
9(2012) 497 – 513

Nonlocal continuum mechanics formulation for axial, flexural,
shear and contraction coupled wave propagation in single walled
carbon nanotubes

Abstract

This paper presents the effect of nonlocal scaling parameter

on the coupled i.e., axial, flexural, shear and contraction,

wave propagation in single-walled carbon nanotubes (SWC-

NTs). The axial and transverse motion of SWCNT is mod-

eled based on first order shear deformation theory (FSDT)

and thickness contraction. The governing equations are de-

rived based on nonlocal constitutive relations and the wave

dispersion analysis is also carried out. The studies shows

that the nonlocal scale parameter introduces certain band

gap region in all wave modes where no wave propagation

occurs. This is manifested in the wavenumber plots as the

region where the wavenumber tends to infinite or wave speed

tends to zero. The frequency at which this phenomenon

occurs is called the escape frequency. Explicit expressions

are derived for cut-off and escape frequencies of all waves

in SWCNT. It is also shown that the cut-off frequencies of

shear and contraction mode are independent of the nonlocal

scale parameter. The results provided in this article are new

and are useful guidance for the study and design of the next

generation of nanodevices that make use of the coupled wave

propagation properties of single-walled carbon nanotubes.
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1 INTRODUCTION

One interesting nanostructure that has attracted a lot of attention is the carbon nanotube

(CNT). The discovery of CNTs in the 1991 [9] is regarded as a revolutionary step in ad-

vancement of nanotechnology. CNTs have outstanding mechanical, electronic, and thermal

properties that offer great potential for applications in all areas. These properties made CNTs

the central element in an array of nanostructured materials, as well as nanosensors and devices.

It has also has motivated intense research for potential applications of CNTs as structural ma-

terials [24]. For example, direct measurements using atomic force microscopy (AFM) have
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shown that the Young modulus of multi-walled carbon nanotubes is approximately 1.28 TPa

[21], which is about two orders of magnitude larger than that of steel.

Carbon nanotubes can have interesting waveguide properties at very high frequencies in the

order of Tera-Hertz (THz). At such high frequencies, continuum model based finite element

type methods cannot be adopted due to their limitation of the element size with respect to the

wavelength, which is very small at such frequencies. Lattice dynamics for direct observation

of phonons [1, 2, 10] and spectral finite element type method are more efficient and consistent

to analyze such problem [11]. The nanostructures length scales are often sufficiently small,

and hence for the applicability of classical continuum models, we need to consider the small

length scales such as lattice spacing between individual atoms, grain size, etc. Although

solution through Molecular Dynamics (MD) simulation is a possibility for such problems, its

large computational cost prohibits its use for a general analysis. The conventional continuum

models cannot handle scale effects. Hence the best alternative is to use those methods which

provides the simplicity of continuum models and at the same time incorporate the effects of

scale in such chosen continuum models [12, 20, 23, 25, 29].

An important class of modified continuummodels are those based on the concept of nonlocal

elasticity. These models allow the integration of small-size effects into classical continuum

models. The theory of nonlocal elasticity introduced by Eringen in the 1970s was originally

used to study screw dislocation and surface waves in solids [4–6]. Unlike classical continuum

models, the nonlocal elasticity theory assumes that the stress at a reference point in a body

depends not only on the strains at that point, but also on strains at all other points of the

body. This nonlocal effect becomes significant when the features of a body such as the size of an

imperfection or the length of a traveling wave become comparable to the intrinsic length scales

of the system such as the inter-atomic distance or the particle spacing of a lattice structure.

The use of nonlocal elasticity to study size-effects in micro and nanoscale structures was

pioneered by Pedisson et al. [15]. They studied the bending of micro and nanoscale beams with

the concept of nonlocal elasticity and concluded that size-effects could be significant for nano-

sized structures and that the magnitude of the size-effects greatly depends on the value of the

nonlocal parameter (which has to be determined for each material independently). Since then,

the nonlocal elasticity theory has been used by a number of researches to study size-effects on

the mechanical response of carbon nanotubes. Zhang et al. used nonlocal elasticity to show the

small-scale effects on buckling of MWCNTs under axial compression [28] and radial pressure

[27]. Sudak studied the column buckling of MWCNTs using nonlocal continuum mechanics

[18]. Other researchers have used nonlocal elasticity to study CNT vibrations [23, 29] and the

propagation of waves in CNTs [12, 14, 20, 25, 26]. From these studies, it is clear that most

wave propagation studies performed by various researchers using nonlocal continuum models

were limited to SWCNT. The previous wave propagation studies using local continuum models

[13] and nonlocal continuum models [14] have shown that the wave behavior in a SWCNT is

drastically different compared to the behavior of MWCNT. However, there is currently no

consensus on the value of the nonlocal parameter that should be used to model CNTs and this

could be the subject of further research.
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In the present paper, first order shear deformation theory (FSDT) is used, that includes the

contribution of stiffness and inertial coupling for studying the characteristic wave propagation

in carbon nanotubes. Appearance of higher order Lamb wave modes above certain cut-off

frequencies have been studied for metallic beams by Mindlin and Harrmann [22], Doyle [3] and

Gopalakrishnan [7] and for laminated composite plates by Karim et al. [11]. In the present

paper, contribution of a contractional mode along with shear mode is studied for SWCNTs.

Expression of cut-off frequencies and escape frequencies in shear mode and contractional mode

are also derived.

The paper is organized as follows. In section 2, Erigen’s nonlocal elasticity theory is

explained and the coupled wave propagation equations for SWCNT are derived including the

nonlocal scale effects. The effect of nonlocal scaling parameter (e0a) on the wave propagation

in SWCNTs and also the variation of the escape and cut-off frequencies with nanotube radius

and e0a is studied in detail. In section 3, some numerical results are presented on the wave

dispersion in SWCNTs. The expressions for the wavenumbers and wave speeds (i.e., phase

and group speeds) are also derived. The paper ends with some important observations and

conclusions.

2 MATHEMATICAL FORMULATION

2.1 Theory of Nonlocal Elasticity

The length scales associated with nano structures like CNTs are such that to apply any classical

continuum techniques, we need to consider the small length scales such as lattice spacing

between individual atoms, grain size, etc. This makes the consistent classical continuum model

formulation very challenging. The Eringen’s nonlocal elasticity theory [4, 6] is useful tool in

treating the phenomena whose origins lie in the regimes smaller than the classical continuum

models.

This theory assumes that the stress state at a reference point x = (x1, x2, x3) in the body is

regarded to be dependent not only on the strain state at x but also on the strain states at all

other points x′ of the body. This is in accordance with atomic theory of lattice dynamics and

experimental observations on phonon dispersion. The most general form of the constitutive

relation in the nonlocal elasticity type representation involves an integral over the entire region

of interest. The integral contains a nonlocal kernel function, which describes the relative

influences of the strains at various locations on the stress at a given location. The constitutive

equations of linear, homogeneous, isotropic, non-local elastic solid with zero body forces are

given by

σkl,k +ρ(fl − ül) = 0 (1)

σkl(x) = ∫
V
α(∣x − x′∣, ξ)σc

kl(x′)dV (x′) (2)

σc
kl(x′) = λerr(x′)δkl + 2µekl(x′) (3)
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ekl(x′) =
1

2
(∂uk(x

′)
∂x′l

+ ∂ul(x
′)

∂x′k
) (4)

Equation (1) is the equilibrium equation, where σkl, ρ, fl and ul are the stress tensor,

mass density, body force density and displacement vector at a reference point x in the body,

respectively, at time t. Equation (3) is the classical constitutive relation where σc
kl(x′) is

the classical stress tensor at any point x′ in the body, which is related to the linear strain

tensor ekl(x′) at the same point through the lame constants λ and µ. Equation (4) is the

classical strain-displacement relationship. The only difference between equations (1)-(4) and

the corresponding equations of classical elasticity is the introduction of equation (2), which

relates the global (or nonlocal) stress tensor σkl to the classical stress tensor σc
kl(x′) using the

modulus of nonlocalness. The modulus of nonlocalness or the nonlocal modulus α(∣x − x′∣, ξ)
is the kernel of the integral equation (2) and contains parameters which correspond to the

nonlocalness [16]. A dimensional analysis of equation (2) clearly shows that the nonlocal

modulus has dimensions of (length)−3 and so it depends on a characteristic length ratio a/ℓ
where a is an internal characteristic length (lattice parameter, size of grain, granular distance)

and ℓ is an external characteristic length of the system (wavelength, crack length, size or

dimensions of sample) [4]. Therefore the nonlocal modulus can be written in the following

form:

α = α(∣x − x′∣, ξ), ξ = e0a
ℓ

(5)

where e0 is a constant appropriate to the material and has to be determined for each material

independently [4].

Making certain assumptions [4], the integro-partial differential equations of nonlocal elas-

ticity can be simplified to partial differential equations. For example, equation (2) takes the

following simple form:

(1 − ξ2ℓ2∇2)σkl(x) = σc
kl(x) = Cklmnεmn(x) (6)

where Cijkl is the elastic modulus tensor of classical isotropic elasticity and εij is the strain

tensor. where ∇2 denotes the second order spatial gradient applied on the stress tensor σkl,k
and ξ = e0a/ℓ. The validity of equation (6) has been justified by comparing the expressions

for frequency of waves from the nonlocal model above with those of the Born-Karman model

of lattice dynamics [4]. Eringen reports a maximum difference of 6% and a perfect match for

nonlocal constant value of e0 = 0.39 [4]. Sudak [18] proposed that e0 = 112.7 for the critical axial
strain of a double walled carbon nanotube. To the best of authors knowledge, no experiments

have been conducted on CNT to determine the value of e0. Wang and Hu [19] proposed that

e0 = 1/
√
12 and used this value in the non-local beam model. Zhang et al. [29] estimated

that e0 ≈ 0.82 by matching the theoretical buckling strain obtained by the nonlocal thin shell

model obtained by Zhang et al. [28] to those from the molecular mechanics simulations given

by Sears and Batra [17]. Wang [20] estimated that e0a < 2.0 nm (which give e0 = 14.08) for a
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SWCNT wave propagation at frequencies grater than 10 THz. e0, which is a nonlocal scaling

parameter, which has been assumed as a constant appropriate to each material in published

literature.

2.2 Derivation of the Nonlocal Governing Partial Differential Equations

The displacement field for axial and transverse motion based on first order shear deformation

theory (FSDT) and thickness contraction is given by

u(x, y, z, t) = u0(x, t) − zϕ(x, t) (7)

w(x, y, z, t) = w0(x, t) + zψ(x, t) (8)

where u and w are the axial and transverse displacements, respectively, at a material point. u0

is the beam axial displacement along the reference plane, w0 is the transverse displacement on

the reference plane, ϕ is the curvature- independent rotation of the beam cross-section about

Y -axis and ψ = εzz is the contraction/elongation parallel to Z-axis (shown in Fig. 1).

Figure 1 Mathematical and structural idealization of the single walled carbon nanotube (SWCNT) showing
the degree of freedom defined on both the discrete structure and its equivalent continuum structure.
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The strains are obtained as

εxx =
∂u0(x, t)

∂x
− z ∂ϕ(x, t)

∂x
(9)

εzz = ψ(x, t) (10)

εxz = −ϕ(x, t) +
∂w0(x, t)

∂x
+ z ∂ψ(x, t)

∂x
(11)

Using Hamilton’s principle and Eqs. (1) and (2), the governing wave equations can be

obtained as The nonlocal constitutive relation for isotropic materials is given as [16]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σxx
σzz
τxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
− (e0a)2

∂2

∂x2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σxx
σzz
τxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

C11 νC12 0

νC12 C22 0

0 0 C66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

εxx
εzz
γxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(12)

where, σxx and σzz are the normal stresses in x and z directions respectively and τxz is the

in-plane shear stress. For the case of an isotropic plate, the expressions for Cij in terms of

Young’s modulus E and Poisson’s ratio ν are given as C11 = C12 = C22 = E/(1 − ν2) and

C66 = E/(2(1 + ν)).
The potential and kinetic energies are given as

ΠE = 1

2
∫
V
(σxxεxx + σzzεzz + τxzγxz)dV

= 1

2
∫

L

0
∫
A
(σxxεxx + σzzεzz + τxzγxz)dxdA

(13)

ΓE = 1

2
ρ∫

V
(u̇2 + ẇ2)dV

= 1

2
ρ∫

L

0
∫
A
([u̇0(x, t) − zϕ̇(x, t)]2 + [ẇ0(x, t) + zψ̇(x, t)]2)dxdA

(14)

assuming constant cross-sectional area of SWCNT,

ΠE = 1

2
A∫

L

0
(σxxεxx + σzzεzz + τxzγxz)dx (15)

ΓE = 1

2
ρA∫

L

0
([u̇0(x, t) − zϕ̇(x, t)]2 + [ẇ0(x, t) + zψ̇(x, t)]2)dx (16)

Using Hamilton’s principle,

∫
t2

t1
δ£Edt = ∫

t2

t1
(δΓE − δΠE)dt = 0 (17)
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and Eqs. (9 )-(11) and (12), and the fundamental lemma of calculus of variations, the nonlocal

governing equations of motion are derived as:

δu0 ∶ I0
∂2u0

∂t2
− I0(e0a)2

∂4u0

∂t2∂x2
− I1

∂2ϕ

∂t2
+ I1(e0a)2

∂4ϕ

∂t2∂x2

− C11J0
∂2u0

∂x2
+C11J1

∂2ϕ

∂x2
−C12J0

∂ψ

∂x
= 0

(18)

δψ ∶ I2
∂2ψ

∂t2
− I2(e0a)2

∂4ψ

∂t2∂x2
+ I1

∂2w0

∂t2
+ I1(e0a)2

∂4w0

∂t2∂x2
+C12J0

∂u0

∂x
−C12J1

∂ϕ

∂x

+C22J0ψ −C66J1 (
∂2w0

∂x2
− ∂ϕ
∂x
)C66J2

∂2ψ

∂x2
= 0

(19)

δw0 ∶ I0
∂2w0

∂t2
− I0(e0a)2

∂4w0

∂t2∂x2
+ I1

∂2ψ

∂t2
− I1(e0a)2

∂4ψ

∂t2∂x2

−C66J0 (
∂2w0

∂x2
− ∂ϕ
∂x
) −C66J1

∂2ψ

∂x2
= 0

(20)

δϕ ∶ I2
∂2ϕ

∂t2
− I2(e0a)2

∂4ϕ

∂t2∂x2
− I1

∂2u0

∂t2
+ I1(e0a)2

∂4u0

∂t2∂x2
−C66J0 (

∂w0

∂x
− ϕ)

−C66J1
∂ψ

∂x
+C11J1

∂2u0

∂x2
−C11J2

∂2ϕ

∂x2
+C11J1

∂ψ

∂x
= 0

(21)

where

Jp = ∫
2π

0
∫

R+h

R−h
zprdrdθ, (22)

Ip = ∫
2π

0
∫

R+h

R−h
ρzprdrdθ (23)

Here z = r sin θ and p = 0,1,2. One can substitute e0a = 0 in the equations (18)-(21), to

recover the local or classical coupled equations for the SWCNTs.

2.3 Wave Dispersion Analysis

2.3.1 Computation of Wavenumbers

Using discrete Fourier transformation (DFT) for the temporal field, the spectral solution for

primary displacement field variables can be expressed as

d (x, t) = d̂ (x,ω) e−j(kx−ωt) (24)
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where d = {u0 ψ w0 ϕ}T is the generic displacement vector as a function of (x, t) and

d̂ = {û0 ψ̂ ŵ0 ϕ̂}T represents the the spectral amplitude vector corresponding to generic

displacement vector as a function of (x,ω). d̂ (x,ω) is the frequency domain amplitude vector

of the CNTs. k is the wavenumber and ω is the angular frequency of the wave motion and

j =
√
−1.

Substituting Eqs. (24) in the governing equations of motion of SWCNT (see Eqs. (18)-(21)

yields four homogeneous equations in terms of û, ψ̂, ŵ and ϕ̂ as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

û0

ψ̂

ŵ0

ϕ̂

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(25)

where [Qab], (a, b = 1,2,3,4) are given in appendix A. The wavenumbers and hence the wave

speeds (i.e., phase and group speeds) are solved from Eq. (25) by using Polynomial Eigenvalue

Problem (PEP) [3, 7, 8, 11, 13, 22]. Equating the determinant of matrix [Qab] to zero (for

the non-trivial solution of d̂ will give the characteristic polynomial in terms of wavenumber k

of the order 8, solution of which is quite difficult. PEP converts the characteristic polynomial

equation into a matrix of size 4×4, whose eigen values form the solution of the equation. After

obtaining the wavenumbers, the wave speeds are extracted. The details of computation of

wavenumbers using PEP are as follows.

[S2]k2 + [S1]k + [S0] = 0 (26)

where

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S
(11)
2 0 0 S

(14)
2

0 S
(22)
2 S

(23)
2 0

0 S
(32)
2 S

(33)
2 0

S
(41)
2 0 0 S

(44)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

[S1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −jC12J0 0 0

jC12J0 0 0 −j(C12 −C66)J1
0 0 0 jC66J0
0 j(C12 −C66)J1 −jC66J0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(28)

[S0] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I0ω
2 0 0 −I1ω2

0 −C22J0 + I2ω2 I1ω
2 0

0 I1ω
2 I0ω

2 0

−I1ω2 0 0 −C66J0 + I2ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(29)

The elements of matrix [S2] are given in appendix B. This form is amenable to solution

of wavenumbers through PEP. From Eq. (26), we can clearly see the dependence of nonlocal

scale parameter e0a on wavenumber. The plot wavenumber vs frequency is called the Spectrum
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curve and in this figure, the frequency at which the imaginary part of wavenumber becomes

real is called as cut-off frequency. The cut-off frequencies of this SWCNTs are obtained by

setting k = 0 in the dispersion relation (Eq. (26)) i.e., for the present case of PEP one can set

Det([S0]) = 0, for the cut-off frequencies as

ωaxial
c = 0, ωflexural

c = 0 (30)

ωcontraction
c =

¿
ÁÁÀ C22I0J0

I0I2 − I21
, ωshear

c =

¿
ÁÁÀ C66I0J0

I0I2 − I21
(31)

Fig. 1 shows the spectrum relation plot as a function of nonlocal scale parameter e0a. From

the figure, we see that at certain frequencies, the wavenumber is tending to infinity and this

frequency value decreases with increase in the scale parameter. Its value can be analytically

determined by looking at the wavenumber expression and setting k → ∞. This accounts to

setting the Det[S2] = 0, which gives

ωaxial
e = 1/e0a

√
C66

[2(I0I2 − I21)
√
X2 − 4I1J1X1 + 4X0 − 2I0I2J0J2 +X1 − 2I1J1]

1/2 (32)

ωflexural
e =

√
C66

e0a
[
√
X2 − 4I1J1X1 + 4X0 − 2I0I2J0J2 −X1 + 2I1J1

2(I21 − I0I2)
]
1/2

(33)

ωshear
e = 1/e0a

√
C11

[2(I0I2 − I21)
√
X2 − 4I1J1X1 + 4X0 − 2I0I2J0J2 +X1 − 2I1J1]

1/2 (34)

ωcontraction
e =

√
C11

e0a
[
√
X2 − 4I1J1X1 + 4X0 − 2I0I2J0J2 −X1 + 2I1J1

2(I21 − I0I2)
]
1/2

(35)

where X2 = I20J2
2 + I22J2

0 ; X1 = I0J2 + I2J0; X0 = I0I2J2
1 + I21J0J2. Here ωe is called escape fre-

quency or sometimes asymptotic frequency. Differentiating the Eq. (26 ) with respect to the

wave frequency (ω), one can obtain the group speeds as

2ω ((e0a)2k2 + 1) [H]Cg + 2k[S2] + [S1] = 0 (36)

Here

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I0 0 0 −I1
0 I2 I1 0

0 I1 I0 0

−I1 0 0 I2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(37)

where Cg = (∂ω/∂kω) is the group speed of a wave in SWCNT and the matrices [S2], and [S1]
are given in Eqs. (27 ) and (28 ), respectively. This is again a PEP in terms of Cg and one can
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solve it for group speeds of respective modes (i.e., for axial, flexural, shear and contraction),

which is again a function of nonlocal scale parameter.

The phase speed is calculated from the definition as

Cp = Re(
ω

kω
) (38)

The detail effect of the nonlocality on wave speeds of single walled carbon nanotubes will

be discussed in the next section.

3 RESULTS AND DISCUSSION

In this section, numerical experiments are presented to analyze the wave properties of SWC-

NTs. First, the wavenumber, phase and group speeds are obtained for SWCNT from local

and nonlocal elastic theories. Following Wang [20], the nonlocal parameter e0a should be less

than 2.0 nm, so that here in the simulation procedure we choose e0a = 0 nm and 0.5 nm. The

spectrum and dispersion curves are plotted for e0a = 0 nm and 0.5 nm.

Fig. (2) shows the real and imaginary parts of the wavenumber of SWCNT obtained from

both local and nonlocal models. These wavenumbers are obtained by solving the PEP given in

Eq. (26 ). Thick lines represent the real part and the thin lines show the imaginary part of the

wavenumbers. From Fig. (2), it can be seen that there are four modes of wave propagation,

namely, axial, flexural, shear and contractional. For local/classical elasticity (e0a = 0), the

wavenumbers for the axial mode has a linear variation with the frequency which is in the

tera hertz (THz) range. The linear variation of the wavenumbers denote that the waves will

propagate non-dispersively, i.e., the waves do not change their shapes as they propagate. On

the other hand, the flexural wavenumbers have a non-linear variation with the frequency at

low frequencies, which indicates that the waves are dispersive in nature. At high frequencies,

the flexural waves show a linear variation with frequency. However, the wavenumbers of

this flexural wave mode have a substantial real part starting from the zero frequency. This

implies that the mode starts propagating at any excitation frequency and does not have a

cut-off frequency. The shear and contractional wave modes, however, have certain frequency

band within which the corresponding wavenumbers are purely imaginary. Thus, these modes

does not propagate at frequencies lying within this band. Both the shear and contraction

wavenumbers have a substantial imaginary part along with the real part, thus these waves

attenuate as they propagate. In the present study for a 3.5 nm radius SWCNT, we have

shear cut-off frequency at 0.8545 THz and contraction cut-off frequency at 1.404 THz. The

values of the cut-off frequency are calculated from Eq. (31 ). It can be observed from Eq. (31

) that these frequencies are independent of the nonlocal scaling parameter, and hence same

frequencies are obtained from both local and nonlocal theories.

For e0a = 0, which is the case of local theory of elasticity solution, wavenumbers increase

monotonically with the increase in frequency, which is shown in Fig. 2 and correspondingly,

the wave speeds, shown in Figs. 3 and 4 increases with increase in wave frequency. However,

at higher frequencies, they attain a constant value. However, with the introduction of scale
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Figure 2 A Comparison of the wavenumber dispersion in SWCNT obtained from local and nonlocal elasticity
theories.

effects (for present analysis e0a = 0.5 nm), the wave behavior is altered drastically. All the wave

modes escapes to infinity (as shown in Fig. 2), at a particular frequency called the ”escape

frequency”, beyond this frequency there is no wave propagation i.e, the wavenumber before

escape frequency are real and after that are purely imaginary. Thus, scale parameter introduces

the escape frequency where the wavenumber k tends to infinite and the corresponding wave

speeds (i.e, phase and group speeds) tends to zero as shown in Figs. (3) and (4).
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Figure 3 A Comparison of the phase speed dispersion in SWCNT obtained from local and nonlocal elasticity
theories.
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Figure 4 A Comparison of the wavenumber dispersion in SWCNT obtained from local and nonlocal elasticity
theories.
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waves.

Fig. (5) shows the variation of escape frequencies of flexural and shear wave modes with

the nonlocal parameter. The value of escape frequency decreases with increase in the scale

parameter e0a, for all the wave modes. The escape frequencies of the axial and flexural waves

are same and that of the shear and contraction waves are also same. It shows that as e0a

increases, the escape frequency decreases. At higher values of e0a, escape frequencies approach

to very small values. as shown in Fig. (5). Equations (32) − (35) gives the expressions for

escape frequencies of all waves in SWCNT. From these expressions it is clear that, escape
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frequency values are independent of SWCNT diameter see Fig.(6), for all wave modes. The

detailed variation in escape frequency for SWCNTs as a function of non-local scale parameter

is shown in Figs. 6(a)-(d) for e0a = 0.5 nm, 1.0 nm, 1.5 nm and 2.0 nm, respectively. It shows

the effect of the radius of the nanotube and nonlocal scaling parameter (e0) on the escape

frequency of SWCNTs more clearly. The escape frequencies for both axial and flexural modes

are same that of the shear and contraction waves is also same and these are constant with

respect to the radius of the CNT. These values of escape frequency are decreasing with the

nonlocal scale coefficient e0a see Fig.6(a)-(d) and are still constant with radius of CNT.

The variation of the cut-off frequencies of shear contraction wavemodes with radius (R) of
SWCNT are shown in Fig. (7). This figure shows that, as the radius of the nanotube increases,

the cut-off frequencies decrease and at higher values of R, the cut-off frequencies approach to

a very small values. Hence, it can be concluded that for large values of scale parameter, shear

deformation on CNT has negligible effect and CNT behaves like more like elementary beam.
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Figure 6 Effect of radius of SWCNT and nonlocal scaling parameter on the escape frequencies of axial, flexural,
shear and contraction wave modes.

Latin American Journal of Solids and Structures 9(2012) 497 – 513



510 S. Narendar et al / Nonlocal continuum mechanics formulation for coupled wave propagation in single walled nanotubes

0 2 4 6 8 10
0

5

10

15

Radius of SWCNT [nm]

C
ut

−
of

f f
re

qu
en

cy
 [T

H
z]

 

 
Contraction Mode
Shear Mode

Figure 7 Cut-off frequency variation of the shear and contraction wave modes.
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Figure 8 (a) Axial, (b) contraction, (c) flexural and (d) shear wave modes (at 10.067 THz wave frequency)
for a (30,30) SWCNT of length 15.282 nm consisting of 7500 carbon atoms.
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Fig. 8 shows the wave modes at 10.067 THz wave frequency of a (30,30) SWCNT of length

15.282 nm consisting of 7500 carbon atoms. Fig. 8a is for axial wave mode case, Fig. 8b is for

contraction, Fig. 8c is for flexural and Fig. 8d is for shear wave modes of this SWCNT. From

these figures one can clearly visualize the type of wave mode and its effect on the CNT.

Finally, wave propagation in CNTs has been a topic of great interest in nanomechanics,

where the equivalent continuum models are widely used. In this manuscript, we examined

this issue by incorporating the nonlocal theory into the classical model. The influence of the

nonlocal effects has been investigated in details. The results are qualitatively different from

those obtained based on the local/classical theory and thus, are important for the development

of future CNT-based nanodevices.

4 CONCLUSIONS

The effect of nonlocal scaling parameter on the coupled wave propagation in single-walled car-

bon nanotubes (SWCNTs) is studied.. The axial and transverse motion of SWCNT is modeled

based on first order shear deformation theory and thickness contraction. The governing equa-

tions are derived based on nonlocal constitutive relations and the wave dispersion analysis

is also carried out. The nonlocal elasticity calculation shows that the wavenumber tends to

infinite at certain frequencies and the corresponding wave velocity tends to zero at those fre-

quencies indicating localization and stationary behavior. A polynomial eigenvalue problem in

wavenumbers is obtained as a function of wave frequency, nonlocal scale parameter and the

material properties of the SWCNT. Explicit expressions are derived for cut-off and escape

frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and

contraction mode are independent of the nonlocal scale parameter. The results provided in

this article are useful guidance for the study and design of the next generation of nanodevices

that make use of the wave propagation properties of single-walled carbon nanotubes.
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APPENDIX A: ELEMENTS OF MATRIX [Q]

The elements of the matrix [Q] given in Eq. (25 ) are

Q11 = −C11J0k
2 + I0ω2 + I0ω2(e0a)2k2

Q12 = −Q21 = −jC12J0k

Q13 = Q31 = 0
Q14 = Q41 = C11J1k

2 − I1ω2 − I1(e0a)2ω2k2

Q22 = −C66J2k
2 −C12J0 + I2ω2 + I2ω2(e0a)2k2

Q23 = Q32 = −C66J1k
2 + I1ω2 + I1ω2(e0a)2k2

Q24 = −Q42 = j(C66 −C12)J1k
Q33 = −C66J0k

2 + I0ω2 + I0ω2(e0a)2k2

Q34 = −Q43 = jC66J0k

Q44 = −C11J2k
2 −C66J0 + I2ω2 + I2ω2(e0a)2k2

(39)

APPENDIX B: ELEMENTS OF MATRIX [S2]

The elements of the matrix [S2] are

S
(11)
2 = −C11J0 + I0ω2(e0a)2

S
(14)
2 = S(41)2 = C11J1 − I1(e0a)2ω2

S
(22)
2 = −C66J2 + I2ω2(e0a)2

S
(23)
2 = S(32)2 = −C66J1 + I1ω2(e0a)2

S
(33)
2 = −C66J0 + I0ω2(e0a)2

S
(44)
2 = −C11J2 + I2ω2(e0a)2 (40)

Latin American Journal of Solids and Structures 9(2012) 497 – 513




