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Finite Element Simulation of Interlaminar and Intralaminar Damage 
in Laminated Composite Plates Subjected to Impact 

Abstract 
Here In this study, the composite laminates subjected to transverse impact with 
consideration interlaminar and intralaminar damage based on Cohesive Zone 
Model (CZM) and Progressive Damage Model (PDM) are investigated by 
numerical analysis using ABAQUS commercial finite element code. The 
delamination in stacking ply with the same fiber orientation is considered as 
interlaminar damage and the delamination in an inner layer of any cluster is 
ignored. Hashin criterion is used for intralaminar damage initiation and 
evolution without using any subroutine. First, the appropriate procedure for 
delamination on composite specimen was suggested based on CZM approach in 
double cantilever beam to verify the intralaminar damage simulation. Then by 
considering several case studies with different impact energies, the results of 
present simulation is verified with the relevant and available experimental 
results and numerical references in the existing literature. According to the 
available experimental results the present simulation results are more acceptable 
and accurate than the results of similar numerical works, especially in higher 
impactor velocity. 

Keywords 
Polymer-matrix composites (PMCs), Finite element analysis (FEA), Damage 
evolution, Impact behaviour 

1 INTRODUCTION 

Composite structures are widely used in many industrial applications like aerospace and defence industry due to 
their inherently high specific mechanical properties. In many situations, these composite structures are subjected by high 
and low velocity impact. Composite structures are very sensitive to non-visual damage that strongly influence their 
residual load bearing capability. Lack of knowledge of the impact effects on composite structures is a factor in limiting 
the use of composite materials (Abrate, 1998). To understand the responses of composite structures under high velocity 
projectile impacts, various experimental and numerical studies have been conducted. Cantwell and Morton (1989) 
examined the initiation and development of damage in composite structures with a series of low and high velocity impact 
tests. Guoqi et al., (1992) investigated experimentally the response of woven Kevlar/polyester laminates of varying 
thicknesses to quasi-static and dynamic penetration by projectiles. Cheng et al., (2003) developed a model based on 
hydrodynamic finite element code for high velocity impact on thick composites. This model was based on a continuum 
approach which was built on the basis of an orthotropic constitutive behaviour with stress-based failure criteria and a 
simplified degradation model of the failure of composites. Silva et al., (2005) investigated experimental and numerical 
simulation of ballistic impact on Composite structures made of Kevlar-29. Cerioni (2009) presented a numerical 
simulation of delamination in composite materials under static and fatigue loading by cohesive zone models. Zhao et al., 
(2010) experimentally reported the failure modes of T300/epoxy composite laminates at different impactor velocities of 
10-300 m/s on the different stacking sequence. Khalili et al., (2011) proposed a verified finite element model using 
ABAQUS finite element for composite laminates and shell structures subjected to low-velocity impact. Gonzalez (2011) 
investigated the damage induced in composite plates under drop-weight impact loading by analytical description and 
experimental test plan for assessment of the virtual test performance by finite element simulation. Ramadhan et al., 
(2013) investigated the high velocity impact response of composite laminated plates, both experimentally and 
numerically. 

Simulation of damage induced in composite laminates has been performed with macro, meso and micro-scale of 
modelling. Investigating the overall response of the composite laminate with treating the composite as fully 
homogenized is called marco-scale analysis. In the meso-scale approach the composite treated as effective anisotropic 
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materials while involving the analysis of the composite to the scale of the constituents is called micro-scale approach. 
Although the finite element method could be used to simulate the composite laminate damage induced in all the 
mentioned scale modelling, extremely computational efficient method in macro-scale approach. The complex damage 
mechanisms of composite laminates, could be divided in intralaminar and interlaminar damage. The intralaminar damage 
mechanisms correspond to fiber fracture and matrix cracking, while the other correspond to the delamination of the plies. 

Progressive Damage Model (PDM) was first used by Chou et al., (1977) to analyse post-failure of composite 
materials. Continuum Damage Mechanics (CDM) has been employed by many researchers for progressive damage 
analyses of composite laminates. In macro-scale analysis of composite laminate, the CDM has been used and proposed 
by many researchers such as Maimí et al., (2007), Camanho et al., (2007), Zou et al., (2002) for the prediction of the 
onset and evolution of the intralaminar damage. The continuum damage model is the most accurate technique to predict 
size effects in composites and is applicable to general geometries and boundary conditions. In addition, it doesn't require 
any calibration (Camanho et al., 2007). Also a progressive damage method -which builds nonlinear mechanics models 
for composite materials and has capacity of accurately simulating the structural failure process from initial damage to 
ultimate failure- attracts wide spread attention in composite structure analyses (Tan, 1991; Shokrieh, 1996; Camanho and 
Matthews, 1999). In order to use PDM additional material testing is required to adjust the empirical evolutions laws. 
Moreover, PDM is suitable for structural analysis and its parameters could be determined by experiment test (Shokrieh, 
1996). 

Delamination or interfacial cracking between composite layers, is one of the most common types of damage in 
composite laminates due to their relatively weak interlaminar strengths. The FE simulation of delamination is normally 
performed by means of the Virtual Crack Closure Technique (VCCT), or cohesive finite elements (Turon et al., 2007). 
The formulation of the cohesive finite elements is based on the Cohesive Zone Model (CZM) approach and was 
originally introduced by Barenblatt and Dugdale (Barenblatt, 1962; Dugdale, 1960). CZM in the computational 
framework of FEM was first implemented by Hillerborg et al., (1976). The CZM approach is one of the most commonly 
used tools to investigate interfacial fracture. It is based on the Griffith's theory of fracture and assumed a cohesive 
damage zone developed near the crack tip and described the crack propagation in perfectly brittle materials (Turon et al., 
2007; Barenblatt, 1962). The CZM approach was developed in a continuum damage mechanics framework and resulted 
in improving its applicability by using fracture mechanics concepts. The cohesive zone model combines a strength-based 
failure criterion to predict the damage initiation, and a fracture mechanics-based criterion to determine the damage 
propagation (Khoramishad et al., 2010). 

The earlier work (Khalili et al., 2011) proposed a verified and low-cost finite element model using ABAQUS for 
composite laminates and shell structures subjected to low-velocity impact without damage consideration. The element 
type, solution method, impactor modelling method, meshing pattern and contact modelling are investigated and verified 
with several case studies with various conditions. It is significant to understand the dynamic behaviour of composite 
laminates and the induced damage mechanisms in order to use the composite effectively. 

According to the abovementioned work (Khalili et al., 2011), the purpose of this study is to introduce a reliable, 
low-cost and simple method based on ABAQUS commercial finite element code and by considering damage in 
composite laminates under transverse impact loadings. In fact the main objective is to provide a general solution for the 
modelling of dynamic simulation of the impact on composite plate based on PDM and CZM techniques that are available 
in ABAQUS without using any subroutine. In order to achieve the mentioned goals, the valid experimental and 
numerical examples are selected for validating the proposed FEM approach. First, a valid reference is chosen to verify 
the CZM technique. Then, several case studies of the impact loading on the composite laminates by considering 
intralaminar and interlaminar damage are chosen to verify the proposed finite element simulation procedure. 

2 SIMULATION OF DELAMINATION ON DCB COMPOSITE SPECIMEN BASED ON CZM 

In this section, the valid experimental and numerical reference are used to verify the proposed simulation approach. 
The results of the present simulation are compared with the experimental and numerical results reported by Cerioni 
(2009). Consequently, the appropriate procedure was suggested for delamination on composite specimen based on CZM 
approach. An unidirectional 24-ply Graphite/Epoxy composite laminates are considered with the dimensions of 140×20 
mm, total thickness of 3.24 mm, laminate configuration [011/-5/5/011] and initial crack length. The DCB (Double 
Cantilever Beam) test is one of the most common tests used to evaluate the mode I interlaminar fracture toughness in a 
composite laminate. In fact, the test considers a composite beam with a cohesive layer of thickness t = 0.02 mm and an 
initial delamination crack of 50 mm length. As shown in the Figure 1 the initial delamination is forced to open by 
applying a displacement that pull the two beams of the specimen away from each other. The material properties given for 
composite plies of DCB specimen and cohesive interface are indicated in Table 1 and 2 (Cerioni, 2009). 
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Figure 1: Specimen of the DCB test, the schematic applied load, and adhesive layer 

 

Table 1: Material properties used for composite plies of DCB specimen simulation 

Material properties 

Data E11 
(MPa) 

E22 
(MPa) 

E33 
(MPa) 

ʋ12 ʋ13 ʋ23 
G12 

(MPa) 
G13 

(MPa) 
G23 

(MPa) 
Graphite/Epoxy 

ply 0◦ 
130000 6500 6500 0.26 0.26 0.5 2700 2700 2700 

 

Table 2: Material properties used for cohesive interface failure simulation 

Interface properties 

Data E 
(MPa) 

G (MPa) S* (MPa) T** 
(MPa) 

GIC 
(N/m) 

GIIC 
(N/m) 

Cohesive interface 2400 857 20 40 643 905 

S*: maximum nominal interfacial strength in the normal direction 

T**: maximum nominal interfacial strength in the shear direction 

 

2.1 Material failure modelling 

As indicated in Figure 2, the cohesive zone model, as shown combines an initially linear elastic behaviour with 
strength-based failure criterion to predict the damage initiation and a fracture mechanics-based criterion to determine the 
damage evolution. The elastic behaviour is written in terms of an elastic constitutive matrix that connect cohesive surface 
tractions (t) to displacement (δ) at the interface. The initial stiffness of CZM (Figure 2, E0) defined as traction divided by 
separation, (units N/m3) should be chosen as high as possible to provide a reasonable stiffness. But from a numerical 
perspective, it cannot be infinitely large; otherwise, it leads to numerical ill-conditioning (Turon et al., 2007; Dssault 
System’s Simulia Corp, 2016) 

Many researchers have suggested various guidelines for selecting the stiffness of the interface. For instance, 
Camanho and Matthews (1999) obtained predictions for graphite/epoxy specimens by using a value of 106 N/mm3. Zou 
et al., (2002) proposed a value for the interface stiffness between 104 and 107 times of the interfacial strength value per 
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unit length. Turon et al., (2007) proposed equation (1) in order to estimate the stiffness of the interface and declared that 
the equation is more appropriate than the other works. In this equation, E3 is the elastic modulus through-the-thickness of 
the composite materials t is the laminate thickness adjoining to the cohesive interface, and α is an increasing parameter 
normally taken about 50. 

3E
K

t


  (1) 

As Shown in Figure 2, the point t0 refers to the beginning of materials response degradation. The t0 represents the 
peak values of the traction that correspond to the δ0 when the deformation is purely normal to the interface. The process 
of degradation begins when the traction or separation satisfies certain damage initiation criteria. Several damage 
initiation criteria such as maximum nominal stress (MAXE Damage) and quadratic nominal stress (QUADS Damage) 
are available in the ABAQUS (Dssault System’s Simulia Corp, 2016). Each damage initiation criterion also has an 
output variable associated with it in order to indicate whether the criterion is met. Perillo et al., (2012) have reached a 
better agreement between experimental results and the finite element results by using the QUADS initiation criterion. 

 
Figure 2: Schematic damage process zone and corresponding bi-linear traction-separation law 

 

The Quadratic nominal stress criterion is assumed to initiate when a quadratic interaction function reaches a value 
of one. This criterion can be represented as equation (2). In three-dimensional problems, the index n refers to normal 
traction and the index s and t refer to two shear traction. The Macaulay bracket (‹ ›) are used to signify that a pure 
compressive deformation or stress state does not initiate damage. Under single-mode loading, interface damage initiates 
when the traction reaches the maximum nominal interfacial strength (t0) (Dssault System’s Simulia Corp, 2016). 
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According to the strength-based failure criterion, the damage evolution would be initiated once the damage 
initiation condition has been met. Several constitutive models that have been proposed by the researchers for the damage 
evolution schemes, linear softening behaviour is usually implemented (Camanho et al., 2003). The damage evolution law 
describes the rate at which the material stiffness is degraded once the corresponding initiation criterion is reached. A 
scalar damage variable, D, represents the overall damage in the material. It initially has a value of 0 and then 
monotonically evolves from 0 to 1 upon further loading. The stress components of the traction-separation model are 
affected by the damage. According to equation (3), t  is the stress components predicted by the elastic traction-separation 
behaviour for the current strains without damage (Dssault System’s Simulia Corp, 2016). As shown in Figure 2, a value 
of 1 of the SDEG (Overall value of the scalar damage variable D), indicates that the initiation criterion has been met at 
the end of the damage evolution area which corresponds to the δm. Camanho et al., (2003) proposed equation (4) in order 
to define the effective displacement (δm) to describe the evolution of damage under a combination of normal and shear 
deformation across the interface. 

 t 1 D t   (3) 

2 2 2δm δn δ δs t    (4) 

Damage evolution can be defined based on the energy that is dissipated as a result of the damage process. The area 
under the traction-separation relation (the area that shaded in Figure 2) is equal to the fracture toughness energy, Gc. 
Although the scalar damage variable (D) is derived from this parameter, the fracture energy (Gc) is the most important 
parameter which can be determined by means of some standard experimental tests. 

2.2 Solution method 

The simulation of delamination based on CZM approach, is possible to be solved by an explicit or implicit 
algorithm available in ABAQUS. The ABAQUS/Standard general-purpose solver uses a traditional implicit integration 
scheme to solve finite element analyses. On the other hand, the ABAQUS/Explicit which uses an explicit central-
difference time integration rule applies an explicit integration scheme to solve highly nonlinear transient dynamic and 
quasi-static analyses. The simulation of delamination based on CZM approach is involves softening in the material 
response, and lead to convergence difficulties in an implicit solution procedure in ABAQUS/Standard. Convergence 
difficulties may also occur during unstable crack propagation when the available energy is higher than the fracture 
toughness of the material (Dssault System’s Simulia Corp, 2016). 

Khoramishad et al. (2010) uses standard solver of ABAQUS to simulate the single lap joints according to the CZM 
approach. Cerioni (2009) offers explicit solver in order to obtain the finite element solution for avoiding convergence 
problems and numerical instabilities. In the earlier work (Khalili et al., 2011), it was found that in an explicit scheme, the 
analysis cost rises only linearly with problem size, whereas the cost of solving the nonlinear equations associated with 
implicit integration rises more rapidly than linearly with problem size. Therefore, ABAQUS/Explicit is attractive for 
very large problems. 

2.3 Type of elements 

Based on plane strain assumption, the simulation of delamination on DCB composite could be analysis with two-
dimensional elements. Mi et al., (1998) applied a three-dimensional analysed and indicated that the 2D plane strain 
formulation gave a very reasonable approximation versus three-dimensional analysis. While Alfano and Crisfield (2001) 
strictly declared that a 3D analysis would be needed since the delamination front was not precisely a straight line. 

Conventional shell, continuum shell and solid elements are available options in ABAQUS for modelling the 
composite structures. While cohesive behaviour is used in conjunction with stacked conventional shell elements, the 
specialized contact formulation may lead to approximate normal contact forces. This may induce approximate transverse 
shear behaviour in the stacked shells which affect the bending behaviour of the stack. Continuum shells should be used 
instead of conventional shells in such modelling scenarios (Dssault System’s Simulia Corp, 2016). 

2.4 Cohesive surfaces versus cohesive elements 

Similar to cohesive surfaces, cohesive elements could be used in CZM approach simulation in ABAQUS. The 
formulation used for surface-based cohesive, is very similar to that of cohesive elements with traction-separation 
response. For cohesive surfaces, the cohesive constraint is enforced at each slave node while in cohesive elements, the 
cohesive constraints are calculated at the material points. Hence for cohesive surfaces, refining the slave surface as 
compared to the master surface will likely lead to improved constraint satisfaction and more accurate results (Dssault 
System’s Simulia Corp, 2016). 
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Some researchers like Turon et al., (2007) used cohesive elements in CZM approach, but others like Gonzalez 
(2011), used both of cohesive elements and cohesive surfaces in CZM approach and concluded that the use of cohesive 
surfaces resulted in improving the runtime of the analysis. On the other hand, it can yield to large runtime analysis 
because contact algorithms are computationally heavy especially when the connected mesh are highly refined. 

2.5 Verification and discussion on simulation method 

This section briefly describes the finite element (FE) simulation of the delamination on DCB composite specimen 
based on CZM approach. In this study, the FE simulation, has been done with the finite element package ABAQUS 
version 2016 and is performed on a computer with 3.2 GHz Intel® Corei7, with 8.00 GB RAM. 

According to Table 1, the material modelling of composite ply in the present FE simulation has been done by linear 
elastic with engineering constant option that is available in ABAQUS. The CZM approach is used to simulate the 
interface failure modelling of cohesive layer between two beams of the specimen. According to Table 2, the magnitude 
of the initial stiffness of the cohesive element (Figure 2, E0) has been imported to the ABAQUS and it does not need to 
be divided by the cohesive thickness. For defining the quadratic nominal stress (QUADS Damage) criterion, the S and T 
which are taken from Table 2 are considered as the maximum nominal interfacial strength (t0) in the two directions 
(normal and shear). Also according to Table 2, the fracture energies GIC, and GIIC are imported to ABAQUS to define 
the modes I and II for simulation of the interlaminar fracture toughness in cohesive interface. 

The 4 nodes, two-dimensional continuum plane strain elements (CPE4R) and the 4 nodes, two-dimensional 
cohesive elements (COH2D4) are used in the FE simulation of the composite specimens and the cohesive interface. A 
very refined mesh using an element length of 0.25 mm was used for both solid and cohesive elements and is constant for 
all the models (6720 elements of type CPE4R and 360 elements of type COH2D4). This element length is recommended 
by Cerioni (2009) and as shown in Figure 3, only one cohesive element in the cohesive interface was put. 

 
Figure 3: Mesh used in the FE simulation and cohesive thickness element size  

 

Here, a double cantilever beam has been simulated under displacement control. As shown in Figure 4, the 
movement of the opening edge in the vertical direction of the composite specimens is applied by the displacement 
control and is restrained in horizontal direction. Also, the last node of the bottom of the lower composite specimen has 
been restrained in vertical direction. 
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Figure 4: The boundary conditions of FE simulation 

 

In this case study, the present simulation results gained by standard solver of ABAQUS are compared with the 
available experimental and numerical results by the Cerioni (2009). As shown in Figure 5, there is a good 
correspondence between the elastic branches of the three curves. Also, the prediction of the onset of the delamination 
looks adequate. But some mismatch was observed between the present simulation and the results of reference (Cerioni, 
2009) in onset of the delamination. Furthermore, there is a difference in the propagation branch of the simulation model 
stiffness which has been decreased more quickly in respect of the experimental results. In addition, better 
correspondence was observed with experimental results in the present simulation versus simulation of Cerioni (2009). 

 
Figure 5: Comparison of contact force variation as a function of displacement for delamination on DCB composite specimen 

between the present FE simulation and the results of Cerioni (2009) 

 

In Figure 6, the present simulation results gained by the explicit solver of ABAQUS are compared with the 
available experimental and numerical results by the Cerioni (2009). As indicated in Figure 6, the mismatch in onset of 
delamination gained by standard solver of ABAQUS (Figure 5) is eliminated. Also better results correspondence was 
observed in explicit solver than standard solver. 
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Figure 6: Comparison of contact force variation as a function of displacement for delamination on DCB composite specimen 

between the present FE simulation with explicit solver and the results of Cerioni (2009) 

 

As mentioned earlier in section 2.3, a 3D analysis would be needed since the delamination front is not precisely a 
straight line (Alfano and Crisfield, 2001). In this study the composite specimen uses the SC8R element for investigation 
the effect of 3D modelling in delamination. According to the earlier work (Khalili et al., 2011), SC8R elements should 
be used in thick plates and shells. The SC8R or S4R elements are an eight-node continuum shell and four-node 
conventional shell elements with reduced integration, respectively. 

In case of modelling, cohesive behaviour is possible to be used in conjunction with stacked conventional shell 
elements. Depending on the load case, the specialized contact formulation may lead to approximate normal contact 
forces, which in turn may induce the approximate transverse shear behaviour in the stacked shells and consequently 
affect the bending behaviour of the stack. For increasing accuracy in such modelling scenarios, continuum shells should 
be used instead of conventional shells (Dssault System’s Simulia Corp, 2016). 

As mentioned earlier in section 2.4, cohesive surfaces like cohesive elements could be used in CZM approach 
simulation. Also unlike to 2D modelling, the 3D modelling leads to large runtime analysis. Therefore the cohesive 
surfaces should be uses in 3D modelling in order to improve the analysis runtime. 

In the cohesive surface method, the initial stiffness magnitude of the cohesive surface that should be imported to the 
ABAQUS is different from the magnitude for the cohesive element. In addition it should be divided by the cohesive 
thickness and does not need to multiply to 50, according to the equation (1). 

As indicated in Figure 7, the force variation as a function of displacement for delamination on DCB composite 
specimen by using SC8R elements (3D modelling) is similar to Figure 6, in which explicit solver is also used. But the 
fluctuation in the force history of the 3D modelling versus 2D modeling is considerable. The non-symmetric pattern of 
the displacement contour which is shown in Figure 8, leads to the fluctuation of force history. Therefore unlike to the 2D 
modeling, the fluctuation of force history is considerable in the 3D modelling because the delamination is not precisely a 
straight line. 
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Figure 7: Comparison of force variation as a function of displacement for delamination on DCB composite specimen between 

the present FE simulation with explicit solver and 3D modelling and the results of Cerioni (2009) 

 

 
Figure 8: Non-symmetric pattern of the displacement contour in the DCB composite specimen 

 

3 SIMULATION OF IMPACT ON LAMINATED COMPOSITE PLATES BASED ON CZM AND PDM 

By applying the appropriate procedure for delamination based on CZM method mentioned in section 2; here, the 
impact FE simulation process of composite plates is briefly described regarding CZM and PDM approach. To verify the 
proposed simulation approach, the results of the present simulation are compared with the valid experimental and 
numerical results reported by Gonzalez (2011). And finally, the appropriate procedure for impact on composite 
laminated plates is suggested by regarding intralaminar and interlaminar damage. A plate is considered with the 
dimensions of 150×100 mm2 made of Hexply AS4/8552 carbon-epoxy unidirectional pre-preg composite with laminate 
configuration [454/04/-454/904]s. In Figure 9 (Gonzalez, 2011), the test specimen and fixture base with details of support 
area and clamping points of the specimen are indicated. The material failure properties assumed for AS4/8552 plies and 
cohesive interface are demonstrated in Tables 3 and 4 (Gonzalez, 2011). It should be mentioned that the ʋ12 is 0.35, the 
mass density of the plate is 1.590 kg/m3, and the ply thickness is 0.18125 mm. The plate is subjected to transverse impact 
by a steel sphere impactor of 16 mm diameter with the mass of 5 kg. 
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Figure 9: (a) Test specimen and fixture base and (b) detail of support area and clamping points of the specimen  

 

Table 3: Ply properties of AS4/8552 Carbon/Epoxy 

Material properties 

Elastic 
(Gpa) 

E11 
128 

E22 
7.63 

G12 
4.36 

  

Damage initiation 
(Mpa) 

TX  
2300 

CX  1531 
TY  26 

CY  
199.8 

LS  
78 

Damage evolution 
(N/mm) 

TF  
81.5 

CF  106.3 
TM  

0.28 

CM  
0.79 

 

 

Table 4: Interface properties 

Interface properties 

Elastic properties 
E=7.63 

Gpa 
ʋ=0.45  

Mode I Strength 
(Mpa) 1  43.8 2  26 3  26 

Fracture toughness 
(N/mm) IcG  

0.28 
IIcG  

0.79 
IIIcG  

0.79 

 

3.1 Material failure modelling 

In this study, the material failure modelling is based on the progressive damage model that is used mainly to obtain 
the overall response of the composite laminates. A typical PDM consists of three steps: linear elastic stress analysis, 
failure analysis, and property-degrading material state variable. There are many material models that can be used to 
predict the behaviour of composite laminates. Progressive damage model in ABAQUS is assumed to be linearly elastic. 
It is intended that the model predicts the behaviour of composite laminates for damage which can be initiated without a 
large amount of plastic deformation. The initiation criteria are used to predict the onset of damage and the damage 
evolution law is based on the energy dissipated during the damage process and linear material softening (Dssault 
System’s Simulia Corp, 2016). 

The ABAQUS anisotropic damage model is based on the work of Hashin and Rotem (1973), Hashin (1981) and 
Camanho et al., (2003). In ABAQUS, the damage initiation criteria for fiber composite laminates are based on Hashin's 
theory. There are four different damage initiation criteria in ABAQUS (Dssault System’s Simulia Corp, 2016) as 
follows: 
• fiber rupture in tension 
• fiber buckling and kinking in compression 
• matrix cracking under transverse tension and shearing 
• matrix crushing under transverse compression and shearing 
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The equations for these damage initiation criteria are listed in the following equations (5-8). Tensile or compressive 
damage can be initiated in the fiber or the matrix when the respective F equals one. 

2 2

11 12
11   0   t

f T L
FiberTensionthat F

X S

           
   

 (5) 

2

11
11   0  c

f c
Fiber compresionthat F

X

      
 

 (6) 

2 2

22 12
22   0  t

m T L
MatrixTensionthat F

Y S

           
   

 (7) 

22 2

22 22 12
22   0  [ 1]

2 2

C
c

m T T C L

Y
Matrix compresion that F

S S Y S

  
             

    
 (8) 

In the above equations, ,TX , cX , TY , CY , LS  and  TS denotes the longitudinal tensile strength, the longitudinal 

compressive strength, the transverse tensile strength, the transverse compressive strength, the longitudinal shear and 
transverse shear strength respectfully. Also,   is a coefficient that determines the contribution of the shear stress to the 

fiber tensile initiation criterion. In addition 11 12 22,  and     are components of the effective stress tensor which is used 

to evaluate the initiation criteria. The initiation criteria presented above can be specialized to obtain the model proposed 

in Hashin and Rotem (1973) by setting 0   and 
2

C
T Y

S  , or the model proposed in Hashin (1981) by setting 1  . 

Prior to damage initiation, the material in ABAQUS Progressive damage modelling is linearly elastic with the 
stiffness matrix of a plane stress orthotropic material. Thereafter, the effect of damage is taken into account by reducing 
the value of stiffness coefficients. If any of the damage variables become one, stress can no longer be supported in the 
respective direction because the stiffness goes to zero. The response of the material is computed by the equation (9), 

where   is the strain and  dC is the damaged elasticity matrix (Dssault System’s Simulia Corp, 2016). 

dC   (9) 

In a damage evolution model in ABAQUS PDM, it's required to predict the material response in each of the four 
failure modes as loading increases or unloading. As it's indicated in Figure 10, these should be beyond the point of initial 
damage as linear damage evolution. Prior to damage initiation the positive slope of the stress-displacement curve 
corresponds to linear elastic material behavior. Whereas the negative slope is achieved by evolution of the respective 
damage variables after damage initiation. To relieve mesh dependency during material softening, ABAQUS introduces a 
characteristic length into the formulation. So the damage evolution is expressed as a stress-displacement relation. In 

Figure 10, 
0  eq (initial equivalent displacement) intersected 

0
 eq (initial equivalent stress) at the point A. This point is 

the damage initiation criterion which met for each failure mode. 
t
eq  is the displacement at which the material is fully 

damaged. 
For each failure mode, the energy dissipated should be specified due to failure ( cG ), which corresponds to the area 

of the triangle OAC in Figure 10. The values of 
t
eq  for the various modes depend on the respective cG  values. 

Thereafter the damage initiated, unloading from a partially damaged state such as point B in Figure 10, occurs along a 
linear path toward the origin with degraded stiffness and strength due to damage induced. 
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Figure 10: Equivalent stress versus equivalent displacement in linear damage evolution 

 

3.2 Solution method 

As mentioned in the earlier work (Khalili et al., 2011), the simulation of impact on composite laminates, is possible 
to be solved by both explicit and implicit solver of ABAQUS, but the ABAQUS/Explicit is the appropriate choice to 
solve highly nonlinear transient dynamic and progressive damage modelling (Dssault System’s Simulia Corp, 2016). 
Also as it is mentioned in section 2.2, the ABAQUS/Explicit is attractive for very large problems. 

3.3 Contact modelling 

Hard contact law is one of the contact laws that is available in ABAQUS. In this contact method, the contact 
constraint is applied when the clearance between two surfaces becomes zero. There is no limit in the contact formulation 
on the magnitude of contact pressure which can be transmitted between the surfaces. The surfaces are separated when the 
contact pressure between them becomes zero or negative, then the constraint is removed. The contact force is a function 
of the penetration distance. And it is applied to the slave nodes to oppose the penetration while equal and opposite forces 
act on the master surface at the penetration point. When using hard contact, it is still possible to make master surface 
penetrate into the slave surface by pure master-slave algorithm as indicated in Figure 11 (Dssault System’s Simulia Corp, 
2016). 

 
Figure 11: Master surface penetrate into the slave surface of a pure master-slave contact pair 

 

Both the pure master-slave and the balanced master-slave contact algorithms are available in ABAQUS/Explicit. By 
default, ABAQUS/Explicit will decide which algorithm to be used for any given contact pair based on the nature of the 
two surfaces forming the contact pair and also applying kinematic or penalty enforcement of contact constraints. 
ABAQUS/Explicit uses the pure master-slave in kinematic contact algorithm as a rigid surface contacts a deformable 
surface. If the penalty contact algorithm is specified, ABAQUS/Explicit chooses balanced master-slave weighting as two 
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element-based surfaces contact each other. Balanced master-slave weighting means that the corrections produced by both 
sets of contact calculations are weighted equally. The penalty contact algorithm for balanced master-slave contact 
surfaces computes contact forces that are linear combinations of the calculated pure master-slave forces. One set of 
forces is calculated by considering one surface as the master surface, and the other forces are calculated by considering 
the same surface as the slave surface (Dssault System’s Simulia Corp, 2016). As mentioned in section 2.4, it is possible 
to use both cohesive element and cohesive surfaces for defining cohesive behaviour between tow laminates of composite 
plate. But in the 3D modelling, cohesive surfaces are preferable due to their low-cost analysis. 

3.4 Type of elements and mesh convergence study 

Conventional shell, continuum shell and solid elements are available options in the modelling of the composite 
laminates in ABAQUS. The choice of an element type used for the plates or shells as target structures depends on their 
side to thickness ratio as well as the impactor velocity. Increasing the thickness of target and impactor velocity lead to 
increase in the shear deformation. 

In order to obtain the optimum number of elements, an analysis of the number of elements sensitivity is performed. 
In Figure 12 mesh pattern of the circular area surrounding the contact region and the convergence study of the number of 
elements are shown. This study indicated that the element number of 15 in edges of circular impact area is the optimum 
number of elements. 

 
Figure 12: Convergence study of element numbers (a) mesh pattern of the circular area surrounding the contact region (b) 

variation of maximum contact force vs. number of element 

 

3.5 Verification and discussion on simulation method 

Similar to the section 2 of this study, the ABAQUS version 2016 is used for simulation of the impact on laminated 
composite plates. The simulation is performed on the same computer mentioned in the previous section. 

The material modelling of composite ply has been done by linear elastic with lamina option that is available in 

ABAQUS. Due to the plane stress condition that is used for SC8R elements, only the values of 11E , 22E , ʋ12, 12G , 

13G  and 23G  are required to define an orthotropic material (Dssault System’s Simulia Corp, 2016). Therefore based on 
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Table 3 of the present FE simulation, the requared materials properties are defined assuming 13G  is equal to 12G  and 

23G  is equal to 
12

2

3
G . 

As mentioned earlier in section 3.1, Hashin's damage initiation criteria parameters are required in the PDM 
approach that is used for intralaminar failure modelling of laminated composite. According to the Table 3, the mentioned 

parameters are defined as damage initiation, assuming  TS  is equal to 
2

3
LS . In order to model progressive damage, the 

energy dissipated due to failure ( cG ) of each failure mode should be imported to ABAQUS. The , , T C TF F M  and CM
are taken from Table 3, as fracture energy in the fiber and matrix in tension and compression mode. 

According to Table 4, the interlaminar failure properties of interfaces are defined. Also the procedure that is used in 
this section is similar to section 2.5 for cohesive zone modelling. In order to modelling the interlaminar failure of 
interfaces in the present laminate configuration [454/04/-454/904]s the clustering ply was chosen. Therefore the 
delamination in stacking ply with the same fiber orientation (clustering) is considered and the interlaminar failure in 
inner layer of any cluster is ignored. As indicated in Figure 13, seven cohesive surfaces duo to low-cost analysis are 
modelled according to the CZM procedure by using the properties of Table 4. 

 
Figure 13: Cohesive surfaces in laminate configuration [454/04/-454/904]s 

 

Based on the preferences of explicit solver mentioned earlier in section 3.2, ABAQUS/Explicit is used in this study 
for simulating the impact phenomena. The hard contact law is chosen for being applied as the clearance between two 
surfaces becomes zero. The impactor and the target are set as the master and slave surfaces, respectively with penalty 
contact algorithm of balanced master-slave contact surfaces. The impactor was modelled as deformable body with 
element of C3D8R and the laminated composite are meshed using SC8R elements. As mentioned earlier in section 3.4, 
the optimum number of elements (12224 elements of type SC8R and 4025 elements of type C3D8R) are obtained based 
on the mesh convergence study, 

According to section 3, three case studies with different level of impact energies were chosen to verify the present 
FE simulation procedure. Therefore, impactor with initial velocities of 3.93, 3.38 and 2.78 m/s were simulated. 

The results of impact with impactor velocity of 2.78 m/s and kinetic energy of 19.3 J were compared with 
experimental and numerical results those presented by Gonzalez (2011). The comparison of the results for the contact 
force history was indicated in Figure 14. As it is observed, there is appropriate correspondence between the results. Also 
unlike to the simulation results that presented by Gonzalez the fluctuations of contact force are decreased in the present 
FE simulation. In Figure 15, the FE simulation and experimental variation of energy dissipation of impactor is 
demonstrated as a function of time for laminated composite plate. The results indicated that the energy absorption by 
laminated composite plate of the present simulation has less discrepancies than simulation results presented by Gonzalez. 
In addition, in Figure 16, the comparison of contact force is indicated as a function of impactor displacement for a 
composite plate under impact kinetic energy of 19.3 J and appropriate correspondence is observed. 
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Figure 14: FE Simulation and Experimental contact force variation as a function of time for a composite plate under impact 

kinetic energy of 19.3 J 

 

 
Figure 15: FE Simulation and Experimental energy dissipation variation of impactor as a function of time for a composite 

plate under impact kinetic energy of 19.3 J 
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Figure 16: The comparison of contact force variation as function of impactor displacement for a composite plate under impact 

kinetic energy of 19.3 J 

 

The present results for the contact force history with impactor velocity of 3.38 m/s and kinetic energy of 28.6 J is 
shown in Figure 17, and compared with experimental and numerical results of Gonzalez (2011). It should be mentioned 
Gonzalez (2011) has only reported the contact force history for this level of impact energy. 

 
Figure 17: FE Simulation and Experimental contact force variation as a function of time for a composite plate under impact 

kinetic energy of 28.6 J 

 

The comparison of the results for the contact force history, energy absorption and contact force as a function of the 
impactor displacement is shown in Figure 18, Figure 19 and Figure 20 respectively in case of impactor velocity is 3.93 
m/s and kinetic energy is 38.6 J. Here, appropriated correspondence is observed. The comparison of contact force history 
of three case studies (Figure 14, Figure 17 and Figure 18) is indicated that unlike to the present simulation, increasing 
impactor velocity leads to increasing the discrepancy between simulation and experimental results of Gonzalez (2011). 
Therefore the validity of the present impact simulation procedure is not dependent on the impactor velocity. In addition 
as indicated in Figure 18, the maximum contact force that reported by Gonzalez experimentally (point A) is equal to 8.66 
kN. The discrepancy in contact force (point A) is equal to 13.43% and 25.24% for the present and Gonzalez simulation 
respectively. Therefore, the accuracy of the present impact simulation is prefer than the Gonzalez simulation especially 
in higher impactor velocity. 
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Figure 18: FE Simulation and Experimental contact force variation as a function of time for a composite plate under impact 

kinetic energy of 38.6 J 

 
Figure 19: FE Simulation and Experimental energy dissipation variation of impactor as a function of time for a composite 

plate under impact kinetic energy of 38.6 J 

 
Figure 20: The comparison of contact force variation as a function of displacement of impactor for a composite plate under 

impact kinetic energy of 38.6 J 
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4 CONCLUSION 

In this study, a reliable, low-cost and simple method is provided based on ABAQUS/Explicit package by 
considering damage in laminated composite plates under transverse impact loadings. The best procedure is proposed 
which can serve as benchmark method in damage modeling of composite structures under high velocity impact for future 
investigations. First, the simulation of delamination on DCB composite specimen is verified based on CZM approach. In 
addition, materials model, solution method, element type and method of cohesive definition are considered. It is 
observed that, less CPU run-time is required for simulation of delamination problems 2D modelling. Furthermore, 
cohesive surface rather than cohesive element should be used in 3D modelling for improving the analysis runtime. 
Contrary to cohesive surface, there is no need to divide the initial stiffness of the cohesive element -which should be 
imported to the ABAQUS- by the cohesive thickness 

It can be declared that, explicit solver of ABAQUS is the appropriate choice for modelling progressive damage and 
cohesive zone. In addition ABAQUS/Explicit is capable to solve highly nonlinear transient dynamic and it is attractive 
for very large problems. 

In this study, the simulation of impact on laminated composite plates based on CZM and PDM are verified by the 
experimental and numerical results available in the literature. 

By considering damage evolution behaviours of matrix and fiber cracking and interface delamination in three case 
studies with different levels of impact energies, our simulation results have an appropriate correspondence with the 
results of similar works especially in the aspect of force-time, force-displacement and energy time histories curves. 
According to the simulation results, the delamination in clustering ply is significant but the interlaminar failure in an 
inner layer of any cluster could be ignored. 

Like to Gonzalez (2011), we have used ABAQUS finite element simulation; unlike to him, our simulation results 
are more accurate -about 12 percent better correspondence in maximum contact force- than his simulation results 
especially in higher impactor velocity. On the other hand, our results correspond to his experimental results 
appropriately. Finally, the proposed method can serve as a benchmark for simple impact simulation of composite 
structures based on CZM and PDM in the future investigations, such as optimization study and engineering application 
of composite laminates under impact. 
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