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1 INTRODUCTION

The existence of the resonance phenomena both external and internal occurs in vibrating structures as an
increased amplitude of vibrations. In general, from the engineering point of view, this type of grazing behavior is
usually unwanted also in solid bodies. Appearance of resonance generate greater complexity of a mechanical sys-
tem behavior (Nayfeh and Mook, 1979). In this paper, the study is performed to create the simulation and investi-
gation for better understating of resonance phenomenon of a periodically forced slider-spring pendulum mechan-
ical system of three degrees of freedom.

The first and the most important question to answer is what the resonance is from the point of view of me-
chanical engineering. It is a phenomenon describing the tendencies of a mechanical system to increase its amplitude
when the external excitation force acts with certain fixed frequency. This frequency of periodic excitation needs to
be close or exactly the same as the internal system’s natural frequency (such frequency is called the resonance
frequency). Such increased vibration amplitudes will only appear when the excitation is exactly the same or is a
multiple of one of the natural frequencies of the system. This phenomenon can be destructive for structures and
even solid bodies in its effects due to the fact that in certain range of parameters from the external excitation, the
forces acting on the objects highly increase. The most commonly used example of not including and wrongly treated
resonance phenomena is the collapse of Tacoma Narrows Bridge in 1940. The periodic vibration and rhythmic
twisting leaded to destruction of the construction, not only due to simple mechanical resonance, but to a more
complicated interaction between the bridge and the wind passing through it is a phenomenon called aeroelastic
flutter discovered by Robert H. Scanlan. Flutter is a dynamic instability of an elastic structure in a fluid flow caused
by positive feedback between the body's deflection and the force exerted by the fluid flow. Nevertheless, resonance
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should not be treated as the side effect phenomenon in each case. For many devices, we are able to work more
efficiently with less amount of input power. The positive side of resonance is generally used in vibrating tables for
increasing their amplitude but also all the music instruments are in favor of acoustic resonance.

In this study a nonlinear dynamical system of three degrees of freedom with a spring pendulum (Zhang et al,
2015; Plaksiy and Mikhlin, 2017) and a vibrating suspension (Aduyenko and Amel’kin, 2015) will be investigated,
as it was similarly carried out in (Sado, 2003). The mechanical systems have a variety of applications in our daily
life and they should be still investigated.

The pendulum may be suspended to the flexible element. In this system the autoparametric excitation may
occur as a result of inertial coupling. Analogous behavior happens when the mass is attached to the pendulum type
elastic oscillator, and then, it is possible to observe autoparametric nonlinear coupling between the angle of the
pendulum and elongation of the spring. All of such cases depend on the set of parameters for the investigated sys-
tem. Examples are as follows: dumping, mass ratio of components, and specification of external excitation. As a
result of system specification, the resonance phenomenon transferring the energy between system components or
their mutual excitation can appear differently.

According to Francis C. Moon, chaotic vibrations is a kind of a system behavior that despite the fact of using
fast computers there is no infinite predictability in the observed dynamics. It is now known that the motion of very
simple dynamical systems cannot always be predicted far into the future. Such motions have been labelled as cha-
otic (Moon, 1987).

For many studies of the three-degrees-of-freedom systems and chaotic behavior neither for the parametric or
autoparametric excitation have been observed. In this paper, we investigate this area by performing both analytical
and numerical solutions to describe the external and internal resonance behavior of such system.

The observations brings interesting results, summarizing that the mechanical system with partial dissipation
of kinetic energy of motion oscillates mainly periodically and quasi-periodically. The system dynamics exhibits
chaos in a close vicinity of resonance peaks of maximum amplitudes.

2 PROBLEM DESCRIPTION

We analyze the three-degrees-of-freedom dynamical system presented in Figure 1.

Our system consists of an elastic pendulum with the initial length 4, the stiffness kand damping ¢ The pendu-
lum is attached to the moving slider with the point-focused mass M. The slider moves horizontally along the xaxis.
The mass m hangs down from the end of the spring. The body of mass M (slider) is subjected to the harmonic
vertical excitation force F(£) = Fy coswt The planar mechanical system presented above has three degrees of free-
dom (Hatwal et al, 1983; Lynch, 2002; Rossikhin and Shitikova, 2006; Kartachov, 2016). The generalized coordi-
nates are assumed for the angle 8 between the pendulum spring and the vertical axis z (inclination angle), the
incremental elongation of the spring Asand the horizontal displacement x of the body of mass M.

lo

Figure 1: A variable-length forced spring pendulum system of three degrees of freedom (a), and the dimensions of
loaded (stretched or compressed) and unloaded (free) linear spring (b).

Any of the existing phenomena cannot be presented, examined and transferred to mathematical or engineering
problem in the infinitely direct way (Olejnik and Awrejcewicz, 2018). According to this fact, some assumptions
allowing for a reduction of the complexity of the analyzed problem will be made. To weaken the system’s complex-
ity, but still maintaining its basic properties we assume that:
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- friction of the slider does not exist in the dynamical system;

- energy dissipated by the frictional contact of the base and the slider vibrating on it can be compensated from an

external source of energy, for instance, determined by a control system;

- radial elongation of the spring pendulum exists;

- the spring is considered as massless, and its force of reaction described by Hooke’s law appears when it is stretched

or compressed from its free length;

- the slider has a point mass focused at the rotationally constrained end (upper) of the spring;

- excitation is caused by an external harmonic force, e.g., it can come from a magnetic field;

- mass of the spring pendulum is focused in a point at the second (lower) end of the spring;

- damping of motion is associated only with elongation of the spring of the pendulum.

We assume the almost ideal case in which the dissipation of energy by the frictional contact could be partially

compensated by an external source.

3 MATHEMATICAL MODELING

For the mathematical description of the dynamical system with a time-varying parameter, such as the variable
length of the pendulum, the Hill or Mathieu equations are often used (Nayfeh and Mook, 1979). Nevertheless, in
similar studies referring to the analyzed case, the Euler-Lagrange equation can be used (Srinivasan and Sankar,
1974).

The kinetic energy of the analyzed three-degrees-of-freedom system is calculated according to the sum of ki-
netic energies of both system bodies (see Figure 1):

UV, s,2,0,4, &) = %M:if" + %m

(:i: + §sin?d + 51900519)2 + (sﬁsinﬁ — écosﬁ)ﬂ
(1)
= %(M + m):i?2 +%m[$’2 + 292 +2¢<5sin19 + SﬁCOSﬁ)}.

The potential energy of the analyzed mechanical system is a sum of a) the energy of the linear spring, that is
accumulated after the incremental elongation Asand the static elongation A/ (static stretching or compression by

a hanging pendulum body of mass m, see Figure 1) measured from the equilibrium free length |0 of the spring and

b) the gravitational potential energy of the body of mass m on the vertical distance (As+ /)cos@between centres of
the slider and the pendulum body, i.e.,

V(¥,As,z) = %k(As + AL, — mg(As + l)cosﬁ. (2)

Taking into account that

As +Al, =s—1,, I =1+ Al, 3)
one finds
V(¥ s,z) = %k(s —1,)* — mgs cos 9. 4)

At independence of the assumed generalized coordinates yy the Lagrangian L = U - Vsatisfies the following
Euler-Lagrange equation as follows:

d| oL 0L  OR
—|— |-+ —=0Q,, for y, =|9(),s(t),z(t)|, Q. =|0,0,F coswt|, k=1..3 (5)
dt [ 9y, dy, 0y, b g [ ] g [ 0 }

where @k is understood to be the reminder of the A-th generalized force when viscous damping of motion of the
pendulum body in sdirection is accounted for with the Rayleigh dissipation function:

d<5_l0)
dt

2
2
[}
5 (6)

R(D,5,i) = %c
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After applying the equations (1),(4) and (6) to the Euler-Lagrange equation (5), for each generalized coordi-

nate yx, we get the three coupled differential equations of motion for each degree of freedom.
1. For the generalized coordinate 6 (pendulum angle):

s + 250 + #cost) 4 gsind = 0. (7
2. For the generalized coordinate S (pendulum elongation):

m(§+fisin19—s192—gcosﬁ)—i—cé—&—k(s—lo)zo. (8)
3. For the generalized coordinate X (slider displacement):

(M + m):’zﬁ + mcosﬂ(sig + 2é19) + msinﬁ(é’ — 3192) = F|, cos wt. 9)

Equations (7)-(9) can be algebraically decoupled with respect to the second derivative, thus:

P = —1<2195' + pcost + gsinﬁ),
s

'5':—£5—£<g—lo)—§—3192—psinﬁ—i—gcosf}7 (10)
m m

= p,

where p = M~ (¢ + k(s — 1 ))sind + FyM " cos wt expresses acceleration of the slider.

The system (10) of three second order ordinary differential equations is highly non-linear due to multiplica-
tion of state variables and some trigonometric functions. It describes the continuous system dynamics that will be
subject to an analysis of long term solutions that will occur far and near its resonance zones. Numerical solution of
the system of equations has to be preceded by its transformation to a system of six first order differential equations,
assumption of some initial conditions for the six-element state vector and also by the change of the variable s= As
+ Als+ b, so the numerical solution referred to the second degree of freedom (the state variable s) will represent
an incremental elongation of the spring, i.e., As, about its equilibrium length 4. The system dynamics will be inves-
tigated in the next section.

4 RESULTS

In order to solve numerically the system of ordinary differential equations (10), /soda from the FORTRAN li-
brary odepackis used. Computations are carried out for the following set of system parameters: M= 5 kg, m= 0.3
kg, k=50 N/m, c= 10 (the case of strong damping) and ¢= 0.01 Ns/m (the case of weak damping), / = 0.35m, £
= 4 N. In Section 4.1, w was the variable varying in the range of 0-11 rad/s used to investigate the internal and
external resonance behavior of the system. Vector of state variables of the system is

y= [%79173/27?)272/37@3] = [ﬁ,ﬁ,As,Aé,x,:&].

4.1 Resonance curves for the dynamical system with strong and weak damping effect

Figures 2 and 3 present the resonance curves of the analyzed system that is damped with two coefficients of
damping, i.e.,, c= 10 and 0.01 Ns/m, respectively. Zero initial conditions with the high and low damping effect and
without any autoparametric internal resonance have been imposed on all state variables. In fact, zero initial condi-
tion imposed on the Asstate means, that motion of the pendulum body in sdirection begins from the length of static
elongation of the spring, A/ + &. Moreover, each maximal amplitude of the system’s displacements and rotation
was read after 1000 seconds of observation. Omitting a transitory phase of motion a steady-state responses were
measured.

In Figure 2, when the excitation acts horizontally on the body of mass M, two resonant amplitudes of the states
y1 and y», corresponding to angular frequencies w, = 4.56 and 4.57 rad/s are observed, respectively. The third
component of the system state vector, i.e., the displacement x of the slider is not in any resonant state (there not
appears any peak of maximal amplitude also in Figure 3, corresponding to almost not existing damping of the sys-
tem), because for the very small angular frequency of excitation (here, it is the minimum on the vertical axis), the
mass M moves quickly to the right until the sign of the excitation force amplitude will be changed (in this point, on
the third plot in Figures 2 and 3 max]ys| reaches about 1.55 m for w =1 rad/s).
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In Figure 3 more peaks is observed due to weak dissipation of energy accumulated in the periodically forced
mechanical system. We observe a proper developing of the resonance curve, since its first resonance peak remains
a little changed while the new ones between 5.5-6.5 appear. It is very interesting that the slider as a suspension
point of the variable-length pendulum does not fall into any resonance state (see red line) even in the weakly
damped realization of the mechanical structure.
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Figure 2: Resonance curves of the forced spring pendulum system corresponding to maximum absolute values of the
state variables y1 = 6, y2 = As and y3 = x. The angular frequency range w € (1, 11) is divided by 1000 samples. Damping
of the pendulum c = 10 Ns/m. Maximal amplitude frequencies are matched by wr.
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Figure 3: Resonance curves of the forced variable-length spring pendulum corresponding to maximum absolute values
of the state variables y1 = 6, y2 = As and ys = x. The angular frequency range w € (1, 11) is divided by 1000 samples.
Damping of the pendulum c = 0.01 Ns/m. Maximal amplitude frequencies are matched by wr.
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4.2 Time histories with corresponding power spectral densities

Time histories of the slider-pendulum mechanical system’s responses near, and for a relation, exactly at peaks
of the resonance amplitudes will be investigated. Power spectral densities of the time histories are estimated nu-
merically using FFT. The strongly damped pendulum is analyzed at the first stage of the investigations, see Figures
4-6, while the dynamics of the very weakly damped pendulum is discussed at the second stage, see Figures 7-9.
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Figure 4: Time histories with L_‘orresﬁon-ding p(-J wer SpE'CtI‘;Hj densities for the case of Strongly- a',;zmped spring pendulum
(¢ = 10 Ns/m). The beginning of observation to = 969.408, the end of observation tx = 1077.12 s, the observation time
tov = 107.712 s corresponding to nr = 30 periods of excitation force, the slider excitation frequency w = 1.75 rad/s.
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In Figure 4, the time responses of the pendulum angle (J1) and the slider displacement (y3) are synchronized
with respect to the first dominant frequency 4 ~ 0.2785 Hz. It is interesting that, in parallel, the pendulum’s angular
oscillations exhibit also a second dominant frequency at £ = 0.7984 Hz. Elongation As of the elastic pendulum os-
cillates with four frequencies between 0.5 and 1.6 Hz. For the assumed excitation force’s angular frequency w =
1.75 rad/s, the system response is far from the resonance peak shown in Figure 2, since two time histories exhibit
some irregular motions. It is observable for the pendulum states yi(£), y2(¢) and a few frequencies of oscillations
reported on the power spectra | ¥1(/)| and | ¥2(£)|. As a result of such configuration, the mechanical system forced
with the angular frequency w = 4.56 rad/s oscillates in a purely periodic way, as it is confirmed in Figure 5d by the
1-point Poincaré maps drawn on the corresponding phase planes. Each of the maps drawn with RGB colours con-
sists of nroverlapping dots. The technique of common visualization of Poincaré maps in relation to their phase
planes was introduced in (Awrejcewicz and Olejnik, 2003).

Worth noticing is the fact that with respect to the excitation force’s angular frequency w = 4.56 rad/s, being
the one resonant frequency for the strongly damped slider-pendulum system, the maximal amplitudes of angular
oscillations of the pendulum, shown in Figure 53, are nearly nine times larger in comparison to the maximal ampli-
tudes of oscillations shown in Figure 4a (w = 1.75 rad/s). The presence of resonance in the strongly damped me-
chanical system is even significant.
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Figure 5: Time histories of a limit cycles with corresponding power spectral densities, phase planes (gray lines) and
Poincaré maps (red, green and blue dots) for the case of strongly damped spring pendulum (c = 10 Ns/m). The begin-
ning of observation tp = 909.414, the end of observation tx = 950.751, the observation time t,» = 41.337 s, correspond-
ing to nr = 30 periods T = 1.3779 s of excitation force, the slider excitation frequency w = 4.56 rad/s. Figure 5: (contin-
ued).

The three-degrees-of-freedom mechanical system’s bodies oscillating with two and more dominant frequen-
cies, that in addition, can be mutually separated open the dynamical system’s phase space on the onset of multi-
periodic or quasi-periodic behaviour. Such dynamics is observed for the solutions shown in Figure 6. Observing the
time trajectories longer, the slider will still exhibit 1-periodic motion in the direction y3, and the Poincaré maps on

the (¥,,7,) and (¥,,9,) planes of cross-sections of phase space of the analysed dynamical system will create two
closed curves (see Figure 6d), corresponding to amplitude modulated time histories.
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Figure 6: Time histories with amplitude modulation and corresponding power spectral densities, phase planes (gray
lines) and Poincaré maps (red, green and blue dots) for the case of strongly damped variable-length spring pendulum
(c =10 Ns/m). Parameters: to = 982.6215, tr = 1002.675, top = 20.0535, T = 0.66845 s, nt = 30, w = 9.4 rad/s. Figure

6: (continued).

A steady-state quasi-periodic motion of the strongly damped pendulum body and a 1-periodic motion of the
slider is achieved. Comparing the power spectra in Figure 6a and c, the frequency of motion of the slider is synchro-
nized with the second dominant frequency of angular oscillations of the pendulum. Elongation As of the elastic
pendulum oscillates with two frequencies higher than 1.5 Hz.

At the next stage of our study, the dynamics of the very weakly damped pendulum is discussed. In Figure 7, we
see an interesting example of quasi-periodic oscillations of the slider-pendulum system in each degree of freedom.
It is confirmed in Figure 7d by three closed color curves on Poincaré maps. The slider oscillates quasi-periodically
with the frequency £ = 0.9707 being synchronized with the same frequency of angular oscillations of the pendulum.
Additionally, with regard to the weakly damped case and in comparison to the previous case, the elongation of the

spring pendulum is much greater as well as the remaining state variables take higher maximal amplitudes of oscil-
lations.
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lines) and Poincaré maps (red, green and blue dots) for the case of weakly damped variable-length spring pendulum (c
= 0.01 Ns/m). Parameters: to = 988.848, t = 1030.05, top = 30.9015, T = 1.03005 s, nt = 40, w = 6.1 rad/s.
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Figure 8: Time histories of a chaotic solution with corresponding power spectral densities, phase planes (gray lines)
and Poincaré maps (red, green and blue dots) for the case of weakly damped variable-length spring pendulum (c = 0.01
Ns/m). Simulation parameters: ty = 9900.8, t = 10281.6, toy = 380.8s, T = 0.952 s, nr = 400, w = 6.6 rad/s.
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Figure 9: Time histories of a chaotic solution with corresponding power spectral densities, phase planes (gray lines)
and Poincaré maps (red, green and blue dots) for the case of weakly damped variable-length spring pendulum (c = 0.01
Ns/m). Parameters: to = 9826.44, tx = 10204.38, top = 377.94, T = 0.94485 s, nt = 400, w = wr = 6.65 rad/s.

Figures 8 and 9 present a chaotic dynamics observed at two external excitation frequencies of which the first,
w1 = 6.6 rad/s, is located in a close neighborhood of the resonance peak and the second one at w; = 6.65 rad/s
exactly at this peak (see Figure 3). After a long observation time = 9950 s a sudden elongation of the pendulum
length is reported. It is caused by the long lasting resonance state of the whole structure at the excitation frequency
wr (see Figure 3), producing many resonance frequencies of oscillations shown by the power spectra in Figures 8
and 9.

Let us analyze the spectra of power densities for the weakly damped variable-length pendulum. All the scatter
graphs are rugged, but one is able to distinguish a few dominant frequencies of oscillations of each body of the
mechanical system in: a) the angular displacement & of the pendulum, i.e.: 1 = 0.7514, fiz = 0.7594, fi3 = 0.7700,
fis = 0.8070; b) the elongation As of the pendulum, i.e.: 61 = 2.1167, £2 = 2.1961, £3 = 2.2173; c) the linear dis-
placement xof the slider, i.e.: 81 = 0.7514, 2 = 1.0584. The angular frequency of excitation w,at the maximal peak
that can be read in Figure 3 is nearly an integer multiple of the frequencies fis, £1, i.e.: w/2m/fis = 12.94 = 13 i
wr/2m/ b1 = 4.93 = 5. According to that, the frequencies £4, £1 are the resonance frequencies of oscillations of the
variable-length spring pendulum in two states: dand As, respectively.

The assumed set of parameters of the oscillator and the external excitation force (see introduction to Section
4) is rather destructive for the investigated mechanical structure. Damping is here very small. Therefore, there
exists a minor dissipation of kinetic energy of oscillations in the structure which is transferred all the observation
time between its component bodies.

A qualitative assessment of the dynamical behavior both near and exactly at the resonance frequencies of os-
cillations allows us to draw some conclusions. In the resonance regime, points of Poincaré maps are irregularly
distributed on the assumed phase planes (see Figures 8d and 9d), and the investigated dynamical system can un-
predictably switch to another range of amplitudes of oscillations in each degree of freedom. One could secure the
periodically forced structure from the dynamical presence in any reported resonance zone by a selection of proper
angular frequencies of external force acting on it. In contrary to this case, if the periodic excitation is imposed by
the external environment and the mechanical structure cannot avoid it, then a change in system parameters like
masses of the component bodies or spring stiffness of the variable-length pendulum can be done.

4.3 Poincaré maps of more sophisticates dynamical responses of the system

Previous sections brought us a wider look at dynamical properties of the analyzed mechanical system. In this
part of our study we would like to check if the triple oscillator can be a source of chaotic attractors exhibited by all
or even not all system states while the other will last on a periodic orbits.

Parameters of the slider-pendulum system remain unchanged, since the frequency of excitation will vary in
the examined range taken into consideration in Figure 2 and 3 as well as damping of the pendulum elongation will
switch also between the two examined values.

Latin American Journal of Solids and Structures, 2018, 15(5), e43 10/12



Pawet Pietrzak et al.
Near the resonance behavior of a periodicaly forced partially dissipative three-degrees-of-freedom mechanical system

Figure 10a-c presents portraits of a two-, three- and quasi-periodic motion. It is the basic kind of behavior of
the analyzed system. Figure 10b and c shows a very frequently observed quasi-periodic motion of the pendulum,
and in Figure 10d, a chaotic response of the system oscillating in the resonance is observed. Figure 10c and d con-
firm that also the slider can oscillate irregularly. In particular, the quasi-periodicity of both pendulum states shown
in Figure 10c stands for the internal resonance which is associated with the transmission of energy between the
two modes of oscillations.
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Figure 10: Poincaré maps on the background of phase planes: a) c = 10 Ns/m, w = 1.68 rad/s, ty = 9350.0, tr = 11220.0,
toy =1870.0, T=3.74s, nr=500; b) c =10 Ns/m, w = 1.24 rad/s, to = 2538.6171, tx = 5077.2342, tor = 551.15, T =
50671, nt=501;c) c=0.01 Ns/m, w = 5.7 rad/s, to = 9920.7, tc = 10471.85, tor = 551.15, T = 1.1023, nt = 500; d) c =
0.01 Ns/m, w = wr = 6.52 rad/s, to = 14455.5, te = 15419.2, top = 963.7, T = 0.9637 s, nr = 1000.
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4.4 Numerical solution

The numerical solution of the continuous system does not require any special methods. It has been obtained
with the use of a standard integration procedure. The system of ordinary differential equations was solved using
Isodafrom the FORTRAN library odepackwith control of the vector of local errors ein x, according to the inequality
of the form: max||e/en|| < 1, where e, = 10/ |X| + arwrat the relative and absolute tolerances at each step of integra-
tion equal to 1.49012e-8. The integration procedure solves the initial value problem for stiff and non-stiff systems
of first order ODEs as follows:
dr -, _ _ _

i f(z,t) at z, =1z(0), t, =0. (11)

Due to periodic excitation of the pendulum suspension, the time period of excitation force is assumed in the
numerical integration as a multiplicity of the time step (here, 0.00005 s), and then, the horizon of observation &,
included in # to #is assumed as multiplicity of the period of excitation. It is to secure proper sampling intervals of
the Poincaré maps generated during the simulation, accuracy of solutions of the long term observations as well as
most possibly exact repeatability of the periodic forcing of the pendulum slider. Solutions presented in Section 4
are obtained after omitting transition states. Finally, the obtained series of data is stored as tables in files which are
imported by a plotting program to draw the solutions.

4 CONCLUSIONS

A mechanical structure consisting of a variable-length pendulum attached to an oscillating suspension was
subject to a dynamical analysis. The system dynamics was investigated based on the derivation of mathematical
model and the resonance plots obtained for two cases, involving a strong and weak damping of incremental elon-
gation of the pendulum. The observations brought us interesting results, summarizing that the three-degrees-of-
freedom mechanical system with partial dissipation of kinetic energy of motion oscillates mainly periodically and
quasi-periodically. Nevertheless, the system dynamics exhibited chaos in a close vicinity of resonance peaks of max-
imum amplitudes. The damped spring pendulum with a moving point of its attachment has two modes of oscilla-
tions, the pendulum angle of rotation mode and the spring incremental elongation mode. It has been shown, that
the two modes are coupled, and the oscillations energy is transmitted between the two modes. It is interesting, that
in some cases, the energy was not transferred to the slider. Figure 10b stands for a good example of such property
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of the analyzed mechanical system. The internal resonance is a feature that can make the damped spring pendulum
with a slider useful for vibration control of unstable structures.
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