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Modeling the creep behavior of GRFP truss structures with 
Positional Finite Element Method 

Abstract 
This paper presents the development of a formulation, based on Positional 
Finite Element Method, to describe the viscoelastic mechanical behavior of 
space trusses. The numerical method used was chosen due to its efficiency 
in the applications concerning nonlinear numerical analyses. The formula-
tion describes the positional variation over time under constant stress 
state (creep). The objective is to provide a way to quantify the creep be-
havior for space truss structures and thus contribute to the encouragement 
of GFRP usage in such structural components. Time-dependent behavior of 
such materials is one the most important factors for their use in design of 
structures, demanding studies about the deformations expected within the 
operational life of the structural systems. To perform this study, the pro-
posed methodology considers a standard solid rheological model to de-
scribe stress-strain time-dependent law. This model is implemented in the 
formulation for quantify the total strain energy. The effects of the model 
parameters in the mechanical response of the structure with accentuated 
geometric nonlinearity were presented. In this analysis, it was possible to 
identify the influence of the elastic and the viscous moduli on the creep re-
sponse. Model calibration was performed using test data obtained from lit-
erature and a GFRP transmission line tower cross-arm was simulated to 
predict the evolution of displacements under real operational loads. From 
the results, it was possible to observe a fast evolution of displacements due 
to the creep effect in the first 7,500 h. This increase was close to 0.6% in 
relation to the displacement obtained in the elastic behavior. The present-
ed methodology provided a simple and efficient way to quantify the creep 
phenomenon in viscoelastic GFRP composites truss structures, as can be 
seen in the developed analyses. 

Keywords 
Creep, Positional Finite Element Method, Rheological Model, Nonlinear 
Analysis, GFRP. 

1 INTRODUCTION 

Composites have great potential to be employed in the field of Civil, Mechanical, Maritime and Aeronautical 
Engineering. Specific characteristics, such as high stiffness and strength, associated with low specific weight make 
their use very attractive, compensating the higher costs of production. 

Glass Fiber Reinforced Plastics (GFRP) have been widely used in construction of structures, replacing the 
usual steel elements, particularly in truss structures such as electrical transmission lattice towers. These materi-
als are essentially composed of glass-fibers embedded in a resin matrix polymer. GFRP prismatic components can 
be manufactured with different cross sections via the process of pultrusion, in which the fibers are wetted in a 
viscoelastic matrix (resin) and subsequently pulled through a die for compacting and curing. 

Specific properties of these materials make them advantageous to be considered as an alternative to the usu-
al metallic materials. For instance, proprieties such as electrical and magnetic insulation, controllable thermal 
expansion, fatigue strength, damping characteristics, high strength-to-weight ratio and adequate tensile and com-
pression strengths make GFRP a competitive material to be used in some applications to replace the usual steel 
components (Benmokrane et al., 1995). Furthermore, GFRP can be easily subjected to recycling: the waste could 
be incorporated, for example, into based mortars, as sand aggregates and filler replacements, which is a benefit to 
the environment and also improves the mechanical properties of the host material (Meira Castro et al. 2013). 
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These characteristics make GFRP an excellent candidate for Transmission Line Towers (TLT). Selvaraj et al. 
(2012) and Selvaraj et al. (2013) developed experimental studies on X-braced panels made from GFRP pultruded 
sections and also on a composite cross arm for TLTs, encouraging the use of GFRP structural profiles as an alter-
native material for steel members. The use of GFRP demonstrated to be efficient in reducing the hallway practiced 
in India for power utilities. Godat et al. (2013) also investigated the replacement of traditional materials (steel, 
wood and concrete) in TLTs by fiberglass pultruded members, leading to a better understanding of the behavior 
of GFRP in such structures. They analyzed the behavior of GFRP angle, square, rectangular, W and I sections under 
axial load. According Godat et al. (2013), the generalized buckling appears at low stresses and prevents FRP (Fi-
ber Reinforced Plastic) profiles to reach their full-strength capacity. Izumi et al. (2000) developed a type FRP 
insulation arm for a 154 kV line post and tested it for mechanical and electrical performance. Yeh and Yang (1997) 
and Yeh and Yeh (2001) studied the feasibility of building a transmission tower from a composite material and 
indicated the need to look into the important aspects of creep. 

One of the challenges faced in utilizing the GFRP designs is to evaluate the strains of pultruded elements un-
der constant loading during the life of the structure. This time-dependent phenomenon, known as creep, is not 
simple to characterize and to quantify. The viscoelastic properties are of extreme importance, especially in the 
study of vibration damping (Melo and Radford, 2003), displacements and failure (Sá et al., 2011a; Sá et al., 2011b) 
of structures. Numerical techniques and analytical models have been employed, since experimental tests require 
long periods and are therefore costly. 

Regarding the creep phenomenon, according to Benmokrane et al. (1995) and Ascione et al. (2012), in the 
creep behavior of GFRP strains due to viscoelastic effects are mainly caused by the resin, i.e., strains related to 
glass fibers are negligible, and further, the volume and the orientation of fibers have a great influence. 

Some examples of techniques applying rheological formulations implemented in numerical models can be 
found in the specialized literature to predict the time-dependent behavior of these materials. Sá et al. (2011a) and 
Sá et al. (2011b) proposed a formulation considering the Maxwell rheological model and two rheological Kelvin 
models connected in series (Bruger-Kelvin model) to express the viscoelastic behavior of an I-section beam. This 
model, when compared with the experimental data, presented a similar behavior up to the first 1,000 h. Argyris et 
al. (1991) and Argyris et al. (1992) developed an appropriate numerical model using rheological models of Max-
well and Kelvin-Voigt for the analysis of membrane structures in PVC-coated fabric. Fritsch et al. (2009) devel-
oped a novel rheological material model that features a decomposition of the stress into a time independent qua-
si-static component and a time and strain dependent viscous component, correctly reproducing the quasi-static 
and dynamic stress-strain behavior of the fiber-reinforced polypropylene. Kaliske (2000) introduced an aniso-
tropic constitutive formulation discretized into finite elements, using the generalized Maxwell model for applica-
tion to transversely isotropic materials, performing static and dynamic analyses of U and laminates profiles, and 
extending the application for mechanical biology. Ascione et al. (2012) presented a program of creep tests to vali-
date a mechanical model (based on Maxwell and Kelvin-Voigt rheological models) formulated for the analysis of 
viscous properties of FRP laminates. 

Other recent works related to viscoelastic behavior, focused on the development of numerical formulations, 
adopt different rheological models and confirm the relevance and actuality of the theme. 

Panagiotopoulos et al. (2014) use a formulation based on the Boundary Element Method for the analysis of 
three-dimensional solids to compare the responses of the Hooke, Kelvin-Voigt and Boltzmann solid models, which 
respectively represent the instantaneous elastic, the damped elastic and the creep behaviors. Besides these, the 
responses of the fluid models of Maxwell, Jeffreys and Burgers were also implemented and compared. 

Kühl et al. (2016) propose a formulation based on integral equations to describe the nonlinear viscoelastic 
behavior of High Density Polyethylene (HDP). For the viscoelastic part of the strain, a generalized model of Kel-
vin-Voigt is adopted, and for the viscoelastoplastic part the equation of Zapas-Crissman was considered. The vis-
coelastic parameters are obtained through a curve fitting based on the method of Particle Swarm Optimization, 
whereas the viscoplastic parameters are obtained through a linear regression of the Least Squares Method. 

Pascon and Coda (2017) propose an alternative solid finite formulation for large deformations analysis of 
viscoelastic materials. In this alternative methodology the neo-Hookean hyperelastic law is taken into account 
together with the standard solid rheological model. This new approach is based on positions and can be used to 
reproduce creep, stress relaxation and viscoelastic rate dependent stiffening at large strains, which are usually 
observed in polymeric materials. 

Furthermore, some recent studies about viscoelasticity present developments related to the use of fractional 
derivatives to obtain simpler rheological models and with a more precise representation of the complex behavior 
of real materials, such as composite materials, polymeric materials, biological tissues, among others (Bahraini et 
al., 2013; Pérez Zerpa et al., 2015; Ciniello et al., 2017; Borges et al., 2017). 
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The present paper proposes a model for the analyses of creep phenomenon in viscoelastic composites truss 
structures. For this purpose, a positional formulation of geometrical nonlinear analysis is used to introduce the 
rheological model and describe the behavior of viscoelastic materials in structures with time. The objective is to 
provide a simple and efficient way to quantify the creep behavior for space truss structures and thus contribute to 
the encouragement of the use of GFRP in such structural components. As an application example, it is presented 
the calibration of the model based on experimental tests performed by Youssef (2010) at different stress levels 
and the simulation of the time-dependent deformation evolution resulting from the viscoelastic effect for a typical 
structure of a power TLT cross-arm. 

2 VISCOELASTIC COMPOSITE MATERIALS AND CREEP PHENOMENON 

In general, polymeric matrix composites present viscoelastic behavior. This time-dependent behavior of such 
materials is one the most important factors for their use in design of structures, demanding studies about the 
deformations expected within the operational life of the structural systems. It is important to notice that fiber-
matrix slippage may occur due the viscosity of the resins employed, causing additional plastic deformation over 
time (Scott et al., 1995). This viscoelastic behavior is a consequence of the Second Thermodynamics’ Law accord-
ing to which a portion of the imparted energy of deformation is always dissipated as heat by viscous forces even 
while the rest is resiliently stored. Thus, once the material is loaded for a defined finite time, there is no return to 
its original position and permanent deformations occur. The process is neither instantaneous nor infinitely slow: 
it is a gradual process (Christensen, 1982). This phenomenon depends on the duration of loading and the envi-
ronment conditions that structures are subjected, affecting their functionality and durability. Manufacturing con-
ditions and exposition to temperature changes, pressure and humidity are examples that can affect the viscoelas-
tic behavior of materials. The loading conditions can also interfere in the proprieties, and high stresses levels can 
lead to rupture by creep over time (Figure 1). 

 

 
Figure 1: Effect of loading on the creep test. 

 

The viscoelastic behavior sits between two extremes: purely elastic materials and purely viscous materials. 
However, for the developed model in this work, the contribution of the material plastic deformation due to the 
viscosity of it is not taken into account. All the strain attained in the loading procedure can be slowly recovered 
after the structural unloading. 

Macro-mechanical theories concerning the viscoelastic behavior of FRP composites have attempted to pre-
dict the behavior of these materials. For example, two theories are already consolidated: Findley power law, that 
describe the time-dependent behavior of FRP composites under a constant stress (Findley et al., 1976), and 
Schapery single integral equation (Schapery, 1969), that uses the principles of thermodynamics to describe the 
viscoelastic response of many polymers by four stress-dependent parameters. A thorough review on the creep 
phenomenon is performed in Scott et al. (1995). 

Sá et al. (2011a) and Sá et al. (2011b) reviewed the creep phenomenon and showed that most of the expres-
sions obtained in studies by other authors have indicated reductions of viscoelastic stiffness after 30 years up to 
68% for tensile loading and of 36% for shear loading, when compared to the corresponding elastic values. Creep 
deflection increased 50% over the same period. This study also showed rapid evolutions of the deformations es-
pecially in the first 24 h, which was noted by the premature failure of specimens loaded at 50% of their ultimate 
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strength. Therefore, it is possible to observe that there is a need to study this phenomenon in more detail and to 
consider the effect of creep in the design of composites structural components. 

3 NONLINEAR POSITIONAL FORMULATION FOR VISCOELASTIC SPACE TRUSS ANALYSIS 

The positional formulation of the Finite Element Method used for this paper is based on the formulations 
found in Coda and Greco (2004) and Greco et al. (2006). The method was selected due to its efficiency in the ap-
plications and developments shown in recent published work concerning nonlinear numerical analysis (Car-
razedo and Coda, 2010; Jian et al., 2012; Ma et al., 2012). It is supported by physics principles based on energy 
equilibrium that are both consistent and easy to understand. This formulation considers the nodal positions of a 
structure as variables, rather than nodal displacements, regarding a system of reference fixed in the space in or-
der to describe the kinematics of the finite elements. The position description makes use of an intermediate non-
dimensional space that enables the determination of a non-linear “engineering” strain calculated from a relative 
unitary length for different positions in the structure (Coda and Greco, 2004). 

A geometric nonlinear formulation for the analysis of truss structures using spatial bar finite elements is fur-
ther described. The kinematics of this adopted element can be seen in Figure 2. 

This kinematics can be parameterized as a function of a non-dimensional variable ξ, that assumes values be-
tween 0 and 1. Note that X1, Y1 and Z1 are the coordinates of the initial node and X2, Y2 and Z2 the coordinates of 
final node of the bar finite element (Figure 2) and represent its six degrees of freedom. It is possible to write the 
parametric equations of the element as: 

 1 2 1x X X X     (1) 

 1 2 1y Y Y Y     (2) 

 1 2 1z Z Z Z     (3) 

 
Figure 2: Parametrization of a bar element for trusses geometric configuration (Ω0 is the initial configuration and Ω is 

the deformed configuration). 

Assuming ds as an infinitesimal linear dimension calculated by: 

2 2 2ds dx dy dz    (4) 

the differential of ds in terms of ξ can be written as: 

     
2 2 2

2 2 2

2 1 2 1 2 1

ds dx dy dz
X X Y Y Z Z l

d d d d   
     

              
     

 (5) 

that determines the length of the element (l). 
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By varying the length of the element caused by the deformation of the structure it is possible to determine 
the Total Strain Energy U accumulated for each structural element. The term U is described by the integral of the 
deformation energy in a volume element, the Specific Strain Energy (u), which considers viscoelastic effects: 

V V

U udV d dV


      (6) 

where σ is defined as the Cauchy stress and ε is the engineering strain measure. The strain energy is assumed to 
be zero in a reference position or non-deformed position of the structure (Coda and Greco, 2004). 

3.1 The standard solid rheological model 

It was considered the standard solid rheological model to take into account the viscoelastic behavior of the 
material. This model is formed by the association of two elastic elements and one viscous element (Marques and 
Creus, 2012), as shown in Figure 3. The model describes the rheological law which relates stress, strain and time. 

From Figure 3 it is possible to assume the following relations (Equations (7) and (8)) for the total stress and 
strain, respectively: 

1 2     (7) 

1 2 2 2
e v         (8) 

 
Figure 3: Standard solid rheological model (uniaxial representation). 

The subscripts ()1 and ()2 refer to the path 1 (elastic element) and path 2 (elastic and viscous elements) of 
the model (Figure 3) and the superscripts ()e and ()v refer to the elastic and viscous components, respectively. 

The required terms of Equations (7) and (8) are given by: 

1 1E   (9) 

2 2 2
e v     (10) 

2
2

2

e
e

E

   (11) 

2
2

2

v
v 


  (12) 

where E1, E2 and η are physical parameters of elements presented in Figure 3 and represent the mechanical 
properties of the material. 

Deriving the Equation (8) as a function of time, combining the terms obtained by Equations (11) and (12), 
and considering the time-independent elastic modulus, results in: 

2 2

2 2E

 


 
  (13) 

which   represents the deformation rate of the model. Replacing the Equations (7) and (9) in Equation (13): 
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1 1

2 2

E E

E

   


 
 

  (14) 

and rearranging the terms of Equation (14) for σ, follows: 

2 1 2 2
1

2 2

( )E E
E

E E

     
  

 
 (15) 

Equation (15) represents the rheological relation, which describes viscoelastic mechanical behavior of the 
model. 

Considering the used nonlinear formulation, the total strain ε can be written as follows: 

0

1
B

l


 
   
 

 (16) 

where l0 is the initial length of the element, and B is defined as: 

     2 2 2

2 1 2 1 2 1B X X Y Y Z Z       (17) 

It is important to note that the positional formulation considers the nodal positions as variables of the prob-
lem while the rheological relation is a function of the deformation rate. Thus, by using the chain rule, the strain 
rate   of the structure is replaced by the product between the derivative of the strain with respect to the nodal 
parameters of the positional formulation and the rate of variation of these parameters, as follows: 

,i
i i

x
x

x t

 
 
 

   (18) 

where ix  represents the velocity of positional variation of the finite element in each degree of freedom. An 

auxiliary variable, axialx , can be used to describe the length variation of the finite element at a time variation ∆t, as 

described by the following expression: 

     

     

2 2 21 1 1 1 1 1
2 1 2 1 2 1

2 2 20 0 0 0 0 0
2 1 2 1 2 1

1 t t t t t t
axial

t t t t t t

x X X Y Y Z Z
t

X X Y Y Z Z

     

     

       

     


 (19) 

where 1
1
tX  , 1

1
tY  , 1

1
tZ  , 1

2
tX  , 1

2
tY  , and 1

2
tZ   are the positions in the current instant moment and 0

1
tX  , 0

1
tY  , 

0
1
tZ  , 0

2
tX  , 0

2
tY  , and 0

2
tZ   are the positions in the previous instant. Thus, the terms of the velocity of positional 

variation in each degree of freedom can be obtained by means of an appropriate matrix of transformation from 
the local (axial) system to the global system. 

3.2 The deformation described in terms of time variable 

The rheological model for the viscosity analysis of structural systems and the development of the positional 
formulation for the deformation described in terms of time variable is following presented. Rewriting Equation (6) 
using Equation (15): 

1 2
1

2 2

( )

V

E E
U E d d d dV

E E  

     
 

   
 
   

 
 (20) 

In this equation, the strain terms must be integrated in the volume element. Substituting Equation (16) in 
Equation (20) and writing dε in terms of dXi results in: 
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 
2

2 2
1 21 1

22 2
0 0 2 0 0 2

, ,
1 1

2 4 4
i i

ei i
i i i i

V X X

E E B BE EB B
U x dX x dX dV

l l E B l l E B

 
                      
    (21) 

Considering the cross-section area (A) invariant, and a simple mapping in the dimensionless variable ξ do-
main, it is possible to achieve the integration of Equation (21) along the length of the finite element, as follows: 

 
2

2 2
1 21 1

0 22 2
0 0 2 0 0 2

, ,
1 1

2 4 4
i i

ei i
i i i i

X X

E E B BE EB B
U l A x dX x dX d

l l E B l l E B

  
                      

     (22) 

Equation (22) can be rewritten in a compact form; 

1

00 lU l u d   (23) 

where the variable ul is a term associated with the specific energy of deformation per unit of length. 
For a conservative structural problem associated with a reference system fixed in space, it is possible to 

write the stationary Total Potential Energy (П) as a function of the Total Strain Energy (U) and the Potential En-
ergy of Applied Forces (P) acting on each node of a finite element, as follows: 

Π U P   (24) 

The principle of Minimum Potential Energy is applied, in which the equilibrium of the structure will occur 
when the differential of the Total Potential Energy (П) for each degree of freedom of the structure is equal to 0, i.e., 
when the change rate of the Total Potential Energy is equal to zero. Writing in indicial notation (i = 1, 2, ..., 6): 

1

0

0l
o i

i i

uΠ
l d F

X X


  
   (25) 

The Equation (25) represents a system with six equations whose adopted solution consists in a numerical 
strategy in which the derivatives are developed within the integral and analytically integrated for the dimension-
less variable ξ. It can be noticed that the resulting numerical integral is nonlinear for the nodal positions and cor-
responds to a system of six equations by finite element due to its the six degrees of freedom (Greco et al., 2006). 
Therefore, the system of Equation (25) can be written using indicial notation (free index i = 1 to 6 and dummy 
index j = 1 to 6): 

( , ) ( ) 0i j i i j i
i

Π
g X F f X F

X


   


 (26) 

or in a tensor representation: 

( ) 0i i ig X f F    (27) 

Note that, in this study, the applied forces are independent of coordinates (i.e. conservative forces). The vec-
tor function gi(X) is nonlinear regarding the nodal parameters. To solve Equation (27), the Newton-Raphson pro-
cedure can be used (Kleiber, 1989): 

     0 0, 0i i i kg X g X g X X      (28) 

where X is any nodal position and X0 is the initial nodal position. 
The iterative Newton-Raphson process is summarized as follows (Greco et al., 2006): 

1) Assume X0 as the initial configuration. Calculate gi(X0) by Equation (29): 

0

1

0 0

0

( ) ,i l i X ig X l u d F   (29) 

2) For this X0, calculate the Hessian matrix. Integrate this value, as indicated in Equation (30), and the result is the gradient of gi at X0: 
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0

1

0 0

0

, ( ) ,i k l ik Xg X l u d   (30) 

3) Solve the system of Equation (28) and determine ∆X. 
4) Update position X0 = X0 + ΔX. Return to step (1) until ΔX to be less than the tolerance. 

3.3 Necessary algebraic development 

To implement this formulation, the variables involved must be numerically determined, thus, the term l0ul of 
Equation (23) is rewritten as: 

 
2

2 2
1 21 0 1

0 0 2
0 0 2 0 0 2

, ,
1 1

2 4 4
i i

ei i
l i i i i

X X

A E EE Al B BAEB B
l u x dX Al x dX

l l E B l l E B

  
   

           
   

   (31) 

The first derivative of Equation (31), related to the nodal parameter i, is expressed by: 

  2 2
1 2 2 11

0
0 2 0 0 2

, , , ,
, 1

2 4 42

e
i i i i i i

l i

E EB B x A B AE B xE A B A
l u

l E l B l E BB B
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Analogously the derivative of Equation (32) related to the nodal parameter k is given by: 
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With these equations and the iterative Newton-Raphson process, all of the terms required for obtaining the 
nodal parameters X1, Y1, Z1, X2, Y2 and Z2 can be calculated, taking into account the effects of viscoelastic behavior. 
Thus, it is possible to define the equilibrium positions of a truss structure of GFRP over time by adopting suitable 
material parameters (E1, E2 and η). These parameters for describing the viscoelastic behavior can be obtained by 
calibrating the proposed formulation by means of experimental results of traction creep tests of GFRP bars. 

It should be noted that no coordinate transformation was performed using this formulation, since no local 
coordinate systems are used. Therefore, the derivatives are calculated in a single coordinate system. Normal loads 
acting on the elements can be calculated by the Cauchy equation (Greco et al., 2006). 

4 NUMERICAL EXAMPLES AND ANALYSIS OF RESULTS 

For the analyses presented, two assumptions were adopted. The first is that the rate of stress   in Equation 
(15) is set equal to zero. This approximation is valid for the study of creep behavior, in which the stress is kept 
constant over time. For relaxation, this assumption is not valid because, in this case, the deformation is taken as 
constant and the stress is varying in time. The second refers to the elastic parameters shown in Equation (34). It 
is assumed that the sum of the modules E1 and E2 is always constant and represents the material longitudinal 
elasticity modulus E. 

1 2E E E   (34) 

4.1 Analysis of viscoelastic parameters 

We would like to demonstrate the effects of the viscoelastic rheological model parameters in the mechanical 
response of the structure with accentuated geometric nonlinearity. The application considered as an example is a 
typical truss structure (Figure 4) subjected to the instability phenomenon known as snap-through. In this analysis, 
prescribed downward displacements at the load point were applied varying from 0 to 0.225 m in steps of 0.001 m. 
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Figure 4: Truss geometry (dimensions in m). 

A variation in the elastic modulus E1 was considered in the first case. Figure 5 presents the results obtained 
for the labeled node where the prescribed position was applied. It can be noted that as the elastic modulus E1 
decreases, the force required to achieve the same position is smaller. This follows from the simple fact that the 
effect of this viscoelastic parameter causes a lower structural stiffness and therefore the structure comes into 
instability to a lower stress level. The elastic curve is represented by E1 = E, i.e., without considering the viscosity 
of the material. The other fixed parameters used were A = 0.0009 m2, E = 46.9 GPa, η = 10.0 GPa·s and Δt = 100 s. 

In the second case, a variation in the viscous modulus η was considered, while the elastic moduli, E1 and E2, 
were kept respectively fixed as 0.999 and 0.001 of the material longitudinal elasticity modulus E. Furthermore, 
the other parameters were considered the same as in the previous case. Figure 6 presents the results obtained for 
the node where the prescribed position is applied. The elastic curve was represented with η tending to infinity, i.e., 
the dashpot was considered as a rigid bar in the rheological model. Figure 7 is a detail of Figure 6, magnifying the 
region of the snap-through first peak. It is possible to note that the variation in the viscous modulus causes slight 
changes on the obtained results, mainly due to the influence of the viscous modulus on the velocity to obtain the 
equilibrium position for a given applied load, while the value of the equilibrium position is defined by the elastic 
modulus E1. 

Figure 8 shows the contribution of the viscous modulus to the viscoelastic behavior, in the analysis of the 
same structure. In this analysis, a downward static load of P = 14.7 kN was applied and maintained constant dur-
ing 30 time steps of Δt = 100 s. The elastic modules, E1 and E2, were kept respectively 0.9 and 0.1 of the material 
longitudinal elasticity modulus E. The influence of the viscous modulus on the velocity to obtain the equilibrium 
position can be clearly seen. The equilibrium position is reached faster for lower viscous moduli materials. Fur-
thermore, it is possible to notice the phenomenon of the snap-through for load levels lower than expected in the 
elastic snap-through behavior, considering the creep behavior. 

 
Figure 5: Influence of the elastic modulus E1 on the equilibrium path (prescribed position). 
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Figure 6: Influence of the viscous modulus η on the equilibrium path (prescribed position). 

 

 

 
Figure 7: Influence of the viscous modulus η on the equilibrium path in detail (prescribed position). 
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Figure 8: Influence of the viscous modulus η on displacement over time. 

4.2 Model calibration 

In order to access the viscoelastic behavior of GFRP, a model calibration was performed based on the test da-
ta obtained by Youssef (2010). In his work, he performed an experimental study on the creep behavior of GFRP 
rods for concrete reinforcement over the first 10,000 hours at different stress levels: 15%, 30%, 45% and 60% of 
ultimate strength. The tested bar is made of high-strength E-glass fibres (77.3% fibres by volume; 59.9% fibres by 
weight) impregnated in vinylester resin. The bar's circular cross section has 9.5 mm diameter; manufactured by a 
process that involves pultrusion with sand-coating along the external surface of the bar. The surrounding envi-
ronment whilst conducting the long-term creep tests is standard laboratory atmosphere (23 ± 3 °C and 50 ± 10% 
relative humidity). 

As presented in Youssef (2010), all samples were prepared according to CAN/CSA S806-02 (Canadian Stand-
ards Association, 2002) and ACI 440.3R-04 (American Concrete Institute, Committee 440, 2004). The GFRP bars 
were cut into a variety of lengths (1170 mm, 1270 mm and 1470 mm) to fit into three different frame sizes of 
heights 1550 mm, 1750 mm and 1880 mm, respectively. Each one of the bar sample extremities was fitted into a 
410 mm-long steel tube (grip) using Bristar 100 expansive grout. The steel pipe that grips on both ends have a 50 
mm hollow portion, threaded on the inside, to screw/fit onto spherical nuts that keep the sample intact with the 
frame. Two Kyowa 10-mm strain gauges (120 ohm resistance and a gauge factor of 2.10) were attached on oppo-
site sides at the middle of the free portion of each sample. For gauge installation, M-bond AE adhesive was used 
and gauges were properly aligned in the longitudinal direction of the bar. 

The schematic of a sustained-load frame, presented in Youssef (2010) and shown in Figure 9, illustrates the 
comprising frame elements and the location of the sample within. The objective of such frames is to maintain a 
constant tensile load sustained along the bar's length for extended time durations. The load should be maintained 
perfectly axial; assurance that no eccentricity or bending occurs to the bar is imperative. The associated load 
magnifying system (the two lever arms and the sustained weight-pan) multiplies the kept-on-pan weight to reach 
a significant percentage of the sample's ultimate tensile capacity. 
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Figure 9: Schematic of bar sustained load frame (Youssef, 2010). 

 

Youssef (2010) noticed that the failure of the material by creep in this time range occurred for stresses close 
to 60% of the tensile strength of the material. The properties of the GFRP samples extracted from Youssef (2010) 
are shown in Table 1. 

 

Table 1: Mechanical and geometrical properties (Youssef, 2010). 

Ultimate tensile stress MPa 854 

Modulus of elasticity GPa 46.9 

Cross-section área m2 7.09 · 
510

 

Length m 1 

 
The calibration of the formulation was performed by obtaining the relations between the viscoelastic param-

eters (E1, E2 and η) and the stress level (σ) to which the material was exposed. Thus, suitable parameters were 
numerically adjusted to approximately match the experimental results obtained by Youssef (2010). For this, from 
the suitable viscoelastic parameters for each stress level, a quadratic regression was performed, using the least 
squares method, obtaining the following relations: 

13 4 -6 2( ) 1.4375 10 2.7127 10 7.6175 10          (35) 

-10 -19 2
1 ( ) (0.9945 4.6972 10 5.5717 10 )E E        (36) 

where σ is the acting stress in Pascal (Pa). Figures 10(a) and 10(b) show the curves describing the behavior of the 
parameters η and E1 as function of the applied stress level σ, described respectively by Equations (35) and (36). 

The results of the model calibration using Equations (34, 35 and 36)))) are shown in Figure 11, comparing 
the different experimental Ultimate Stress levels from Youssef (2010) with the model predictions of the strain 
time-depending behavior. 

Using the calibrated model, it is possible to predict the creep behavior of a GFRP structure for active different 
stress levels. An example of this application is further presented, showing the evolution of the deformations for a 
TLT cross-arm. 
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Figure 10: (a) Relation between the viscous modulus η and the stress level σ for GFRP material; (b) Relation between 
the relative ratio E1/E and the stress level σ for GFRP material. 

 

 
Figure 11: Calibration of the evolution of the displacements caused by the creep phenomenon based on Youssef (2010) 

experimental tests. 

4.3 Analyzing the viscoelastic behavior of TLT cross-arm structure 

The cross-arm analyzed is a typical suspension TLT subjected to the loading hypothesis that considered the 
line in service without any exceptional loads, only the permanent active operational loads. The goal of this analy-
sis is to verify the increase in displacement due to viscoelastic effects. The geometry of the analyzed structure, 
presented in Figure 12, is divided into three groups of bars (Table 2). 
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Figure 12: Cross-arm transmission line suspension tower (dimensions in m). 

 

Table 2: Structure elements. 

Bars Type of stress 
Cross-section area  

(10-4 m) 

Active 
stress  
(MPa) 

1, 2, 3, 4 tension 4.00 15.9 

5, 6, 7, 8 compression 9.48 6.1 

9, 10, 11, 12, 13, 14, 15, 16 tension or compression 2.77 < 0.1 

 
The structure was modeled with 16 bar finite elements and 9 nodes, from which 4 are restricted, resulting in 

15 degrees of freedom. The load, with magnitude of 5,394 N, is applied instantaneously in the vertical direction 
(negative Z axis) at the tip of the structure. It corresponds to the dead weight of the conductor cables, insulation 
chain, and accessories for the class of the TLT considered (138 kV lines). The cross-sections of the bars were stat-
ically dimensioned for tensile loading according to the Tsai-Wu criteria (Tsai and Wu, 1971), for local buckling 
according to the methodology defined by Pecce and Cosenza (2000) and for global buckling according to 
Engesser’s equation (Zureick and Scott, 1997). 

The vertical displacement at the loading node is shown in Figure 13. To generate this response, it was used 
Δt = 100 h and the viscoelastic parameters η, E1 and E2 obtained by Equations (34, 35 and 36)))). Table 3 shows 
the value of the displacement evolution for different increasing times. 

 

 
Figure 13: Effect of loading on the creep test. 



J. M. G. Rabelo et al. 
Modeling the creep behavior of creep of GFRP truss structures with Positional Finite Element Method 

Latin American Journal of Solids and Structures, 2018, 15(2), e17 15/18 

Table 3: Displacements after varied times. 

 
Displacement 

(mm) 

Relative increase in 
displacement 

(%) 

No creep (t = 0 h) 3.18751 – 

Creep (t = 2,400 h) 3.19791 0.3 

Creep (t = 7,500 h) 3.20751 0.6 

Creep (t = 94,800 h) 3.21620 0.9 

Creep (t = 222,100 h) 3.21939 1.0 

 
From Figure 13 and Table 3, it is possible to observe a fast evolution of vertical displacement due to the creep 

effect in the first 7,500 h. This increase is close to 0.6% in relation to the displacement obtained in the elastic be-
havior. After 7,500 h (~ 313 days) the evolution of displacement decreases considerably, reaching 1% only after 
25 years, after which the structure is considered stable. More pronounced creep contributions can be obtained for 
higher stress levels, i.e., for a load of 100 kN (~ 20 times higher) an increase of approximately 9% of the dis-
placement is predicted over 2,000 h (83 days). In this case, the maximum stress is 297 MPa (~ 35% of the materi-
al ultimate stress). 

The analysis was performed for the first 300,000 h and the results obtained are of considerable relevance for 
the designers to realistically access the behavior of viscoelastic structural components. However, for considerably 
long-time interval other aspects such as environmental conditions (moisture, temperature, radiation, etc.) must 
be introduced into the model to represent the behavior of the material with more reliability. Furthermore, it is 
important to note that the creep behavior was considered symmetric with respect to the stress level for simplifi-
cation, i.e., the creep behavior for the tensile rods is equal to the compressed rods. 

5 CONCLUSIONS 

A formulation of geometrical nonlinear analysis was successfully implemented to analyze the creep phenom-
enon in viscoelastic GFRP composites truss structures. A standard rheological model was used together to the 
Positional Finite Element Method to predict the evolution of deformation of viscoelastic structural components 
over time. The formulation was applied in a relatively simple way, since it is based on physical concepts of Total 
Potential Energy balance, which make it easy to understand. The viscoelastic behavior was introduced in a natural 
way through the implementation of a rheological relation for obtaining the Total Deformation Energy, since this 
relation is based on the physical behavior of springs and dashpots associations that provides equations known as 
phenomenological. 

A parametric study was conducted to identify the influence of the elastic and the viscous moduli on the creep 
response of a structure with snap-through behavior. From the obtained results, it was concluded that elastic 
modulus is clear responsible to represent the structural stiffness. Thus, the elastic modulus decrease leads to a 
reduction in the force required to achieve the same position and therefore the structure presents a snap-through 
instability with a lower stress level. On the other hand, the variation in the viscous modulus causes slight changes 
on the obtained equilibrium position. This is due to the influence of the viscous modulus is mainly related to the 
velocity necessary to obtain the equilibrium position for a given applied load. Thus, the viscous modulus decrease 
leads to a reduction in the time required to achieve the same equilibrium position and, therefore, the snap-
through instability phenomena can be anticipated. 

In order to model the viscoelastic behavior of GFRP, a calibration of the model was performed in a simple 
way based on tensile creep test results obtained from the literature. The results of the calibration demonstrated 
fairly good approximation between numerical and experimental results. 

A GFRP TLT cross-arm structure, subjected to the real operational loading was selected to be analyzed and 
numerical simulation are performed to evaluate increase vertical tip displacement over time. The model was able 
to simulate the evolution of displacements throughout the structure and on critical nodes, such as load-
application point, which are essential for safe distance restrictions and structural tolerances determinations. 
From the results, it is observed a fast evolution of the vertical displacements due to the creep effect in the first 
hours as expected from the theory of viscoelasticity. This increase is close to 0.6% in relation to the displacement 
obtained in the elastic behavior in the first 7,500h. After 7,500 h the evolution of displacement decreases consid-
erably, reaching 1% only after 25 years, after which the structure is considered stable. It is concluded that the 
analyzed GFRP TLT cross-arm is stable and present slight creep displacements under real operational loads. 
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However, special caution must be taken, because a pronounced creep contribution was obtained for higher stress 
levels, even though relatively less than the material ultimate stress. 
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