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Abstract

In this paper we apply topology optimization to analyse multiple physics design problems
which are modelled by Poisson’s equation. Since the governing differential equation has the
same format in all situations, we can solve a number of different physics problems, simply by
choosing the variables properly and choosing the appropriate boundary conditions in each
case. We treat both the minimum energy case as well as “mechanisms design” problems, i.e.,
for given input, minimize (or maximize) response by the state or the gradient in other parts
of the structure.
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1 Introduction

There exist several physical phenomena which can be described by the same form of differential
equation that explains conduction in heat transfer [6]. For simplicity, we specialize conditions to
time-independence and the two-dimensional case. Consider the following governing differential
equation

−div(k∇u) = Q.

In the heat transfer case, the solution of the state equation is a scalar function, u = u(x1, x2),
which represents the temperature, k is the thermal conductivity and Q is the rate of internal
heat generation per unit volume.

By changing the meaning of the state, u, the material property, k, and the source term of the
equilibrium equation, Q, and also using the appropriate boundary conditions in each case, we can
described different phenomena in multiple physics contexts such as groundwater flow and plane
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Table 1: Meaning of different components of Poisson’s equation.
Poisson’s equation

Physics u k Q
heat conduction temperature thermal conductivity heat generation
groundwater flow hydraulic head permeability 0
potential flow potential function 1 0
elastic torsion stress function shear modulus−1 twist angle
pressurized membrane lateral deflection surface tension lateral pressure
electrostatics voltage permittivity charge density
magnetostatics magnetic vector medium’s response current density
diffusion diffusion constant moisture concentration production rate

incompressible irrotational flow in fluid mechanics, elastic torsion and pressurized membranes in
solids mechanics and also situations in electrostatics and magnetostatics (see Table 1). Finally,
we should interpret the results depending on the physical situation.

To fix ideas and explain our aim, we begin considering the context of heat transfer. In a
general way, the problem we would like to solve consist of determining how we have to place fixed
amounts of two isotropic materials with different thermal conductivities, α and β, 0 < α < β, so
as to minimize (or maximize) a desired property (given by the g(ρ, u) function) in the thermal
device occupying the design domain.

Let us denote by (P) the problem

Minimize (or Maximize): c(ρ) = g(ρ, u),

subject to
−div(k(x)∇u(x)) = Q(x), in Ω,

−k(x)∇u(x) · n = f(x), on Γt,

u = u0, on Γ0,

k(x) = βρ(x) + α(1− ρ(x)),

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 < V < 1.

Typically, the characteristic function ρ indicates where the β-material is to be placed and V is
the relative volume fraction of the β-material, which is given.

It is well-known that such problems lack optimal solutions within the class of characteris-
tic functions. This kind of problems are ill-posed in the sense that one generally can find a
finer and more detailed material distribution that is better than the coarser design, it is called
mesh-dependence. Ways to circumvent the ill-posedness problem are reviewed in [15] and can
be divided into two groups, namely relaxation methods and restriction methods. The former
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expands the design space by introducing an infinitely fine microstructure as material properties
in every element of the structure, see in detail [2]. Using this approach results in structures with
large “grey regions” (0 < ρ < 1), which are very difficult to manufacture. On the other hand,
restriction methods introduce extra constraints on design variables so as to find optimized solu-
tions over the initial design space. One of these, used here, is a filtering technique which modifies
the design sensitivity of an specific element based on a weighted average of the element sensi-
tivities in a fixed neighborhood, see [15]. The trouble is now how to solve the resulting discrete
problem, having in mind that as finer meshes are used, the number of design variables is larger
and therefore, the number of material distribution combinations increases in an astronomical
way. One popular way is to convert the discrete problem into a continuous one by allowing inter-
mediate densities during the optimization process. By penalization schemes, these intermediate
densities are then forced towards discrete 0/1 solutions at the end of the optimization process.
This continuous-variable scheme is the power-law approach to topology optimization, also called
SIMP (Solid Isotropic Material with Penalization [1]), and for the two-material problem, the
model can be expressed as

k(x) = βρ(x)p + α(1− ρ(x)p),

where p is the penalty factor. The volume constraint is now given by

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 ≤ ρ(x) ≤ 1.

By selecting the value of the power, p, large enough (usually larger than 3, (see [3])), elements
with intermediate densities become inefficient (when a volume constraint is present, like now)
and are thus forced towards zero or one. The power-law approach to topology optimization has
been applied to problems with multiple constraints, multiple physics and multiple materials, in
all of them successfully (see for example [14]).

Previous works have appeared on the applications of the topology optimization method
to problems modelled by Poisson’s equation, where the objective function mainly has been
of energy form (for conduction problems see [4, 7, 9, 12] and for torsion problems see [5, 8, 10,
11]). In this paper, we repeat some of the old examples and extend the ideas to non-energy
(mechanism-type) problems. In particular we consider problems in conduction, ground-water
flow, pressurized membranes and elastic torsion. The examples offer new physical insight in the
various optimization problems.

2 Numerical implementation

The implementation of the topology optimization problem is straight-forward and follows the
usual procedure outlined in the references on topology optimization, see [13]. The standard
procedure is to consider the design problem as an optimization problem in the design variables,
ρ(x), only. The displacement field is regarded as a function of these design variables through
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the equilibrium equation. To start with, we take an initial design which satisfies the volume
constraint, e.g., homogenous distribution of material. Next we compute the displacement field
by using FE analysis (in this case, we have used square elements with Q4 interpolation of
displacements and element-wise constant densities),

Ku = f .

Later we have to find the derivatives of the objective function with respect to the design variables
by using the adjoint method, it is called the sensitivity analysis,

∂c

∂ρe
=

∂g

∂ρe
u + pT ∂K

∂ρe
u,

where
Kp = − ∂g

∂u
.

For the compliance case we can use an optimality criteria method to solve the optimization
problem but when we consider non-self-adjoint problems, sensitivities may take both positive
and negative values, resulting in ill-convergence of the simple optimality criteria approach. In
such cases the best convergence is obtained using a mathematical programming algorithm like
MMA (see [16]).

3 Numerical examples

3.1 Heat transfer

As we presented before, the design problem for the heat transfer situation would show the
following format:

Minimize (or Maximize): c(ρ) = g(ρ, u),

subject to
−div(k(x)∇u(x)) = Q(x), in Ω,

−k(x)∇u(x) · n = f(x), on Γt,

u = u0, on Γ0,

k(x) = βρ(x) + α(1− ρ(x)),

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 < V < 1.

Concerning this case study, in all examples the design domain is a square and the material
properties take the values β = 1 (good conductor) and α = 0.001 (bad conductor or insulator).
In the first example the design domain (see Figure 1(a)) is isolated (f = 0) except for a small
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sink (u0 = 0) in the middle of the left side. Under an uniform heat generation over all the
domain (Q = 1), we want to find the optimized layout which minimizes the dissipated energy
in the thermal device, so in this case the objective function is the compliance, g1(u) = Qu.
We have constrained the amount of β to be 40% (it corresponds to taking V = 0.4). A gray
scale has been used to represent the optimized solution (see Figure 1(b)), where black would
correspond to the β-material and white to the α-material. This optimized solution has already
been obtained before in [4, 9]. We see how the good conductor (black material) drains energy
away from all parts of the structure.
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? 
min: compliant 

u = 0 

u
y
 = 0 

u
y
 = 0 

u
x
 = 0 

(a) Design domain

u = 0 

u
y
 = 0 

u
y
 = 0 

u
x
 = 0 

(b) Optimized design

Figure 1: Optimized solution for Example 1

In the second example, we use the same design domain than before, but we are now interested
in maximizing the outward horizontal heat flux in a small area as close as possible to the sink (see
Figure 2(a)). In such a case, the objective function would be given by g2(ρ, u) = (k(ρ)ux1)out

1.
The optimized design for V = 0.4 is shown in Figure 2(b) together with a plot of the heat
flux in Figure 2(c). The intricate resulting topology can be interpreted as the design that for a
limited amount of conducting material seeks to drain the energy close to the sink and direct it
horizontally towards the sink.

In the last two examples of this section the boundary conditions are different (see Figures
3(a) and 4(a)). The distributed heating from before is exchanged (now Q = 0) with an inward
horizontal heat flux in the middle of the left side (f = fin) and the sink is now in the center
of the opposite side. We look for designs which maximize the heat flux and the temperature
gradient, in the directions marked in the design domains (Figures 3(a) and 4(a)) over small
centered areas. The objective functions would be, g3(ρ, u) = (k(ρ)ux1)out and g4(u) = (ux1)out,
respectively. The resulting designs for V = 0.25 are shown in Figures 3(b) and 4(b). As we
can see in Figure 4(b), the bad conductor must be placed where a big temperature gradient is

1The pair of variables (x1, x2) appearing in the text correspond to the pair (x, y) in the pictures.
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Figure 2: Optimized solution and field for Example 2

desired. Notice that if the α-material is a perfect insulator there is no energy transfer between
the two branches appeared in the optimized design.

In Figures 5(a) and 5(b) the arrows represent the heat flux field and the intermediate shades
are showing how the temperature is changing through the optimized design (dark zones are
corresponding to higher temperature values).

3.2 Fluid mechanics

In fluid mechanics the groundwater flow design problem would adopt the following form

Minimize (or Maximize): c(ρ) = g(ρ, p),

subject to
−div(k(x)∇p(x)) = 0, in Ω,
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Figure 3: Optimized solution of Example 3
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Figure 4: Optimized solution of Example 4
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Figure 5: Heat flux for designs from Example 3 and 4

−k(x)∇p(x) · n = u(x), on Γt,

p = p0, on Γ0,

k(x) = βρ(x) + α(1− ρ(x)),

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 < V < 1.

In this new situation, the state is given by p (pressure), k means the hydraulic conductivity (or
permeability) and it is common to take Q ≡ 0 and also work with the velocity field, u.

We will treat two cases, both of them with rectangular domains. In the first example, given
an input flow on the left side (u = uin) and a sink on the opposite side (p0 = 0) and having in
mind that the vertical component of the velocity in the other sides is zero (there is no vertical
pressure gradient, see Figure 6), we want to find the optimized shape of an obstacle (it could
be a pillar) so as to maximize the flow compliance (or minimize the dissipated energy). In this
case, the objective function is the compliance, given by g1(p) = uinp). There exist two passive
areas in the domain in order to reproduce the fact that there has to be fluid in both sides of the
obstacle. Therefore, material properties are given by β = 1 (fluid) and α = 0.001 (obstacle).
The optimized solution for V = 0.8 is shown in Figure 7(a). Iso-pressure lines and the flow field
are shown in Figure 7(b). As before, dark zones are corresponding to higher state (pressure)
values.

In the second example, the design domain is the same but the objective consists of maximizing
the flow velocity in the direction marked with an arrow in Figure 8. The function would be now
g2(ρ, p) = uout = (−k(ρ)∇p·n)out =

√
2

2 (k(ρ)(px2−px1))out. The optimized solution for V = 0.05
is given by a centered slanted channel, as we can see in Figure 9(a). In Figure 9(b), a detailed
picture about the flow field in a small centered area is shown.
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3.3 Pressurized membranes

In the context of pressurized membranes the design problem would be given by

Minimize: c(ρ) = g(ρ, u),

subject to
−div(s(x)∇u(x)) = P, in Ω,

u = 0, on ∂Ω,

s(x) = βρ(x) + α(1− ρ(x)),

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 < V < 1.

In this new case study, the state is given again by u, but now it is indicating the vertical
displacement, s means the surface tension (proportional to material stiffness) and the source
term is usually given by an uniform pressure, P . We have taken the values β = 1 (high surface
tension) and α = 0.001 (low surface tension).

We will consider two cases, both of them square domains clamped on all boundary (the
vertical displacement is zero, u = 0). In the first example, (see Figure 10(a)), we look for
minimizing the compliance (g1(u) = Pu) and in the second one (Figure 11(a)), minimizing the
deflection in the middle point of the membrane (g2(u) = uout). Optimized solutions for V = 0.4
and V = 0.25 are shown in Figures 10(b) and 11(b), respectively. In Figures 10(c) and 11(c),
the lateral deflection is also shown for each case. It is interesting to note how in the first case,
all the membrane deflections are limited, whereas in the second case, only the central part has
limited deflections whereas the outer parts of the four quadrants are allowed to deflect badly.

fluid fluid 

min: compliant 

? 
u = u

in
 

p
y
 = 0 

p
y
 = 0 p = 0 

Figure 6: Design domain of Example 5
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Figure 7: Optimized solution and field of Example 5
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Figure 9: Optimized solution and field of Example 6
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Figure 10: Optimized solution of Example 7
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Figure 11: Optimized solution of Example 8
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3.4 Elastic torsion

In the context of elastic torsion the design problem formulated in terms of the Prandtl or stress
function would adopt the following form

Minimize (or Maximize): c(ρ) = g(ρ, φ),

subject to

−div
(

1
G(x)

∇φ(x)
)

= 2θ, in Ω,

φ = 0, on ∂Ω,

G(x) = βρ(x) + α(1− ρ(x)),

1
|Ω|

∫

Ω
ρ(x) dx ≤ V, 0 < V < 1,

where the state is given by the stress function φ, the material properties are given by the shear
modulus G, and the source term is an uniform twist angle θ. We will analyse three cases, in
all of them the section of the elastic rod considered is a square. The fact that there is no
normal stress along the boundary make us take φ = 0 on ∂Ω. The first situation corresponds
to maximizing the torsion constant under an uniform twist angle (θ = 1), (see Figure 12(a)).
Thus, the objective function is the compliance and it is expressed as g1(φ) = φ

θ . The material
properties take the values β = 1 (material) and α = 0.001 (void). As we could have predicted
and it is shown in Figure 12(b), the optimized solution for V = 0.5 corresponds, more or less, to
placing the stiffer material in an outer concentric disk. Very similar results have been observed
in the references [5, 8, 10,11].
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Figure 12: Optimized solution of Example 9
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For the last two examples, we consider the design domain in Figure 13. The aim is to pro-
duce a maximum warp mechanism. The objective function consist of maximizing the difference
between the vertical displacements, first when we consider the points A and B and second when
they are C and D. The difference in displacements can be measured as the gradient of the
vertical displacement function, w between the two points. Having in mind that

1
G(x)

∇φ(x) = θP + T∇w(x),

where

P =
(

x1

x2

)
, T =

(
0 −1
1 0

)
,

it is not hard to realize that the objective functions for these two cases are given by g2(ρ, φ) =
(wx1)AB = (G(ρ)−1(φy))AB and g2(ρ, φ) = (wx1)CD = (G(ρ)−1(φy))CD.

? 

A 
B 

D 

Uniform 
Twist Angle 

C 
W

A
 

W
B
 

W
C

 

W
D

 

Figure 13: Design domain of Example 10 and 11

The optimized designs for V = 0.15 and V = 0.05 are shown in Figures 14(a) and 15(a),
respectively. In Figures 14(b) and 15(b) the vertical displacement function, also called warping
function, is shown for each case. Notice that, judging by the design in Figure 15(a), only the
warping function along the CDEF outline must be considered. We see that the maximum
warping cross-section is obtained for open cross-sections with the material distributed as far
away from the center axis as possible.

4 Conclusions

In this paper we have used the topology optimization method to study a range of new non-self-
adjoint problems modelled by the Poisson’s equation. A number of examples have been shown
that offer new insight into optimal structural and multiple physics design.
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Figure 14: Optimized solution of Example 10
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Figure 15: Optimized solution of Example 11
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