
10(2013) 223 – 246 

 
 
Thermomechanical Buckling of Temperature-
dependent FGM Beams 

 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
1 INTRODUCTION 

Functionally graded materials, as a branch of new materials, have attracted increasing atten-
tion in recent years. A survey in the literature reveals the existence of wealth investigations 
on analysis of functionally graded material beams. Among them, Kang and Lee [1] presented 
explicit expressions for deflection and rotation of an FGM cantilever beam subjected to an 
end moment. Considering the large deflection of the beam, they reported that an FGM beam 
can bear larger applied load than a homogeneous beam. Free vibration analysis of simply-
supported functionally graded material beams is reported by Aydogdu and Taskin [2]. They 
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Abstract 
Buckling of beams made of functionally graded materials (FGM) 
under thermomechanical loading is analyzed herein. Properties of 
the constituents are considered to be functions of temperature and 
thickness coordinate. The derivation of the equations is based on 
the Timoshenko beam theory, where the effect of shear is includ-
ed. It is assumed that the mechanical and thermal nonhomogene-
ous properties of beam vary smoothly by distribution of the power 
law index across the thickness of the beam. The equilibrium and 
stability equations for an FGM beam are derived and the exist-
ence of bifurcation buckling is examined. The beam is assumed 
under three types of thermal loadings; namely, the uniform tem-
perature rise, heat conduction across the thickness, and linear 
distribution across the thickness. Various types of boundary condi-
tions are assumed for the beam with combination of roller, 
clamped, and simply-supported edges. In each case of boundary 
conditions and loading, closed form solutions for the critical buck-
ling temperature of the beam is presented. The results are com-
pared with the isotropic homogeneous beams, that are reported in 
the literature, by reducing the results of the functionally graded 
beam to the isotropic homogeneous beam.  
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used both exponential and power law form of material properties distribution to derive the 
governing equations. Their study includes four types of displacement fields namely, the classi-
cal beam theory, the first order theory, and the parabolic and exponential shear deformation 
beam theories. They concluded that, in comparison with the classical beam theory, other 
three types of displacement fields accurately predict the natural frequencies. Nirvana et al. [3] 
obtained analytical expressions for thermo-elastic analysis of three layered beams, when the 
middle layer is made of FGMs. A unified method to study the dynamic and static analysis of 
FGM Timoshenko beams is reported by Li [4]. He derived a fourth order differential equation 
and linked the other parameters of the beam to the solution of fourth order differential equa-
tion. His study includes the simply supported and cantilever beams. The static and free vi-
bration analysis of layered FGM beams based on a third order shear deformation beam theo-
ry is developed by Kapuria et al. [5]. A two nodes finite element method is adopted to solve 
the coupled ordinary differential equations. 

The mechanical and thermal buckling of beams, as a major solid structural component, 
have been the topic of many researches for a long period of time. Development of the new 
materials, such as the functionally graded materials, have necessitated more research in this 
area. Huang and Li [6] obtained an exact solution for mechanical buckling of FGM columns 
subjected to uniform axial loading based on various beam theories. Zhao et al. [7] studied the 
post-buckling of simply supported rod made of functionally graded materials under uniform 
thermal loading and nonlinear temperature distribution across the beam thickness using the 
numerical shooting method. They found that, under the same temperature condition, the 
deformation of immovably simply supported FGM rod is smaller than those of the two ho-
mogenous material rods. Also, end constrained force of FGM rod is smaller than the corre-
sponding values of the two homogenous material rods with the small deformation. According-
ly, the stability of FGM rod is higher than those of the two homogenous material rods when 
there is a temperature difference. Li et al. [8] presented the post-buckling behavior of fixed-
fixed FGM beams based on the Timoshenko beam theory under nonlinear temperature load-
ing. They found the effect of shear on the critical buckling temperature of beams and used 
the shooting method to predict the post-buckling behavior of beams. It was found that the 
non-dimensional thermal axial force increases along with increase of the power law index, as 
the increment of metal constituent can produce more thermal expansion of beam under the 
same value of thermal load. Kiani and Eslami [9] discussed the buckling of functionally grad-
ed material beams under three types of thermal loading through the thickness. They exam-
ined the existence of bifurcation type buckling for various edge supports and presented their 
results in closed-form expressions. A semi inverse method to study the instability and vibra-
tion of axially FGM beams is carried out by Aydogdu [10]. Ke et al. [11] presented the post-
buckling of a cracked beam for hinged-hinged and clamped-hinged edge conditions based on 
the Timoshenko beam theory. Also, Ke et al. [12] presented the free vibration and mechanical 
buckling of cracked beams using the first order shear deformation beam theory for three types 
of boundary conditions. They found that FGM beams with a smaller slenderness ratio and a 
lower Young's modulus ratio are much more sensitive to the edge crack. Ma and Lee [13] 
discussed the nonlinear behavior of FGM beams under in-plane thermal loading by means of 
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first order shear deformation theory of beams. The derivation of the equations is based on the 
concept of neutral surface, where the numerical shooting method is used to solve the coupled 
nonlinear equations. Their study concluded that when a clamped-clamped FGM beam is sub-
jected to uniform thermal loading, it follows the bifurcation-type buckling while the simply-
supported beams do not. This feature of FGM beams, however, is ignored in some of the 
published works through the literature [9, 14, 15]. 

Kiani et al. [16,17] studied the effect of applied actuator voltage on the critical buckling 
temperature difference of FGM beams. It is reported that the effect of applied actuator smart 
layers is somehow negligible on thermal buckling control. In an analytical study, Ma and 
Wang [18] analyzed the nonlinear response of FGM beams with shear deformation effects and 
obtained the exact closed-form solutions for equilibrium path of the beam. This analytical 
study also proves the importance of the boundary conditions on the beam equilibrium path. 
Fu and his co-authors [19] obtained closed-form solutions for the free vibration of thermally 
loaded and thermal equilibrium path of a thin FGM beam with both edges clamped. In this 
work the temperature dependency of the constituents is also taken into account. A single 
term Ritz solution along with a finite element formulation is developed by Anadrao et al. 
[20]. In this work the cases of a beam with both edges clamped and both edges simply-
supported are analyzed. 

The present work deals with the buckling analysis of FGM beams subjected to thermal or 
mechanical loadings. Various types of boundary conditions are assumed and the existence of 
bifurcation type buckling in each case is examined. Based on the concept of virtual displace-
ments principle, three coupled differential equations are obtained as the equilibrium equa-
tions. In thermal buckling analysis, the beam is under three types of thermal loading distinct-
ly, and closed-form solutions are obtained to evaluate the critical buckling temperatures/loads 
. 

 
 

2 FUNCTIONALLY GRADED TIMOSHENKO BEAMS 

Consider a beam of functionally graded material, where the graded properties are assumed to 
be through the thickness direction. The volume fractions of the constituent materials, which 
are assumed to ceramic of volume cV  and metal of volume mV , may be expressed using the 
power law distribution as [21] 
 

1
1,

2

k

c m c
z

V V V
h

        
 (1) 

 
 
where h  is the thickness of the beam and z  is the thickness coordinate measured from the 
middle surface of the beam / 2 / 2h z h   , k  is the power law index which has the val-
ue equal or greater than zero. Variation of cV  with k  and /z h  is shown in Figure 1. 
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Figure 1   Distribution of ceramic volume fraction through the thickness for various power law indices 
 
The value of k  equal to zero represents a fully ceramic beam  1cV   and k  equal to in-

finity represents a fully metallic beam 0cV  . We assume that the mechanical and thermal 
properties of the FGM beam are distributed based on Voigt's rule [22]. Thus, the property 
variation of a functionally graded material using Eq. (1) is given by 
 

      1
( )

2

k

m cm
z

P z P P
h

       
                                                (2) 

 
where cm c mP P P  , cP  and mP  are the corresponding properties of the metal and ceramic, 
respectively. In this analysis the material properties, such as Young's modulus ( )E z , coeffi-
cient of thermal expansion ( )z  and thermal conductivity ( )K z  may be expressed by Eq. (2), 
whereas Poisson's ratio   is considered to be constant across the thickness [21]. 
 
3 GOVERNING EQUATIONS 

Consider a beam made of FGMs with rectangular cross section. It is assumed that the length 
of the beam is L , width is b , and the height is h . Rectangular Cartesian coordinates is used 
such that the x  axis is at the left side of the beam on its middle surface and z  is measured 
from the middle surface and is positive upward, as shown in Figure 2.  
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Figure 2   geometry and coordinate system of an FGM beam 
 
The analysis of beam is based on the first order shear deformation beam theory using the 

Timoshenko assumptions. According to this theory, the displacement field of the beam is 
assumed to be [4] 

 
( , )u x z u z            

                                                (3) 
( , )w x z w  

 
where ( , )u x z  and ( , )w x z  are displacements of an arbitrary point of the beam along the x  
and z -directions, respectively. Here, u and w  are the displacement components of middle 
surface and   is the rotation of the beam cross-section, which are functions of x  only. The 
strain-displacement relations for the beam are given in the form [11] 
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2xx
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where xx  and xz  are the axial and shear strains. Substituting Eq. (3) into Eq. (4) gives 

2
1
2xx

du dw d
z

dx dx dx



        

(5)   

xz
dw

dx
    

 The constitutive law for the material, using the linear thermo-elasticity, is given by [8] 
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  0xx xxE T T      
(6) 

 2 1xz xz
E

 





 

 In Eqs. (6), xx  and xz  are the axial and shear stresses, 0T is the reference temperature, 
and T  is the temperature distribution through the beam. Eqs. (5) and (6) are combined to 
give the axial and shear stresses in the beam in terms of the middle surface displacements as 

 

 
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(7)
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The stress resultants of the beam expressed in terms of the stresses through the thickness, 
according to the Timoshenko beam theory, are [8] 
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where sK  is the shear correction factor. The values of 5/6 or 2 / 12  are used as its approx-
imate value for the composite and FGM beams with rectangular cross section [12]. The shear 
correction factor is taken as 2 / 12sK   for the FGM beam in this study. 
 Using Eqs. (2), (7), and (8) and noting that , ,u w  and   are functions of x  only, the ex-
pressions for xN , xM , and xzQ  are obtained as  
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where 1E , 2E , and 3E  are stretching, coupling stretching-bending, and bending stiffnesses, 
respectively, and T

xN  and T
xM  are thermal force and thermal moment resultants, which are 

calculated using the following relations 
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 Note that to find the thermal force and moment resultants, the temperature distribution 
through the beam should be known. 

 
The equilibrium equations of an FGM beam may be obtained through the static version of 

virtual displacement principle. According to this principle, since the external load is absent, 
an equilibrium position occurs when the first variation of strain energy function vanishes. 
Thus, one may write 

 

 
/2 /2

0 /2 /2
0

L b h

xx xx s xz xzb h
U K dzdydx    
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With the aid of the stress resultant definition (9), and performing the integration by part 
technique to relieve the displacement gradients, the following system of equilibrium equations 
is obtained 
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and the boundary conditions for each side of the beam are 
 

0 0xN or u   

0 0xM or                                             (14)  

0 0xz x
dw

Q N or w
dx

    

 
 
4 EXISTENCE OF BIFURCATION TYPE BUCKLING 

4.1 Thermal Loading 

Consider a beam made of FGMs subjected to a transversely temperature distribution. When 
the axial deformation is prevented in the beam, an applied thermal loading may produce an 
axial load. Only perfectly flat pre-buckling configurations are considered in the present work, 
which lead to bifurcation type buckling, otherwise beam undergoes a unique and stable equi-
librium path. Now, based on Eq. (9), in the pre-buckling state, when beam is completely un-
deformed, and both edges are immovable, the generated pre-buckling force through the beam 
is equal to 
 

0
T

x xN N                                                     (14) 
 
 Here a subscript 0  is adopted to indicate the pre-buckling state deformation. Also, ac-
cording to Eq. (9), an extra moment is produced through the beam which is equal to 
 

0
T

x xM M                                                     (15) 
 
 In general, this extra moment may result in deformation through the beam, except when 
it is vanished for some especial types of thermal loading or when boundary conditions are 
capable of handling the extra moments. The clamped and roller (sliding support) boundary 
conditions are capable of supplying the extra moments on the boundaries, while the simply-
supported edge does not. Therefore, the C C  and C R  FGM Timoshenko beams remain 
un-deformed prior to buckling, while for the other types of beams with at least one simply 
supported edge beam commence to deflect. Also, an isotropic homogeneous beam remains un-
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deformed when it is subjected to uniform temperature rise, because thermal moment vanishes 
through the beam. Therefore, bifurcation type buckling exists for C C  and C R  FGM 
beams subjected to arbitrary transverse thermal loading. The same is true for the isotropic 
homogeneous beams subjected to uniform temperature rise with arbitrary case of boundary 
conditions. 
 
 
 
4.2 Mechanical Loading in Thermal Field 

Consider an FGM beam in thermal field which is subjected to an in-plane axial loadP , and 
operates in thermal field. The left side of the beam is immovable, while the right hand side is 
movable and undergoes an in-plane force P  
 When the beam exhibits the bifurcation-type of buckling, it remains un-deformed in pri-
mary equilibrium path. Based to the first equilibrium equation, the pre-buckling force result-
ant is equal to 
 
 

0 =x
P

N
b

                                                    (16) 

 
 Based on the definition of force resultants, when the lateral deflection is ignored, the in-
duced mechanical moment due to the applied in-plane force is equal to 
 

2 2
0

1 1

= T T
x x x

E EP
M N M

b E E
                                      (17) 

 
 The existence of bifurcation type buckling depends on the vanishing of the extra bending 
moment in Eq. (17). In the following general cases are studied 
 
 Case 1: For the case when an FGM beam is subjected to axial load only, C C and 
C R  cases follow the branching type of buckling. Otherwise the induced moment in Eq. 
(17) results in the initial deflection.  
 
 Case 2: For the case of reduction of an FGM beam to an isotropic homogeneous one that 
is subjected to uniform temperature rise loading, 0 0xM   and bifurcation occurs for any 
arbitrary case of out-of-plane boundary conditions. 
 
 Case 3: For the case of reduction of an FGM beam to an isotropic homogeneous one that 
is subjected to heat conduction across the thickness, 0

T
x xM M  and bifurcation occurs only 

for the especial cases of  C C  and C R  end supports. This is due to the ability of 
clamped and roller edges to supply the extra moment in pre-buckling state. 
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 Case 4: For the case of an FGM beam that is subjected to arbitrary case of thermal load-
ing in the presence of axial in-plane load, 0xM  is given by Eq. (17). Generally this moment 
does not vanish and similar to the previous case only C C  and C R  end supports exhib-
it the bifurcation-type of buckling. In other combinations of edge supports, beam initially 
start to lateral deflection at the onset of thermal loading. 
 
5 STABILITY EQUATIONS 

To derive the stability equations, the adjacent-equilibrium criterion is used. Assume that the 
equilibrium state of a functionally graded beam in pre-buckling state is defined in terms of 
the displacement components 0u , 0w  and 0 . The displacement components of a neighboring 
stable state differ by 1u , 1w  and 1  with respect to the equilibrium position. Thus, the total 
displacements of a neighboring state are [23] 
 
 
 

0 1u u u   

0 1w w w                                                   (18) 
                                                     0 1                                                     
 
 
 Similar to the displacements, the force and moment resultants of a neighboring state may 
be related to the state of equilibrium as 
 

0 1x x xN N N   

0 1x x xM M M                                               (19) 

0 1xz xz xzQ Q Q   
 
 Here, stress resultants with subscript 1 represent the linear parts of the force and moment 
resultant increments corresponding to 1u , 1w and 1 . The stability equations may be obtained 
by substituting Eqs. (18) and (19) in Eq. (12). Upon substitution, the terms in the resulting 
equations with subscript 0 satisfy the equilibrium conditions and therefore drop out of the 
equations. Also, the non-linear terms with subscript 1 are ignored because they are small 
compared to the linear terms. The remaining terms form the stability equations as 
 

2 2
1 1

1 22 2
0

d u d
E E

dx dx


   
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 Combining Eqs. (20) by eliminating 1u  and 1  provides an ordinary differential equation 
in terms of 1w  which is the stability equation of an FGM beam under transverse thermal 
loadings 
 

4 2
21 1

4 2

d w d w

dx dx
                                                 (21) 

with  
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2
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1
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E E E N
E K





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                                      (22) 

 
 The stress resultants with subscript 1 are linear parts of resultants that correspond to the 
neighboring state. Using Eqs. (9) and (18) the expressions for, 1xN , 1xM and 1xzQ  become 
 

1 1
1 1 2x

du d
N E E

dx dx


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1 1

1 2 3x

du d
M E E
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 When temperature distribution through the beam is along the thickness direction only, the 
parameter   is constant. In this case the exact solution of Eq. (2) is 
 

   1 1 2 3 4( ) sin cosw x C x C x C x C                                (24) 
 
 Using Eqs. (20), (23), and (24), the expressions for 1u , 1 , 1xN  , 1xM , and 1xzQ  become 
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1 1 5( )xN x E C  

 
With 
 

 
2

2 1 3 2
2
1

( )

1 2 1
s

S
E E E

E K




 




 

                                      (26) 

 
  

 The constants of integration 1C  to 6C  are obtained using the boundary conditions of the 
beam. Also, the parameter   must be minimized to find the minimum value of 0xN  associ-
ated with the thermal or mechanical buckling load. Five types of boundary conditions are 
assumed for the FGM or homogeneous beam with combination of the roller, simply support-
ed, and clamped edges. Boundary conditions in each case are listed in Table 1. 
 
 

Table 1   Boundary conditions for FGM Timoshenko beams under thermal loading. C  indicates clamped,  
S  shows simply-supported and R  is used for roller edge. For mechanical buckling case, 1u should be replaced by 1xN  

 
Edge supports B.Cs at 0x   B.Cs at x L  

C C  1 1 1 0u w     1 1 1 0u w     

S S  1 1 1 0xu w M    1 1 1 0xu w M    

C S  1 1 1 0u w     1 1 1 0xu w M    

C R  1 1 1 0u w     1
1 1 1 0 0xz x

dw
u Q N

dx
     

S R  1 1 1 0xu w M    1
1 1 1 0 0xz x

dw
u Q N

dx
     
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 Let us consider a beam with both edges clamped under thermal loading. Using Eqs. (24) and 
(25), the constants 1C  to 6C  must satisfy the system of equations 
 

   
 

       

 

       

1

2

3

42

51

2 2 6

1 1

0 1 0 1 0 0

sin cos 1 0 0

0 1 0 0 0

cos sin 1 0 0 0

0 0 0 0 1

cos sin 0 0 1

CL L L
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CS L S L
CE

S
CE

E E C
S L S L L

E E

 


   



   

                                                      

0

0

0

0

0

0

                     

           (27) 

 
 To have a nontrivial solution, the determinant of coefficient matrix must be set equal to 
zero, which yields 

 
        2 2 cos sin 0S L L LS L                                 (28) 

 

 The smallest positive value of   which satisfies Eq. (28) is min
6.28319

L
  . It can be seen 

easily that for the other types of boundary conditions, except C S  case, the nontrivial solu-
tion leads to an exact parameter for . Using an approximate solution given in [24] for the 
critical axial force of C S  beams, the critical force for an FGM Timoshenko beam with 
arbitrary boundary conditions can be expressed as below 
 
 

2
2

32
1

0, 2
3 2

2
1 1

1
1

x cr

s

Ep
E

EL
N

E E
q

E EK L



      


             

                                    (29) 

 
 
 where p  and q  are constants depending upon the boundary conditions and are listed in 
Table 2 
 

Table 2   Constants of formula (29) which are related to boundary conditions. 
 

Parameter C C  S S  C S  S R  C R  
p  39.47842 9.86960 20.19077 2.46740 9.86960 
q  78.95684 19.73920 44.41969 4.93480 19.73920 
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 When the critical buckling force resultant is obtained, in the case of mechanical loading, 
the total compressive load may be evaluated by Eq. (16). For the case of thermal buckling 
analysis, however, temperature profile should be known. 
 
 
6 TYPES OF THERMAL LOADING 

6.1 Uniform temperature rise (UTR) 

 

 Consider a beam which is at reference temperature 0T . When the axial displacement is 
prevented, the uniform temperature may be raised to 0T T   such that the beam buckles. 
Substituting 0T T   into Eq. (10) gives  
 

=
1 2 1

T cm m m cm cm cm
x m m

E E E
N h T E

k k

  


          
                            (30) 

 
  
 Considering Eq. (30), the critical buckling temperature difference UTR

crT∆  is expressed in 
the form 
 

2

2

( , )

=
1

( , , ) 1 ( , )

UTR m
cr

s

p h
F k

L
T

h
G k q E k

K L





  

    


        

                              (31) 

 

 where = cm

m

E

E
  and = cm

m





. Also, the functions ( , )E k  , ( , )F k  , and ( , , )G k    are de-

fined as 
2 2 2

2

( 2)1
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6.2 Linear temperature distribution (LTD) 

 Consider a thin FGM beam which the temperature in ceramic-rich and metal-rich surfaces 
are cT  and mT , respectively. The temperature distribution for the given boundary conditions 
is obtained by solving the heat conduction equation along the beam thickness. If the beam 
thickness is thin enough, the temperature distribution is approximated linear through the 
thickness. So the temperature as a function of thickness coordinate z  can be written in the 
form 
 

1
= ( )( )

2m c m
z

T T T T
h

                                           (33) 

 
 Substituting Eq. (33) into Eq. (10) gives the thermal force as 
 
 

0= ( )
1 2 1

T cm m m cm cm cm
x m m m

E E E
N h T T E

k k

  


          
 

(34) 

2 2 2 2
m m cm m m cm cm cmE E E E

h T
k k

              
 

 
 
 where c mT T T   . Combining Eqs. (29) and (34) gives the final form of the critical 
buckling temperature difference through the thickness as 
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LTD m
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s

p h
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H kh
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  

 
  

    
  

            

        (35) 

 
 
 Here, the functions ( , )E k  , ( , )F k  , and ( , , )G k    are defined in Eq. (32) and function 

( , , )H k    is defined as given below 
 

1
( , , ) =

2 2 2 2
H k

k k
  

 


 
 

                                       (36) 
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6.3 Nonlinear temperature distribution (NLTD) 

 Assume an FGM beam where the temperature in ceramic-rich and metal-rich surfaces are 
cT  and mT , respectively. The governing equation for the steady-state one-dimensional heat 

conduction equation, in the absence of heat generation, becomes 
 

( ) = 0
d dT

K z
dz dz

     
 

(37) 

( ) = , ( ) =
2 2c m
h h

T T T T  

 
 where ( )K z  is given by Eq. (2). Solving this equation via polynomial series yields the tem-
perature distribution across the beam thickness as 
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                                          (39) 

 
 Here N  is the number of terms which should be taken into account to assure the conver-
gence of the series. Evaluating T

xN  and solving for T  gives the critical bucking value of 
the temperature difference as 
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 In this relation, = cm

m

K

K
 and the function ( , , , )I k     is defined as  

 
 

0

1 1
( , , , ) =

1 2 2 2 2

iN

i

I k
D ik ik ik k ik k

   
  



    
       

                   (41) 

 
 It should be pointed out that in each case of thermal loading, an iterative process should 
be implemented to calculate the critical buckling temperature difference. To this end, proper-
ties are evaluated at reference temperature and the critical buckling temperature difference is 
calculated. Properties of the constituents are then evaluated at the current temperature and 
again critical buckling temperature difference is obtained. This process should be continued to 
obtain the convergent critical buckling temperature difference.  

 
7 RESULTS AND DISCUSSION 

 Consider a ceramic-metal functionally graded beam. The combination of materials consist 
of Silicon-Nitride as ceramic and stainless steel as metal. The elasticity modulus, the thermal 
expansion coefficient, and the thermal conductivity coefficient for these constituents are high-
ly dependent to the temperature and their properties may be evaluated in any temperature 
based on Toloukian model. Each property of the constituents follow the next dependency to 
the temperature 
 

 1 2 3
0 1 1 2 3( ) 1P T P P T PT PT PT

                                      (42) 

 
 In this equation T is measured in Kelvin. The constants iP are unique for the constituents 
and for the constituents of this study are given in Table 3. Poisson’s ratio for simplicity is 
chosen as 0.28. 
 

 
Table 3   Introduced coefficients of Eq. (42) 

 

 cE  mE  c  m  cK  mK  

0P  348.43 9e   201.04 9e   5.8723 6e   12.33 6e   13.723  15.379  

1P  3.070 4e   3.079 4e   9.095 4e   8.086 4e   1.032 3e   1.264 3e   

2P  2.16 7e   6.534 7e   0 0 5.466 7e   2.092 6e   

3P  8.946 11e   0 0 0 7.876 11e   7.223 10e   
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 To validate the results, the effect of shear is plotted in Figure 3, for an isotropic homoge-
neous beam with temperature independent material properties. For this purpose, the results 
are compared between the Euler and Timoshenko beam theories. The beam is under the uni-
form temperature rise loading. Non-dimensional critical buckling temperature is defined 
by 2= ( / )UTR

cr m crT L h   . It is apparent that the critical buckling temperature for beams 
with /L h  ratio more than 50 is identical between the two theories. But, for /L h  ratio less 
than 50, the difference between the two theories become larger, and it will become more dif-
ferent for /L h  values less than 20. The same graph is reported in [8] based on the numerical 
shooting method. 

 
 

 
Figure 3   Effect of transverse shear on critical buckling temperature difference 

 

 

In Figure 4, the critical buckling temperature difference of an FGM beam under the uniform 
temperature rise loading is depicted. Both edges are clamped. TD case indicates that proper-
ties are temperature dependent, whereas TID indicates that properties are evaluated at refer-
ence temperature. As seen, as the power law index increases, the critical buckling tempera-
ture decreases permanently. When it is compared to the TD case, TID case overestimates the 
buckling temperatures. Difference between TID and TD cases is more pronounced at higher 
temperatures 
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Figure 4   Effects of power law index and temperature dependency on crT  

 
In Figure 5, two other cases of thermal loadings are compared with respect to each other. 

As seen in both of these cases, also, an increase in power law index results in lower buckling 
temperature. LTD case as an approximate solution of the NLTD case underestimates the 
critical buckling temperatures except for the case of reduction of an FGM beam to the associ-
ated homogeneous cases. This is expected since in these cases, the exact solution of the heat 
conduction equation is also linear. 

 

 
 

Figure 5   Effects of power law index on crT  of FGM beams under LTD and NLTD cases 
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The influence of boundary conditions on buckling temperature difference is plotted in Figure 
6. The uniform temperature rise case of loading is assumed and properties are assumed to be 
TD. The case of a homogeneous beam is chosen. As expected, the higher buckling tempera-
ture belongs to a beam with both edges clamped and the lower one is associated to a beam 
with one side simply supported and the other one roller. The critical buckling temperature of 
S S and C R cases are the same. 
 

 
 

 
Figure 6   Boundary conditions effect on crT  

 
 The effect of uniform temperature rise field on the axial buckling load of C R  and 
C C beams is demonstrated in Figure 7. The obtained buckling loads are normalized by 

the equation
2

3

12T cr
cr ref

c

P L
n

E bh
 , where ref

cE is the ceramic elasticity module at reference tempera-

ture. As expected, an increase in the power law index results in the lower buckling load. This 
is expected since as power law index decreases, FGM beam tends to a ceramic beam which is 
stiffer than metal. With the increase of temperature rise parameter, buckling load decreases 
since the constituents lose their stiffnesses. 
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Figure 7   Effect of thermal environment on mechanical buckling of FGM beams 
 

 
 
8 CONCLUSION 

 
In the present article, the equilibrium and stability equations for the FGM beams with vari-
ous types of boundary conditions are obtained. The derivation is based on the Timoshenko 
beam theory, with the assumption of power law composition for the constituent material. The 
buckling analysis under three types of thermal loadings is presented. Also, the mechanical 
buckling analysis under thermal loads is studied. Closed form solutions are derived for the 
critical temperature/load. It is concluded that: 
 
 
 
 1) The C C  and C R  functionally graded beams exhibit the bifurcation type buck-
ling while theS S , C S  and S R  FGM beams commence to deflect with the initiation 
of thermal loading. 

 
 2) In each case of thermal loading, the critical buckling temperature for FGM beams is 
lower than fully ceramic beam but greater than fully metallic beam. 

 
 3) According to the Euler and Timoshenko beam theories, the critical buckling tempera-
ture of isotropic homogeneous beam is independent of elasticity modulus; but for an FGM 
beam the elasticity modulus of the constituent materials have significant effect on critical 
buckling temperature. 
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 4) The critical buckling temperature of C R  and S S  homogeneous beams are identi-
cal for studied cases of thermal loading, while S S  andC R  FGM beams reveal dif-
ferent behaviors when are subjected to in-plane thermal loading. 

 
 5) The Euler beam theory over-predicts the critical temperature of thick beams, especially 

for /h L  greater than 0.05. 
 
 6) Temperature dependency of the constituents has significant effect on critical buckling 

temperature difference. The value of crT is overestimated when the properties are as-
sumed to be independent of temperature. 

 
 7) In each case of thermal loading, the Timoshenko beam theory predicts lower values for 

critical buckling temperature in comparison with the Euler beam theory. 
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