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A General Symplectic Method for the Response Analysis of
Infinitely Periodic Structures Subjected to Random Excitations

Abstract

A general symplectic method for the random response

analysis of infinitely periodic structures subjected to

stationary/non-stationary random excitations is developed

using symplectic mathematics in conjunction with variable

separation and the pseudo-excitation method (PEM). Start-

ing from the equation of motion for a single loaded sub-

structure, symplectic analysis is firstly used to eliminate the

dependent degrees of the freedom through condensation. A

Fourier expansion of the condensed equation of motion is

then applied to separate the variables of time and wave

number, thus enabling the necessary recurrence scheme to

be developed. The random response is finally determined

by implementing PEM. The proposed method is justified by

comparison with results available in the literature and is then

applied to a more complicated time-dependent coupled sys-

tem.
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1 INTRODUCTION

Infinitely periodic structures are widely used in engineering practice, e.g. railway tracks, multi-

span bridges and petroleum pipe-lines. They consist of identical substructures that are joined

together to form a continuous structure. In recent decades, much attention has been paid to

such structures and many important advances have been made, mainly in the areas of vibration

characteristics, free vibration propagation and forced vibration induced by stationary harmonic

loads [4, 11–16, 18, 19, 21, 22, 24, 25]. In particular, symplectic mathematics has been applied

successfully [21, 22, 24, 25] to provide a precise and efficient approach for investigating the

dynamic response and wave propagation caused by harmonic forces. Subsequently Lin et

al. derived the stationary/non-stationary random response by means of the pseudo-excitation

method (PEM) [5–8] and Lu et al. [9] applied this work to the random vibration analysis of

coupled vehicle-track systems with the fixed-vehicle model, which considerably reduced the

number of degrees of freedom (DOFs) required to describe the track.
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However, vibration of infinitely periodic structures subjected to arbitrary excitation has

received much less attention. Belotserkovskiy [1] investigated an infinitely periodic beam sub-

jected to a moving harmonic load by analyzing one beam segment between neighboring sup-

ports with boundary conditions derived from Bernoulli-Euler beam theory and this was later

extended to deal with infinitely periodic strings [2, 3] ; Sheng et al. [17] proposed a wave

number-based approach to study a two-and-a-half-dimensional finite-element model subjected

to a moving or stationary harmonic load, while Mead’s [10] latest advance presents a general

theory for the forced vibration of multi-coupled, one-dimensional periodic structures by firstly

analyzing the semi-infinite periodic system excited only at its end, which is then connected to

either side of the loaded substructure. The present authors [20], based on the work of Lu et

al. [9], selected a series of wave numbers evenly distributed in the interval [0,2π) and derived

the corresponding propagation constants. This enabled the random response of the infinitely

periodic structures to be obtained by accumulating the pass-band frequency responses. Such

an approach, when combined with PEM, results in an efficient method for computing response

PSDs of vehicle-track coupled systems based on the moving-vehicle model. However, one draw-

back stems from the discreteness of wave numbers, which inevitably causes discrete numerical

errors.

In order to eliminate this problem and substantially improve the technique, a continuous

integration is used as follows in this paper yield to a new and general approach for the response

analysis of infinitely periodic structures subjected to arbitrary excitations. This new method

is based on a symplectic mathematical scheme combined with a variable separation approach

in which only the loaded substructure is included in the calculation. The dependent DOFs are

firstly condensed into the independent ones according to the properties of the wave propagation

constants. The condensed equation of motion is then derived, in which the coefficient matrices

are functions of the wave number. By applying Fourier expansions to these coefficient matrices

and the response vectors, the time and wave number variables are easily separated and a

recurrence scheme is developed accordingly. Finally, in accordance with the work of Lin et al.[5,

6], the resulting equations are combined with PEM for stationary or non-stationary random

response analysis, after which the response power spectral densities (PSDs) and the standard

deviations can be derived conveniently. The proposed method is justified by comparison with

a numerical example in Reference [6] and the theory is then applied to the random analysis of

a mass moving on a rail that is supported periodically ad infinitum.

2 SYMPLECTIC ANALYSIS FOR AN INFINITELY PERIODIC STRUCTURE SUBJECTED
TO ARBITRARY LOADS

In this section, the symplectic mathematical scheme is generalized to investigate the response

of an infinitely periodic structure subjected to arbitrary loads. The infinitely periodic structure

shown in Figure 1 consists of two kinds of substructures, denoted as sub and sub*, which are

identical except that sub* is subjected to an arbitrary load f (t).
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Figure 1 Infinitely periodic structure showing the loaded substructure sub* and the forces and displacements
at its interfaces with its neighbours.

The equation of motion for this substructure is

Mü +Cu̇ +Ku = f (t) + fb (1)

in which: M, C and K are the n×n mass, damping and stiffness matrices that can be created

by any means;

u = { uT
a uT

b uT
i }

T
; fb = { pTa −pTb 0 }T ; (2)

where: superscript T denotes transpose; ua and ub are the displacement vectors at the left-

and right-hand interface, see Fig 1; ui is the internal displacement vector and; pa and pb are

the corresponding nodal force vectors on the interfaces.

For an undamped and unloaded substructure, it has been proven in References [21, 22, 24,

25] that

{ ub

pb
} = S { ua

pa
} = µ{ ua

pa
} (3)

in which S is a frequency-dependent symplectic transfer matrix that has eigenvalues µ and

satisfies the symplectic orthogonality relationships

STJnS = Jn; Jn = [
0 In
−In 0

] ; JT
n = J−1n = −Jn (4)

where: In is the n-dimensional unit matrix and; the µ are known as the wave propagation

constants, where ∣µ∣ = 1 refers to transmission waves that propagate without decay, i.e. they

lie within the frequency pass-band. µ can be expressed as

µ = ejθ; j =
√
−1 (5)

in which θ is the wave number and lies in the interval [0,2π).
Let

T (θ) = T =
⎡⎢⎢⎢⎢⎢⎣

In 0

ejθIn 0

0 In

⎤⎥⎥⎥⎥⎥⎦
(6)

Latin American Journal of Solids and Structures 9(2012) 569 – 579



572 Y-W. Zhang et al / Symplectic method for the analysis of infinitely periodic structures subjected to random excitations

Then for each wave number θ, it can be verified that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u∗a
u∗b
u∗i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= T { u∗a

u∗i
} ;TH

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p∗a
−p∗b
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= { p∗a − e−jθp∗b

0
} = { 0

0
} (7)

in which: superscript H denotes complex conjugate transpose; u∗a, u
∗
b and u∗i are the response

vectors related to a given wave number and p∗a and p∗b are the corresponding nodal force vectors

and hence are functions of wave number θ and time t. Substituting Eq. (7) into Eq. (1)

and pre-multiplying both sides by TH gives the condensed equation of motion of the loaded

substructure as

M̄∗ (θ) ¨̄u∗ (θ, t) + C̄∗ (θ) ˙̄u∗ (θ, t) + K̄∗ (θ) ū∗ (θ, t) = TH (θ) f (t) (8)

in which

ū∗ = { u∗Ta u∗Ti }T ; M̄∗ = THMT ; C̄∗ = THCT ; K̄∗ = THKT (9)

Note that the natural frequencies of the infinitely periodic structure can be obtained by solving

the following generalized eigenproblem [16]

K̄∗Ψ = M̄∗ΨΩ2 (10)

in which: Ω is the diagonal matrix of natural frequencies and Ψ is the corresponding modal

matrix. The number of natural frequencies developed from each wave number is equal to

the number of independent DOFs of the substructure. Since there are infinitely many wave

numbers, an infinitely periodic structure yields an infinite number of natural frequencies. In

Reference [20] a finite number of wave numbers, evenly distributed in the interval [0,2π),
were selected to calculate the responses. This inevitably results in the discrete errors men-

tioned previously. However, this is circumvented below by performing a continuous integration

instead.

Assume that the response of each substructure can be determined by performing the fol-

lowing integration.

uk (t) =
1

2π
∫

2π

0
T (θ) ū∗ (θ, t) ejkθdθ ; (k = 0,±1,±2⋯) (11)

where k = 0, k > 0, k < 0 correspond, respectively, to the loaded substructure and the substruc-

tures to its right and left. However, ū∗ (θ, t) cannot be solved from Eq. (8) directly and so the

following approach is used instead.

Let the matrices M̄∗, C̄∗, K̄∗ and T be expressed as

M̄∗ = M̄0 + M̄1e
jθ + M̄−1e−jθ; C̄∗ = C̄0 + C̄1e

jθ + C̄−1e−jθ
K̄∗ = K̄0 + K̄1e

jθ + K̄−1e−jθ; T = T0 + T−1ejθ
(12)
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in which

M̄0 = [
Maa +Mbb Mai

Mia Mii
] ; M̄1 = [

Mab 0

Mib 0
] ; M̄−1 = [

Mba Mbi

0 0
]

T0 =
⎡⎢⎢⎢⎢⎢⎣

In 0

0 0

0 In

⎤⎥⎥⎥⎥⎥⎦
; T−1 =

⎡⎢⎢⎢⎢⎢⎣

0 0

In 0

0 0

⎤⎥⎥⎥⎥⎥⎦

(13)

where: Mlm (l,m = a, b, i) are the submatrices corresponding, respectively, to the DOFs at the

two interfaces and the internal DOFs and; the submatrices of C̄ and K̄ are defined analogously

to those of M̄ . Now ū∗ (θ, t) can be expressed as the sum of an infinite number of spatial

harmonics by using Fourier expansion to give

ū∗ =∑
n

ūene
jnθ; (n = 0,±1,±2⋯) (14)

in which ūen (n = 0,±1,±2⋯) denotes the Fourier expansion coefficients. Eq. (11) can then

be rewritten as

uk (t) = T0ūe(−k) + T−1ūe(−k−1); (k = 0,±1,±2⋯) (15)

Substituting Eqs. (12) and (14) into Eq. (8) and separating the variables of time and wave

number by using the orthogonality of the exponents gives

[ M̂mm M̂ms

M̂sm M̂ss
]{

¨̂umk

¨̂us
} + [ Ĉmm Ĉms

Ĉsm Ĉss
]{

˙̂umk

˙̂us
} + [ K̂mm K̂ms

K̂sm K̂ss
]{ ûmk

ûs
} = [ Fmk

0
] f (t)

(k = 1,2,⋯)
(16)

in which

ûmk = { ūT
e0 ūT

e1 ūT
e−1 ⋯ ūT

ek ūT
e−k }

T
; ûs = { ūT

e(k+1) ūT
e−(k+1) ⋯ }

T
;

M̂mm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄0 M̄−1 M̄1

M̄1 M̄0 M̄−1
M̄−1 M̄0 ⋱

M̄1 ⋱ M̄1

⋱
M̄−1 M̄0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Fmk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TT
0

0

TT
−1
0

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̂ss =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄0 M̄−1
M̄0 M̄1

M̄1 M̄0 ⋱
M̄−1 M̄0

⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; M̂ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0

⋮
0 ..

. ⋮
M̄−1 0

M̄1 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= MT
sm

(17)

and Ĉ and K̂ can be substituted for M̂ throughout Eq. (17).
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By inspection it can be seen that: ûmk is a finite-dimensional vector; ûs is of infinite-

dimension and; the matrices of Eq. (16) are very sparse. Thus for each value of k, Eq. (16)

can be rewritten in block form as

M̂mm
¨̂umk + Ĉmm

˙̂umk + K̂mmûmk = Fmkf (t) −Mmsüs −Cmsu̇s −Kmsus (18)

Mss
¨̂usk +Css

˙̂usk +Kssûsk = −Msmümk −Csmu̇mk −Ksmumk (19)

where: us = { ūT
e(k+1) ūT

e−(k+1) }
T
; umk = { ūT

ek ūT
e−k }

T
and; Mms, Msm, Cms, Csm, Kms

and Ksm are submatrices. Noting that Eq. (19) is of infinite-dimension, it needs to be

calculated in truncated form. Since its coefficient matrices remain unchanged irrespective of

the value of k, Eq. (19) can be transformed into state-space as [23]

v̇s =Hsvs +Qvmk (20)

in which vs = { ûT
s

˙̂uT
s }

T
; vmk = { uT

mk u̇T
mk }

T
; Hs is a Hamiltonian matrix and; Q is the

load coefficient matrix. Usually, Eq. (20) is solved using a step-by-step integration scheme.

Thus if the response at time t is known, the response at time t +∆t can be expressed as

vs (t +∆t) = Ts (∆t) vs (t) +Rvmk (t) (21)

where Ts(∆t) is an exponential matrix whose precise computation is described in Reference

[23] and the physical meaning of the n−th column of matrix R is the response vs (t +∆t) when
assuming that vs (t) = 0 and that the n − th value of vmk (t) is 1 while all others are zero.

Consequently, the responses can be computed by the following recurrence scheme: (1) let k = 1
and solve Eqs. (18) and (21) by using step-by-step integration to obtain the responses ūe0, ūe1

and ūe−1; (2) Similarly, let k = 2 and substitute ūe0, ūe1 and ūe−1 into Eq. (18) to obtain ūe2

and ūe−2 and; (3) Compute the remaining responses similarly and hence find the responses of

the substructures by using Eq. (15).

Note that the method is still applicable if the coefficient matrices of Eq. (1) are time-

dependent, e.g. due to a moving mass coupling with the infinitely periodic structure.

3 RESPONSES OF INFINITELY PERIODIC STRUCTURES SUBJECTED TO RAN-
DOM EXCITATIONS

PEM is an accurate and highly efficient algorithm for structural stationary or non-stationary

random response analysis. In this section, it is combined with the above method to find the

random responses. Consider the most complicated case of a time-dependent system excited

by an evolutionary random point excitation. Then the equation of motion of the system is

Mü +Cu̇ +Ku = f (t) + fb
f (t) = r(t)g (t)x (t) (22)

in which: M , C and K are functions of time; r(t) identifies which element is being excited;

g (t) is the modulation function and; x (t) is a stationary random process with PSD Sxx (ω).
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The corresponding response vector can be expressed by the convolution integral

u(t) = ∫
t

0
H (t, τ) f(τ) dτ (23)

in which H (t, τ) is the frequency response matrix. Multiplying u(t) by its transpose and

applying the mathematical expectation operator, the variance matrix of the response vector is

given by

Ruu(t) = E [u(t)uT(t)] = ∫
t
0 ∫

t
0 H (t, τ1)E [f (τ1) fT (τ2)]HT (t, τ2)dτ1dτ2

= ∫
t
0 ∫

t
0 H (t, τ1) r(τ1)rT (τ2)HT (t, τ2) g (τ1) g (τ2)E [x (τ1)x (τ2)]dτ1dτ2

(24)

According to the Wiener - Khintchine theorem

E [x (τ1)x (τ2)] = Rxx (τ) = ∫
∞

−∞
Sxx (ω) eiω(τ2−τ1)dω (25)

Substituting Eq. (25) into Eq. (24) and exchanging the integral order gives the evolutionary

PSD matrix of the response vector u(t) as

Ruu(t) = ∫
+∞

−∞
Suu(ω, t)dω (26)

where

Suu(ω, t) = ∫
t

0
∫

t

0
H (t, τ1) r(τ1)rT (τ2)HT (t, τ2) g (τ1) g (τ2)Sxx (ω) eiω(τ2−τ1)dτ1dτ2 (27)

It can be seen that Eq. (27) is a double integral expression which is very time consuming

to compute directly. Therefore, PEM is used instead. Assume that the structure is subjected

to a pseudo-excitation

f̃ (ω, t) = r(t)g (t)
√
Sxx (ω)eiωt (28)

Eq. (26) can then be rewritten as

Suu(ω, t) = ũ∗(ω, t)ũT(ω, t); ũ(ω, t) = ∫
t

0
H (t, τ) f̃ (ω, τ)dτ (29)

where the superscript * denotes complex conjugate. It is clear that ũ(ω, t) is the response of

the structure when it is subjected to the pseudo-excitation and also that the first of Eqs. (29)

has a much simpler form than Eq. (27). Thus the use of PEM to transform random excitations

into harmonic pseudo-excitations leads to a very significant reduction in computational effort.

Substituting the pseudo excitation of Eq. (28) into Eq. (18) enables the pseudo responses

of the infinitely periodic structure to be obtained using the above recurrence scheme. Denoting

the pseudo response of the response u (t) as ũ (ω, t) and utilizing PEM, the PSD of u (t) can
be written as

S (ω, t) = ũ (ω, t) ũ∗ (ω, t) (30)

It is clear that if M , C and Kare time-independent, the system degenerate into a time-

independent one, and if g (t) = 1, the random excitation degenerates into a stationary one.

PEM is still applicable in these cases.
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4 NUMERICAL EXAMPLES

4.1 Example 1: Correctness verification

In this section, the proposed method is justified by comparison with the method proposed in

Reference [6].

Figure 2 The infinitely periodic structure of Example 1 which is subjected to the point evolutionary random
excitation f (t). It consists of cantilever columns with stiffness 2K for lateral displacements at their
upper ends and which carry masses m which are connected by two springs of stiffness Kwith a mass
m where they are connected together.

Consider the infinitely periodic structure defined in Figure 2 and its caption, subjected to

an evolutionary random excitation given by

f (t) = g (t)x (t) (31)

in which the modulation function g (t) has the form shown in Figure 3, i.e.

g (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.1t when 0 ≤ t ≤ 10
1.0 when 10 < t ≤ 40

0.1(50 − t) when 40 < t ≤ 50
0 otherwise

(32)

Figure 3 Envelope function g (t)

x (t) is considered as a band-limited white noise, its units being N2s

Sxx (ω) = {
1.0 when ∣ω∣ ≤ ω0

0.0 when ∣ω∣ > ω0
(33)

The calculations used K = 1; m = 1; ω0 = 3 and the hysteretic damping factor ν = 0.1.
Figure 4 gives the time dependent variances of the displacements at stations k = 0, 1 and

2, with the results from the proposed method shown as the solid line, while those from the

theory of Reference [6] are given by the asterisks. Clearly the results agree very well and the

difference of the peak values at point A is less than 0.01%, which justifies the correctness of

the proposed method.
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Figure 4 Time-dependent variances of the displacements at stations 0, 1 and 2 of Example 1.

4.2 Example 2: Application to a time-dependent coupled system

In this example, the proposed method is applied to find the time-dependent random responses

when a mass of 1000kg crosses an infinite periodically supported rail/sleeper/ballast system

at a velocity of 100km/h, see Figure 5. The track irregularity is regarded as white noise with

PSD Srr (ω) = 1.0 (m2/rad/s) and the parameters of the system are listed in Table 1.

Table 1 Parameters, defined in Figure 5, of the periodically supported rail of Example 2.

Bending stiffness EI 6.62 × 106Nm2 Stiffness Kb 1.82 × 108N/m
Rail mass/length ρA 60.64kg/m Stiffness Kf 1.47 × 108N/m
Spacing l 0.545m Damping Cp 7.5 × 104Ns/m
Mass Ms 237kg Damping Cb 5.88 × 104Ns/m
Mass Mb 1478kg Damping Cf 3.115 × 104Ns/m
Stiffness Kp 1.2 × 108N/m

Figure 5 Example 2: A mass moving on a rail which is supported by the sleepers, ballast and spring and
dashpot systems shown.

Figure 6 gives the PSD and variance of one static point at a support on the rail as the

mass passes it. It can be seen that, as might be expected, the responses are largest at high

load frequencies and when the moving mass is close to the point. The same conclusions are

drawn when the static point was taken midway between supports and the results are not shown

because they are very similar to Figure 6, e.g. the peak on Figure 6(b) was reduced by 10.66%.

Such examples could be extended without difficulty to allow for train wheels attached to bogies

moving on the track.
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Figure 6 Vertical displacement responses of a static point at a support on the rail of Example 2. (a) PSD, (b)
Variance.

5 CONCLUSIONS

Based on symplectic mathematics, a condensed equation of motion has been established for

the loaded substructure of an infinitely periodic structure, the coefficient matrices of which

are functions of the wave number. A Fourier expansion was then applied to separate the

variables of time and wave number, which led to a recurrence scheme for computing the

responses of the infinitely periodic structure. Finally, this method was combined with PEM to

yield a convenient method for analyzing the random vibration of the structure. The proposed

method was justified by a numerical example and was then applied to a more complicated

time-dependent coupled system.
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