 
approximations, making the use of explicit time integration methods in most cases unfeasible. On the other hand, a 
fully-implicit method is generally costly due to the problem and the involved non-linearities. 

In the present work, we propose a semi-implicit scheme to solve the isothermal model for the evolution of 
damage and fatigue and which provides the desired stability, even for large time steps. In this scheme, each equation 
is treated separately by the suited implicit method, keeping the others variables frozen. More specifically, for each 
time step the evolution of one variable is solved and the results are used as input for equations of the other varia-
bles. In order to show the efficiency and accuracy of this scheme, the results are compared with the fully-implicit 
method obtained using the Newton’s procedure. 

Section 2 presents the phase field model and the governing equations for the isothermal case and linear elastic 
brittle material. Section 3 shows the finite element spatial discretization for the proposed model. Section 4 de-
scribes the semi and fully-implicit schemes. For the semi-implicit case, different time integration methods are pre-
sented. Among the methods covered are Newmark, backward Euler, trapezoidal method and an implicit 2nd-order 
Runge-Kutta scheme called TR-BDF2. In the fully-implicit scheme, the residue and the Jacobian matrix of the New-
ton’s procedure are described based on the Newmark and trapezoidal methods. Section 5 describe the results for 
an I-shaped specimen under monotonic and cyclic loadings. From these numerical results, a convergence rate anal-
ysis is considered for different combinations of the proposed methods using the semi-implicit scheme. A compari-
son of the accuracy and computational time cost between the semi and fully-implicit closes this section. Finally, 
Section 6 outlines the conclusions of the numerical example and the aspects of the proposed schemes. 

2 GOVERNING EQUATIONS 

The work of Boldrini et al. (2016) presents a framework for structural damage and fatigue using thermody-
namically consistent and non-isothermal phase field models. The coupled dynamic equations for the evolution of 
displacement u , velocity u  and damage phase field   are obtained by applying the principle of virtual power and 

the entropy inequality based on the specific free energy potential. The damage phase field   represents the volu-

metric fraction of damaged material with 0   for a virgin material, 1   for a fractured material and 0 1   

for damaged material between virgin and fully broken states. The evolution equation for the internal fatigue varia-
ble   is derived by finding a differential constitutive relation for   that satisfies the entropy inequality for all 
possible admissible processes. 

From suitable choices of free-energy, initial and boundary conditions, and disregarding the temperature evo-
lution, the isotropic isothermal case described in Eq. (62) of Boldrini et al. (2016) is 
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where s E u , s D u  and C  are, respectively, the infinitesimal strain tensor, the rate of strain tensor and the 
elasticity tensor (using Voigt notation) given in terms of the Young’s modulus E  and Poisson’s coefficient  . 

Coefficient b  refers to the viscous damping of the material, cg  is the Griffith fracture energy, 0  corresponds to the 

material’s density and 0   is a parameter related to the width of the damage phase field layers. The parameter 

  is associated to the rate of damage change and should increase proportional to the damage as described in 
Lemaitre and Desmorat (2005). It is given as 

1
(1 )

c
  


 

, (2) 

where the parameters c  and   are positive and dependent on the material and   is a small positive constant used 

to avoid singularity. In the present work, it is assumed 1   for simplicity. 

Additionally, suitable potentials   and f  are needed. The role of these potentials is to drive the damage from 

zero to one as the fatigue changes from zero to cg . Different potentials change the way that damage varies by inter-

mediate values of fatigue. A suitable choice for the potentials is such that damage changes in a monotonic and con-
tinuous way. Here we adopt 
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Remark 1: The complete definitions of the potentials ( )  and ( )f  , that is, their expressions for all  , are 

necessary so that the hypotheses of Theorem 1 presented in Boldrini et al. (2016) on page 405 can be verified. That 

theorem states that necessarily 0 1   for all 0t t  for sufficiently regular solutions for Eq. (1), with initial 

condition values in [0,1]  at time 0t , homogeneous Neumann boundary condition ( / 0  n ) and under some 

additional hypotheses on the potentials (which the previously given ( )  and ( )f   fulfill). 

This means that for solutions of the continuous model (1), the damage variable   assumes values only in the 

interval [0,1] , and thus only the parts of the potentials ( )  and ( )f   associated to values of   in the interval 

[0,1]  are in fact used during the evolution. 

However, another reason for given the complete definition of the potentials is that, when numerically solving 
Eq. (1) there is the possibility that some computed values of the approximation of   fall slightly outside [0,1] . This 

may happen due to discretization error, especially for rather large time steps, and thus, to guarantee that the com-
putations may proceed, the complete definitions of the potentials are required. 

Finally, the parameter F̂  for the fatigue evolution equation is based on the micro-cracks that are formed by 
cyclic loadings, even small ones. The micro-crack formation depends on how large is the stress associated to the 
virgin material stress (see Remark 1). Choosing a linear dependence in terms of a parameter a , we have 

ˆ (1 )F a   CE . (4) 

From the choice of the potential f  in Eq. (3b) and F̂  as above, the evolution equation of the fatigue in Eq. 

(1c) assume 0  in any point of the material. In particular if 1  , the fatigue   variable stops increasing. 

There are many possibilities for the boundary conditions in Eq. (1). For Eq. (1a), there are the cases where 
either the displacement or the stresses are given at certain parts of the boundary. In the case of the damage variable 
 , the standard boundary condition is a homogeneous Neumann condition (null flux for   at the boundary). There 

is no boundary condition associated to the fatigue   since Eq. (1c) is locally an ordinary differential equation. 
Remark 2: Eq. (4) differs slightly of the similar expression presented originally in Boldrini et al. (2016), which 

considers the absolute value of the power associated to the virgin material stress instead of the stress norm. This 
new choice of F̂  is due to the following physical observation: the fatigue of a material subjected to alternating loads 
increases proportionally to the number of cycles, rather than the velocity at which the cycles were performed. In 
fact, there are many possibilities to choose F̂ . For example, instead of the stress norm, the von Mises stress or a 
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quadratic dependence (instead a linear as in Eq. (4)) may be used. These choices should be made in order to better 
describe the problem of interest. 

Also remark that the main advantage of using a model including the fatigue variable as in Boldrini et al. (2016) 
is the possibility of reaching a rather general result for the possible effects of fatigue, still preserving thermody-
namical consistency. In fact, in the derivation of the model presented in Boldrini et al. (2016), from the beginning 
it was just assumed that fatigue had to satisfy a differential constitutive relation, but whose specific expression and 
how it would interact with the other physical variables had to be determined at the final steps of the entropy con-
dition argument. This process leaded to a general expression depending on the free-energy potential and pseudo-
potential of dissipation, and thus can be applied to several classes of materials. If we had restricted the form of the 
constitutive expression or specified how the fatigue should interacted with the other constitutive relations, the 
results would be also much more restricted. 

Remark 3: We observe that Eq. (1) does not guarantee 0  . Then, the presented model allows the possibility 

of healing of meso and macro cracks. It is possible to adapt the model in order to prevent this healing and then have 
irreversible damage. For this, a history of elastic energy similar to Miehe et al. (2010b) or penalty arguments can 
be applied. In this work, the simpler strategy proposed by the first one is adopted. 

3 SPATIAL DISCRETIZATION 

This section presents the finite element approximation of Eq. (1). For this purpose, each equation is multiplied 

by suitable test functions 1 , 2  and 3 , and integrated over the domain   of the body. By using the Gauss theorem 

and after the application of the boundary conditions, we obtain the following weak form for Eq. (1): 

2
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The boundary terms that appear in the above weak form are denoted by B.T. . They depend on the boundary 
conditions being considered. Due the assumed homogeneous boundary condition for the damage  , there are no 

extra boundary terms in Eq. (5b). 
Following the similar 2D spatial discretization presented in Chiarelli et al. (2017), we use the finite element 

method to approximate the above equations. For this purpose, we consider a finite element mesh such that 
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where e  and e  are the domain and the boundary of each element e , A  represents the assembly procedure and 
nelem  is the number of elements. In this way, the approximation in each element e  is written as the linear 

combination of the   local nodal basis functions jN  as 
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The finite element interpolations for the gradients of displacement, velocity and damage for plane state are 
given in terms of linear combinations of the shape function global derivatives by 
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Replacing the above approximations in Eq. (5), we obtain the semi-discrete form for the e -th element as 
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Note that the integrand in Eq. (26) results in a second-order tensor which is expressed as a vector using Voigt 

notation. Also, the potentials ( ) , ( )f   and ' ( )f   that appear in the damage and fatigue equations are given in 

Eq. (3) for 0 1  . The global form of the above matrices and vectors are obtained by applying the standard 

assembly procedure A  and indicated without the superscript e . Appropriate choice of the elasticity tensor C  de-
fine particularization for plane stress or strain problems. Both could be considered; however, just the last one is 
used in this work. 

4 TIME INTEGRATION SCHEMES 

This section presents different time integration methods used by the semi and the fully-implicit procedures to 
solve Eq. (18). In the semi-implicit scheme, each equation is solved separately by an implicit method. Firstly, the 
damage evolution equation is solved using one of three methods presented below, namely the backward Euler, 
trapezoidal and the 2-stage second-order accurate diagonally implicit Runge-Kutta method (TR-BDF2). The dam-
age solution is replaced in the equation of motion which is solved by the standard Newmark method. Finally, the 
current displacement, velocity and damage fields are used to evaluate the fatigue by the backward Euler or trape-
zoidal methods. This procedure is repeated for each time step. The fully-implicit procedure is based on the iterative 
technique of the Newton’s method, by applying the Newmark for Eqs. (18a) and trapezoidal method for Eqs. (18b) 
and (18c). 

Consider the split of the solution time interval [0, ]T  in discrete time steps nt  with time increments given by 

1 0n nt t t     for 0,1,...n  . The global approximations for the variables are denoted at time step 1nt   as 

1 1 1 1 1 1 1 1
ˆˆˆ ˆ( ), ( ), ( ) and ( )n n n n n n n nt t t t           u u u u    . (30) 

The integration procedures used in Eq. (18) are presented in the following sections. The semi and fully-implicit 
algorithms are summarized at the end of their respective Sections. 

4.1 Semi-implicit Scheme 

This section presents the time integration procedures for Eq. (18) used in the semi-implicit scheme. 

4.1.1 Damage Evolution Equation 

The simplest method for time integration of Eq. (18b) in global form is the forward Euler, whose explicit 
scheme of evolution is given by 

1 1
1 , , , ,( ) ( ) ( ) ( )n n c n n b n c nt t    


         I M P K M w w , (31) 

where I  is an appropriate identity matrix. In a very similar way, now considering the right-hand side in the current 
time step, we have the implicit backward Euler. In this case, the time-marching rule is given by the following system 
to be solved at each time step 
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, 1 , 1 1 , 1 , 1( ) ( )n c n n n b n c nt t       
         M P K M w w . (32) 

Performing an average between the above two Euler methods, we obtain the implicit trapezoidal method. Un-
like the Euler methods that are only first order accurate for linear problems, this method is second order accurate 
due to its symmetric approximation. Applying the trapezoidal method in Eq. (18b) results in the following time 
evolution rule: 

, 1 , 1 1 , ,

, 1 , c, 1 c,

( ) ( )
2 2

( ) ( ).
2 2

n c n n n c n n

b n b n n n

t t

t t
      

 

                  
    

M P K M P K

w w w w
 (33) 

This work also proposes the use of the 2-stage second-order accurate diagonally implicit method, or simply 
TR-BDF2 method. As the backward Euler, the TR-BDF2 is a L-stable method, indicated for the time stiff problems 

(LeVeque, 2007). The first stage consists of the trapezoidal method applied over t /2 obtaining the solution * . 

In the second stage, the solution is updated by solving the following system: 

, 1 , 1 1 * , 1 , 1
4 1( ) ( )

3 3 3 3n c n n n b n c n
t t

        
                  
M P K M w w . (34) 

Unlike the others, this method requires the solution of two linear systems at each time step. 
The above operators depend on the current variables, an exception is the forward Euler. However, we use the 

values at the previous time steps in the semi-implicit scheme. For example, in Eq. (32) is used n , nu  and n  instead 

of 1n  , 1nu  and 1n , respectively. This makes possible to perform the assembly of the operators, and thus the 

time integration. In this way, the backward Euler method applied to the damage equation becomes 

, , 1 , ,( ) ( )n c n n n b n c nt t   
         M P K M w w . (35) 

The same idea is used for all the above methods. 

4.1.2 Equation of Motion 

Consider the system of ordinary differential equations Eq. (18a) given in the global form by 

ˆˆ ˆˆu v a   Mu K u K u w Mf  . (36) 

In order to approximate the solution for the displacement 1nu , the implicit standard Newmark procedure is 

adopted (Newmark, 1952). In this method, the acceleration and velocity are evaluated using the updated values of 
the displacement by 

1 1 1 2 3( )n n n n n      u u u u u   , (37) 

1 4 1 5 6( )n n n n n      u u u u u   , (38) 

where the coefficients j ( 1, ,6)j    are given in terms of the Newmark coefficients   and   (we assume the 

values 0.5   and 0.25  ) by 

1 2 3 4 5 62
1 1 1 2, , , , 1 , and 1

2 2
t

t tt
        

    
               

   
     . (39) 

Substituting the above approximations in Eq. (36), we obtain the following time-marching system: 

     1 4 1 3 2 1 6 5 4 1u v n n n n v n n n a n                 M K K u M u u u K u u u w Mf    . (40) 
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After computing the displacement, the acceleration and velocity fields are updated using Eqs. (37) and (38). 

The imposition of prescribed displacement 1( )nt u  produces the B.T.  terms in Eq. (5a). This results in an additional 

step of update, where we should impose the velocity and acceleration at the prescribed boundary as 

     and
2

1 1 1 12
( ) ( )n n n n

d d
t t

dt dt
u u u u , (41) 

where the bar symbol represents the prescribed degrees of freedom. 

4.1.3 Fatigue Equation 

For the fatigue equation Eq. (18c), we use the backward Euler and trapezoidal methods whose time evolution 
expressions are given respectively by 

1 , 1n n d nt   M M w   , (42) 

and 

 1 , 1 ,2n n d n d n
t

 
  M M w w   . (43) 

Note that both methods have basically the same computational cost, since ,d nw  can be treated as a stored vec-

tor. 
The complete algorithm for the solution of the system is summarized in Algorithm 1. 
 

Algorithm 1: Algorithm of the semi-implicit time integration scheme. 

Semi-implicit time integration scheme 

1: for t  from 0  to ft  do 

2: Given nu , nu  and n  use one of the Eqs. (32 – 34) to obtain 1n  ; 

3: Given the updated damage 1n  , solve Eq. (40) to obtain 1nu ; 

4: From the current displacement 1nu , update the acceleration 1nu  and velocity 1nu  using 

Eqs. (37) and (38), respectively; 
5: Update the prescribed velocity and acceleration using Eq. (41); 

6: Given 1nu  and 1n  , update the fatigue 1n  using Eq. (42) or (43); 

7: Update the time step. 
8: end 

 

4.2 Fully-implicit Scheme 

This section presents the fully-implicit scheme to solve Eq. (18) obtained from the Newton’s method. Based 
on the idea of linear approximation, such method is generally employed to solve nonlinear equations by an iterative 
sequence of linear systems (LeVeque, 2007). 

Consider a general nonlinear system given by 

( ) r v 0 . (44) 

This system is solved employing some iterative procedure instead of a direct method. Supposing that ( )iv  is 
the approximation to v  at iteration i , Newton’s method estimates the solution at iteration i  via the Taylor series 
expansion 

( )
( 1) ( ) ( 1) ( )

( )
( )( ) ( ) ( ) ...

i
i i i i

i
    


r vr v r v v v
v

. (45) 

Dropping the higher order terms and setting ( 1)( )i r v 0  results in 
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( )
( ) ( 1) ( )

( )
( )( ) ( )

i
i i i

i
  


r vr v v v 0
v

, (46) 

giving the following update step 

( 1) ( ) ( )i i i  v v v , (47) 

where ( )iv  solves the linear system 

( ) ( ) ( )( ) ( )i i i  J v v r v . (48) 

The Jacobian matrix J  and its coefficients are respectively defined as 

( )( )
( )

( ) ( )

( )( )( ) and ( )
ii

pi
pqi i

q

r
J

v

 
 

vr vJ v v
v

. (49) 

Newton’s method is summarized in Algorithm 2. 
 

Algorithm 2: Algorithm of the Newton’s method. 

Fully-implicit time integration scheme 

1: Specify an initial guess (0)
0v v  and a prescribed tolerance tol; 

2: while tol < error do 

3: Evaluate the Jacobian ( )( )iJ v  and the residue ( )( )ir v ; 

4: Solve the system ( ) ( ) ( )( ) ( )i i i  J v v r v  for ( )iv ; 

5: Update the variable ( 1) ( ) ( )i i i  v v v ; 

6: Update the iteration 1i i  ; 

7: Evaluate the error as ( ) ( ) ( 1)max ( ) , /i i ierror      r v v v ; 

8: end 

9: ( 1)iv v  

 
In order to solve Eq. (18) using the Newton’s method, the nonlinear system (residue) is defined by applying 

the Newmark in Eq. (18a) and trapezoidal method in Eqs. (18b) and (18c). This choice of time integration methods 
is due their high orders of accuracy presented. From Eqs. (33), (40), (43) and (44) the discretized nonlinear system 
is 

1 1 1 1 2 3( , , ) :
T

n n n  
    r u r r r 0 , (50) 

whose components are 

1 1 , 1 4 , 1 1 3 2 1

, 1 6 5 4 , 1 1

: [ ] [ ]
[ ] ,
u n v n n n n n

v n n n n a n n

    
  

  

  

      
    

r M K K u M u u u
K u u u w Mf

 
   (51) 

2 , 1 , 1 1 , ,

, 1 , c, 1 c,

: ( ) ( )
2 2

( ) ( ),
2 2

n c n n n c n n

b n b n n n

t t

t t
      

 

                   
    

r M P K M P K

w w w w
 (52) 

1 , 1 ,: ( ) ( )
2n n d n d n
t

 
   r M w w    . (53) 

The Jacobian matrix can be written in the following block matrix form: 
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11 12 13

21 22 23

31 32 33

 
    
 
  

J J J
J J J J

J J J
, (54) 

with coefficients defined by 

1 2 3
1 1 1
, and , 1,2, 3p p p

p p p
n n n

p
  

  
   

  
r r r

J J J
u 

. (55) 

For the e -th element, the coefficients of the Jacobian matrix are 

11 1 4
e e e e

u v   J M K K , (56) 

12
0 0

1 ˆ ˆ2 (1 )( ) ( )
e e

e e e e T e e e e c e T e e e
u u u

g
d d  




 
 

      J N B CB u N B B B , (57) 

13
e J 0 , (58) 

21
1 ˆ ˆ(1 )( ) ( ) ( ) ,

e

e e e e T e e T e e
u ut d



   J N N B u C B  (59) 

22 ˆ( ) ( )( )
2 2
1 ˆˆ( )( ) ( ) ,

2

e

e

e e e c e T e e e e

e e e e e T e e
c

gt t d

t g d

    

  













     

  





J M P B B N

N N N N
 (60) 

23
1 ( ) ( )

2 e

e e T e et d 


  J N N , (61) 

31 ˆ ˆ ˆ ˆ(1 )( )( ) ( ) ( )
2 ˆe

e e e e e e T e e T e e e
u ue e

u

t a d  


    J N N N CB u CB u 0
CB u  , (62) 

32 ˆ ˆ(2 1) ( ) ( )
2 e

e e e e e e T e e
u

t a d


  J N CB u N N  , (63) 

33
e eJ M , (64) 

where eB  and 1/  in Eqs. (57) and (60) are given respectively by 

,

,y 2
1

,y ,

ˆ 0
1ˆ2 0 and

(1 )ˆ ˆ

e e
i x i

e e e
i i

i e e e e
i i i x i

N
cN

N N

 


   

          

B . (65) 

The Jacobian matrix is non-symmetric, since 31 13
TJ J  for any ˆ u 0 . 

5 NUMERICAL RESULTS 

This section presents the numerical results obtained using the semi and fully-implicit time integration 
schemes. The problem consists of the I-shaped specimen with dimensions, boundary conditions and cartesian sys-
tem of coordinates given in Figure 1. A similar problem disregarding the effects of fatigue was proposed in Chiarelli 
et al. (2017). We use a mesh of quadratic quadrilaterals (serendipity element of 8   nodes) totalizing 2700 

nodes. In the present simulation, the following material and phase field parameters are used: E 180GPa,  0.3, 
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 7300Kg/m3,   0.5mm, 75 10b   Ns/m2, 45 10c   m/Ns, cg  6000N/m and 98 10a   m2. For the 

iterative procedure in the fully-implicit scheme, the tolerance is 810tol  . 

 
 

Figure 1: I-shaped specimen geometry and boundary conditions. 
Attention to detail A, where there is a reduction of 2.5% in the original width. 

In order to verify the evolution of damage and fatigue, two prescribed displacement cases are considered. In 
the first one, a displacement of -0.1mm/s is incrementally applied through the time steps on the bottom edge, de-
nominated case A. In the second, a sinusoidal displacement (given in millimeters) of 

0.167 sin(10 )    for 0 0.05
( )

0.075 sin(20 1.6) 0.092 for 0.05
t t

t
t t



      
u , (66) 

is applied on the same edge, called case B. A convergence study of the time integration schemes is considered in the 
first case. For future use, the effective and softened stress are defined as 

eff  CE , (67) 

2(1 ) sym( )sof cb g          CE D , (68) 

where the last term in Eq. (68) is expressed as a vector using Voigt notation. The last two terms in Eq. (68) have a 
small contribution to the values of the softened stress. The results are presented in the following sections. 

 
 

Figure 2: Damage evolution in the specimen under monotonic displacement. 
Results along the time: (a) 1.450 ;t s  (b) 1.470 ;t s  (c) 1.473 ;t s  (d) 1.475t s  and (e) 1.477 .t s  

 

Values obtained using the fully-implicit scheme and time increment of 310t   . 

5.1 Case A 

The monotonic displacement of -0.1mm/s is incrementally applied along the time range [0,1.6]s  on the bottom 

edge aims to verify the growth of the crack path in the specimen without a remarkable influence of fatigue. For 
illustrative purposes, Figure 2 exhibits the crack path evolution for particular time steps. Figure 3 illustrates the 
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damage, fatigue and stress evolution for the considered time interval in the central node of the specimen. Note the 
fast growth of the damage levels for a small increment of time close to 1.4 st  , characterizing a time stiff behavior. 
Also, observe that the damage variable increases quickly over the time without any significant fatigue values, while 
the effective stress rise as time progresses. In this case, failure occurs due to the high stress levels, as expected from 
a tensile test. If the fatigue equation is disregard, the damage response is qualitatively the same, their values, how-
ever, are slightly smaller. 

This problem is solved using different time integration schemes. It was verified that the use of any Runge-Kutta 

explicit method results in numerical instability even for small increments of time as 810t   . In order to avoid 
the use of small time increments, an alternative is adopting implicit time methods. Therefore, we use the Newmark 
procedure to solve the motion equation and the procedures previously presented in Section 4.1 for the damage and 
fatigue equations. In particular for the fully-implicit scheme, these last two equations are solved by using the trap-
ezoidal method. 

  
 

Figure 3: (a) Damage and fatigue. (b) Vertical stress. Results along the time at the central node of the specimen. 

 

Table 1: Convergence rates for different combinations of time integration methods and the related CPU time obtained in 

1.5t s  for time increment of 310t   . 

Scheme 
Equation Convergence ratio 

CPU 
Time 

Fa-
tigue 

Damage 
Displace-
ment 

Veloc-
ity 

Dam-
age 

Fatigue 

Semi 

BE 
BE 1.62 1.30 1.64 0.78 2580 
TR 1.98 1.71 1.97 0.21 2558 

TR-BDF2 1.58 1.38 1.76 0.99 2601 

TR 
BE 1.63 1.33 1.64 0.53 2585 
TR 1.92 1.45 1.15 0.28 2587 

TR-BDF2 1.58 1.40 1.36 0.97 2626 
Fully TR TR 2.07 2.06 2.06 2.06 22512 

 
The use of different combinations of methods and schemes resulted in the convergence rates and CPU times 

given in Table 1. The convergence rates are obtained using the relative error evaluated at 1.5t s , given for a 
generic vector s  and the semi-norm by 

ref 2

ref 2

( ) with d



     

s s
s s s s

s
, (69) 

where the reference values refs  are computed using the fully-implicit scheme with time increment of 410t   . 
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Figure 4: Error by using: (a) Trapezoidal and TR-BDF2 in the semi-implicit. (b) Fully-implicit. 
Results along the time increment in log scale. 

 
Due to the decoupled time integration in the semi-implicit scheme, the convergence rates are below the ex-

pected theoretical values, even with the use of second-order methods. Arising from the stiff behavior, the use of the 
L-stable TR-BDF2 method presented the highest average rates of convergence when compared to the others meth-
ods for the damage equation. No significant difference is observed in the rates of the trapezoidal method in the 
fatigue equation. In general, all combinations of methods presented the same computational cost. The error values 
when using trapezoidal and TRBDF2 for fatigue and damage equations are illustrated in Figure 4a. In order to ob-

tain error below 5%  for the velocity, a time increment of 410t    is required. For the other variables as displace-

ment, damage and fatigue, the increment of 45 10t     is sufficient. 
The full scheme shows quadratic rate, as expected due the use of second-order accurate methods. The error 

values illustrated in Figure 4b are below 0.5%  for all variables. However, the computational cost is approximately 

850%  higher than the semi-implicit scheme. In this analysis, the Jacobian matrix conditioning number had values 

of order 17( ) 10J . 

5.2 Case B 

In this case, the sinusoidal displacement given in Eq. (66) is applied along the time range [0,2.5]s . The objective 

of this new boundary condition is to verify the growth of the crack path in the specimen with influence of the fatigue. 
For illustrative purposes, Figure 5 shows the damage evolution in the I-shaped specimen for particular time steps. 

 

 
 

Figure 5: Damage evolution in the specimen under sinusoidal displacement. 
Results along the time: (a) 1 ;t s  (b) 2.3 ;t s  (c) 2.36 ;t s  (d) 2.37t s  and (e) 2.38 .t s  
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Values obtained using the semi-implicit scheme and time increment of 310t   . 

  
 

Figure 6: (a) Damage and fatigue. (b) Softened and effective stress levels. 
Results along the time at the central node of the specimen under sinusoidal prescribed displacement. 

 
Conversely to the monotonic displacement, the growth of damage is largely due to fatigue. This can be seen in 

Figure 6a, which illustrates the evolution of damage and fatigue along the time interval for the central node. Note 
that the fatigue grows at an approximately constant rate over the time, reaching large values close to failure. This 
results in an abruptly growth of the damage close to 2.35s, characterizing again the stiff behavior of the damage 
equation. In absence of fatigue, the damage grows only due the contribution of the elastic energy and their value is 
limited by 0.1 . Figure 6b shows the effective and softened stress levels evaluated at the central node of the spec-
imen. The effective stress does not exhibit remarkable growth in magnitude over time when compared to the case 
A, except near failure. 

6 CONCLUSIONS 

This work proposed the use of semi and fully-implicit schemes to perform the time integration of the phase 
field equations of damage and fatigue presented in Boldrini et al. (2016). The explicit Runge-Kutta methods showed 

to be unfeasible for 2D examples, presenting instability with time increments as small as 810t   . An alternative 
to avoid the use of small time steps maintaining stability is to use implicit methods. The fully-implicit method pre-
sented quadratic convergence and lower errors when compared to the semi-implicit procedures. However, the 
fully-implicit scheme has some drawbacks: 
• The Jacobian of Newton’s method is hard to obtain and becomes particular to the problem; 
This model deals with phenomena from micro to macro-scale, then the resulting iterative system of the Newton’s method is poorly 

conditioned, even with the use of preconditioners; 
• The Jacobian matrix is non-symmetric; 
• There is a high computational cost and memory demand, since it is necessary to solve a large system in each Newton’s iteration; 

The semi-implicit procedure overcomes these difficulties. In this scheme, the equations are decoupled and 
solved separately by suited implicit time integration procedures. Different alternatives were used for the damage 
equation and the TR-BDF2 method showed better accuracy with no significant additional cost. This method is L-
stable and therefore suitable to solve a stiff problem as the damage equation. For the fatigue evolution equation, 
the trapezoidal and backward Euler methods performed similarly. For the equation of motion, only the standard 
Newmark procedure was used. The convergence rates for the semi-implicit scheme were below ranging close to 
the linear rate in most of the equations. Accurate responses (error below 5% ) for displacement, damage and fatigue 

are possible to obtain by using time increments of 45 10t    . Although the velocity has high errors, this fact 
did not affect the displacement solution and consequently the damage and fatigue variables. 

Although not applied in this work, an iteration of correction in the semi-implicit procedure would reduce er-
rors. In particular, the prediction/correction Adams-Bashforth/Moulton methods can be used to improve accuracy. 
Further study on this subject will be carried out in the future. 

In general, the numerical results for the I-shaped specimen for tensile and fatigue tests show the expected 
behavior qualitatively. The model proposed in Boldrini et al. (2016) makes possible to represent the evolution of 
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the damage under cyclic loads due to the fatigue. This feature provides the identification of regions of initiation and 
propagation of cracks efficiently with a reasonable computational cost. 

As the next step, we will adjust this model quantitatively with experimental tests. 
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