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Numerical analysis of RC plane structures: a concentrated 
nonlinear effect approach 

Abstract 
The present work aims to study the nonlinear behavior of reinforced con-
crete structures via Refined Plastic Hinge Method (RPHM). Pseudo-springs 
are used at the finite element ends, where the gradual loss of stiffness is de-
termined by the combination of the normal force and bending moment (NM) 
in the cross section. The limiting of the uncracked, elastic and plastic regimes 
is done in the NM diagram. The concrete cracking is explicitly simulated with 
two approaches to calculate the effective moment of inertia of the cross sec-
tion. The displacement-based formulation is referenced to the co-rotational 
system and coupled with continuation strategies to allow to overcome the 
possible critical points in the equilibrium paths. For validation of the numer-
ical simulations, the results found with the proposed formulation are con-
fronted with experimental and numerical data present in literature. 
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1 INTRODUCTION 

The use of high strength materials results in increasingly slender sections and under these conditions, there 
are large displacements and strains, which give rise to the so-called nonlinear effects. The concrete constitutive 
relationship is naturally nonlinear and not even isotropic, since the concrete tensile strength is much lower than 
that of compression (about 1/10 of the compressive strength; Carvalho and Figueiredo Filho, 2014). On the other 
hand, the steel behavior can be considered isotropic when the stress-strain relationship becomes nonlinear after 
reaching the yield. 

Due to these sources of nonlinearity, numerical models are developed aiming at a more realistic study of these 
structural systems behavior. This procedure is encouraged by current design codes (Stramandinoli, 2007). Bratina 
et al. (2004) emphasize that the evolution of the numerical methodologies for RC structure analysis has positively 
influenced the prediction of the structural behavior. 

The search for numerical formulation generalization and efficiency has prompted the use of distributed plas-
ticity-based methods, commonly referred to as the Plastic Zone Method (PZM) (Spacone et al., 1996; Bratina et al., 
2004; Sousa Jr and Caldas, 2005; Sousa Jr and Muniz, 2007; Kostic and Filippou, 2012; Parente Jr et al., 2014). In 
this approach, formulation considers the strains directly, allowing the modeling of anisotropic behavior of concrete 
elements. Although it is considered to be more accurate, PZM requires intense computational effort (Chen and Kim, 
1997). As an alternative solution, Scott and Fenves (2006), Ngo-Huu and Kim (2012) and others treated the finite 
element central region as linear-elastic, and in pre-defined lengths near the nodal points the inelastic behavior was 
evaluated. 

In contrast, there is the Refined Plastic Hinge Method (RPHM), which considers plasticity only at the nodal 
points of the element. Even though it is simpler, recent research has demonstrated that RPHM presents considera-
ble accuracy in numerical responses (Liu et al. 2012b; Fong and Chan, 2012; Lemes et al., 2016, Lemes et al., 2017a, 
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Lemes et al., 2017b, Lemes et al., 2017c). The classical RPHM approach starts from a hybrid finite element with 
pseudo springs at the element ends whereby the stiffness degradation of these springs is responsible for the simu-
lation of the physical nonlinearity under the possibility of three regimes: linear-elastic, elastoplastic and plastic. 
The linear-elastic regime contradicts the inherently nonlinear behavior of the concrete under compression, besides 
there are no considerations about the cracking in this methodology (Lemes et al., 2017b). In order to correct such 
problems, Lemes et al. (2017c) proposed the SCM/RPHM coupling, where both the bearing capacity and the stiff-
ness were accurately evaluated, improving the accuracy of the concentrated plasticity-based analysis. 

However, appearing as an option to solve the problem in classical RPHM, is the introduction of an interaction 
curve to limit the uncracked state and the determination of new equations for the stiffness degradation of these 
reinforced concrete structures (Lemes et al., 2016). In this sense, Liu et al. (2012b) and Iu (2016) sought the feasi-
bility analysis of these structures based on the proposal of Branson and Metz (1963), and the stiffness degradation 
was evaluated by the effective moment of inertia equation. 

In addition to the Branson and Metz (1963) research, several works (Al-ZaidD et al., 1991; Gilbert, 1999; Tikka 
and Mirza, 2005; Bischoff, 2005) studied the concrete cracking effect on the behavior of RC elements by proposing 
explicit equations or modifications in existing equations for such an evaluation. More recently, Patel et al. (2015) 
presented an alternative neural network-based approach for estimating the effective moment of inertia by means 
of an explicit equation. From the results provided by Patel et al. (2015), it is possible to verify that there is a better 
adjustment of the RC beams behavior to the more precise FEM-based methodologies, if compared to the Branson 
and Metz (1963) proposal. 

This work presents a RPHM-based approach, where the plasticity effects are treated in a concentrated way at 
nodal points. The cracking is treated together by explicit considerations of the cross section moment of inertia re-
duction due to the tensile stresses. In this sense, two proposals are tested and confronted for the nonlinear analysis 
of two-dimensional reinforced concrete structures. The cross section analysis as well as the definition of the elastic, 
inelastic, uncracked, cracked and bearing capacity regimes is done via the Strain Compatibility Method (SCM). In 
addition, it is proposed an adjustment for the concrete modulus of elasticity in elastic regime for the adequacy of 
the material constitutive relationship to the presented numerical model. 

2 FINITE ELEMENT FORMULATION 

2.1 Force-displacement relationship 

In the present work, a RPHM-based formulation to simulate the concentrated plasticity in the nodal points is 
applied. In this case, the flexural stiffness degradation occurs exclusively at the nodal points. Then, the method is 
presented introducing the effect of geometric and material nonlinearities. 

It is important to highlight some considerations involving the finite element formulation used here: 
• All elements are initially straight, prismatic and the cross-section remains plane after deformation; 
• The effects of global instability that may occur in three-dimensional problems (e.g., lateral and torsional buckling) are ignored considering 

a locking system out of plane; 
• Large displacements and rigid body rotations are allowed; and 
• The shear strain effects are ignored. 

In the structural system modeling, the hybrid beam-column finite element of length L, delimited by nodal 
points i and j (Figure 1), is used. This element has zero-length pseudo rotational springs (Lps → 0) at its ends, which 
are responsible for the plasticity simulation by means of the parameter Sp, discussed in Section 2.2. The finite ele-
ment is referenced to the co-rotational system where the degrees of freedom are the rotations at nodes i and j, given 
by θi and θj, and the axial displacement in j, δ. The terms Mi, Mj and P represent the bending moments and the axial 
force in the respective degrees of freedom. 

 

Pseudo springs

P,  

M ,  i i M ,  j j

pjSpiS

LL       0ps L       0ps
 

Figure 1: Hybrid finite element referenced to co-rotational system 

According to Chan and Chui (2000), the pseudo-spring’s relative rotation, ϕp, is defined between the rotation 
angles of the side connected to the global node of the element, θp, and that is connected to another beam-column 
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element. Based on the finite element deformed configuration, by means of the bending moment action shown in 
Figure 2, the kinematic, constitutive and equilibrium relationships, respectively, are written as: 
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Figure 2: Deformed hybrid finite element 

pi pi bi

pj pj bj

  
  

   
   

 (1) 

pi pi pi

pj pj pj

M S
M S




  
  

 (2) 

0
0

pi bi

pj bj

M M
M M

  
   

 (3) 

in which Δϕpi and Δϕpj describe the incremental relative rotation’s reference to material nonlinearity simulated by 
the pseudo-springs, ΔMpi and ΔMpj are the bending moments acting on the spring element ends i and j, respectively, 
and ΔMbi and ΔMbj are the bending moments at the beam member end. 

The proper algebraic manipulation of Eqs. (1), (2) and (3) generate three systems of equations that represent 
the equilibrium of the springs in nodes i and j, as well as the equilibrium in the beam element. These systems are 
written in matrix form as follows: 
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Finally, the condensation of these three matrix relationships into a single force-displacement relationship for 
the hybrid finite element, considering all degrees of freedom, is defined by: 
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in which   22 33 32 23pi pjS k S k k k     . 

The terms k11, k22, k23, k32, and k33 are components of the beam-column stiffness matrix element, without the 
pseudo-springs, described by Lemes et al. (2017c) as: 
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where P is the internal axial force, A is the cross-section area, Ieq is the effective moment of inertia according to 
Branson and Metz (1963) (BM equation) or Patel et al. (2015) (P equation) proposals, evaluated at nodal points i 
and j, and L is the finite element length. 

The elasticity modulus of concrete, Ec, is obtained in a particular way. Liu et al. (2012b) and Iu (2016) used 
the initial tangent modulus of elasticity (Eci) as Ec, illustrated in Figure 3. This ends up overestimating the value of 
the modulus of elasticity, since by the nonlinear concrete behavior under compression, low strain rates imply a 
reduction of the modulus of elasticity. On the other hand, the use of the elastic secant modulus, Ecsi, between 0 and 
(εcin, fcin) (Izzuddin and Smith, 2000) points, generates conservative results for low strain values. Thus, it is pro-
posed to use the mean value between Eci and Ecsi for Ec, that is used in global structural analysis. The values of εcin 
and fcin can be easily calculated considering the Hooke's equation (fc = Eci ε) and NBR-6118 (2014) constitutive 
relationship, resulting in εcin = εci/2 and fcin = 0.75fc. Thus, Ecsi = 1.75 fc/εcin. 

It should be noted in Eqs. (8)-(11) that there is an additional terms related to bending. This part refers to the 
consideration of geometric nonlinearity, which is introduced in this methodology through a simplified formulation 
proposed by Yang and Kuo (1994). The option to define simplified terms was made by previous numerical studies, 
where high order terms had little influence on the global response of the small-sized RC systems simulated (Lemes 
et al., 2017c). 

The co-rotational system transformation to local and global systems as well as the return mapping strategy 
adopted here can be seen in Lemes (2015). 
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Figure 3: Concrete stress-strain relationship under compression: elastic limit strain and modulus of elasticity 

2.2 Pseudo-springs rotational stiffness 

As already mentioned, in the RPHM the cross-section flexural stiffness degradation, simulating plasticity is 
done by pseudo-springs. Thus, it is necessary to obtain stiffness degradation forms for these springs that are con-
sistent with the material employed in the cross-section. The original RPHM proposal was developed for steel ele-
ments with perfect elastoplastic behavior. When it comes to RC elements the original methodology must be modi-
fied as proposed in the present work. 

Figure 4 illustrates three interaction curves for a specific cross-section: the full yield curve – indicates the 
bearing capacity; the initial yield curve – defines the elastic region; and the initial cracking curve – delimits the 
uncracked state of the cross-section. These curves are the result of a combination of axial force and a bending mo-
ment acting around one of the main axes bending. 

Obviously, an initial cracking curve was not necessary in the original RPHM proposal (Chan and Chui, 2000), 
since it was exclusively applied for structural steel systems. However, in the evolution of the method, it is noticed 



Lemes et al. 
Numerical analysis of RC plane structures: a concentrated nonlinear effect approach 

Latin American Journal of Solids and Structures, 2018, 15(2), e20 5/22 

the necessity to introduce this curve to better approximate the actual RC structural behavior as observed by Lemes 
et al. (2017b). 
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Figure 4: Interaction NM Curves and spring rotational stiffness degradation regions 

In Figure 4, it is also possible to observe four regions. Thus, expression definitions for the simulation of pseudo-
spring stiffness in each of the described regions are required. 

According to the classical RPHM, three equations define the pseudo-spring stiffness for the previously men-
tioned regions. In regions 1 and 2, it is observed that the section is in an elastic regime. In regions 3 and 4, there can 
be noticed that the section is in a stiffness degradation process due to plastic strains. And finally, for when the fully 
plastified section occurs (region 5). For a given axial force-bending moment combination, Sp is defined as follow: 
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in which L is the finite element length, Mpr and Mer are the full and initial yield bending moment reduced by the 
combined action to an axial force, and EcIeq is the section’s flexural stiffness, considering the cracking, as discussed 
in the next Section 2.3. 

Note that, by the value described in Eq. (12), there is no possibility of simulating cracking in the elastic regime. 
This adjustment is made in the following section. 

2.3 Concrete cracking approach 

As previously pointed out, there is no specific equation for simulating the cracking using the pseudo-spring’s 
rotational stiffness, Sp. Thus, it is intended to use Eq. (12). When the pseudo-spring’s stiffness is infinite, or numer-
ically treated as such, the limit for Sp → ∞ causes the terms k22, k23, k32 and k33 to converge to the values assigned 
in Eqs. (9), (10) and (11). Then, for the terms expressed in the equations, the moment of inertia can be modified 
following two proposals. 

Branson and Metz (1963) proposed a simple equation (BM equation) for the effective moment of inertia eval-
uation of RC sections in a cracking state. This equation is used by some design codes, such as NBR-6118 (2014), 
ACI-318 (2008), among others. The moment of inertia is given by (Branson and Metz, 1963): 

3 3
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 (15) 

:cr eq cIf M M I I   (16) 

where Mcr and M are, respectively, the initial cracking bending moment and the bending moment acting on the 
section, Ic is the intact section moment of inertia (initial slope of the bending moment–curvature for zero axial force 
with no tensile stress in concrete), and Icr is the cracked moment of inertia of the section evaluated in the critical 
point of moment-curvature relationship (Section 3). 
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Patel et al. (2015) presented an alternative neural network-based approach for estimating effective moment 
of inertia by means of an explicit equation (P equation), which is described as: 
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where ak, bk, ck, dk and ek are described in Table 1. 

2.4 Nonlinear structural static problem solution 

In FEM context, the nonlinear static solver consists of obtaining the equilibrium between internal and external 
forces for each load increment as follows: 

, , ,e g i g r i g    F F 0 F F 0  (19) 

Table 1: P equation parameters (Patel et al., 2015). 

Param-
eter 

k 
1 2 3 4 5 6

a 8.7116 -0.3754 11.6985 -10.7167 0.6177 22.9397 
b -0.1978 4.3806 2.8322 3.0191 10.1889 -3.7310 
c 1.2333 -22.0048 -4.1654 -4.3927 -15.7592 5.4520 
d 0.0011 -0.1823 9.4775 9.7598 5.0682 -0.0189 
e -0.0386 6.2396 -6.7756 -7.1914 -3.2443 -2.9660 

 
where Fi,g and Fe,g, are the global internal and external force vectors, respectively, λ is the load factor and Fr is the 
reference load vector. 

To solve the global nonlinear static problem, load increment and iteration strategies are used. 
The initial increase of the load parameter, Δλ0, is automatically determined by the technique of generalized 

displacement (Yang and Kuo, 1994). Thus, Δλ0 is calculated as: 
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U U
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where index 1 indicates the Δλ0 and δUr (tangential nodal displacements) values obtained in the first loading step, 
and GSP represents the Generalized Stiffness Parameter. 

In the traditional scheme of the Newton-Raphson method, the parameter load λ is kept constant throughout 
the iterative process. Thus, the equilibrium path can be obtained until a limit point and/or a bifurcation point is 
reached. The variation of λ during the iterative cycle enables the full equilibrium path to be traced. In this work, the 
minimum residual displacement norm strategy proposed by Chan (1988) was used. In this strategy, the correction 
of the load parameter δλk is given by the equation: 

 
 

Tk k
r gk

Tk k
r r

 


 
 

U U

U U
 (21) 

with δUkg being the correction obtained from the application of the Newton-Raphson method with the conventional 
strategy of λ increment, and δUkr the iterative vector displacements resulting from the application of Fr. 

Table 2 sequentially describes the solver used here for the nonlinear static problem. 
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3 CROSS-SECTION ANALYSIS 

3.1 Materials behavior 

To make an accurate analysis of cross-sectional nonlinear behavior under external loads, a correct description 
of the materials behavior is required. 

The concrete has different mechanical properties for tensile strength and compression. When tensioned, this 
material has a tensile strength fcr. It is also noteworthy that upon reaching fcr stress, the cracking process begins. 
For strains exceeding εcr, the concrete loses strength. Thus, many researchers and even the design codes disregard 
their contribution when tensioned (Sousa Jr. and Caldas, 2005; Fong and Chan, 2012). In this study, the constitutive 
relationship proposed by NBR-6118 (2014) is used to describe the behavior of concrete under compression; for 
tension, this study used the model proposed by Vecchio and Collins (1986). That is: 

 

Table 2: Numerical strategy for solving the nonlinear structural problem. 

Algotithm: Nonlinear structural static analysis 
1. Read the input data: geometric, material and loading properties of the structural system 
2. Form the interaction curves (initial cracking, initial yield, bearing capacity) 
3. Obtain the reference nodal load vector, Fr (loading direction) 
4. t = 0 
5. t1 = t 
6. Initial conditions: t U = 0 and t λ = 0 
7. for each load increment do → INCREMENTAL LOAD PROCESS 
8. t = t1 → Previous load step 
9. t1 = t + 1 → Current load step 
10 Form the structural system tangent stiffness matrix: K 
11. Solve for the tangent displacement vector: δUr = K-1Fr 
12. if t1 = 1 then 
13. Δλ0 = (Δλ0)1 
14. else 
15. Define: Δλ0 (Eq. 20) 
16. end if 
17. Evaluate the initial incremental displacement vector: ΔU0 = Δλ0 δUr 
18. Update variables in t1: t1 λ = t λ + Δλ0 and t1 U = t U + ΔU0 
19. for k = 1, nmax do → ITERATIVE PROCESS 
20. Evaluate the internal forces vector: t1 Fi (k-1) = t Fi + KΔU (k-1) 
21. Evaluate the residual force vector: g(k-1) = t1 λ(k-1) Fr - t1 Fi(k-1) 
22. if || g(k-1) || / || Δλ(k-1)Fr || ≤ tolerance factor then 
23. Exit the iterative process and go to line 33 
24. end if 
25. if standard Newton-Raphson method then 
26. Update the tangent stiffness matrix K 
27. end if 
28. Update the load parameter correction, δλk (Eq. 21) 
29. Evaluate the nodal displacement correction vector: δUk = δUkg + δλk δUkr 

30. Update the load parameter and the nodal displacement vector: 
 Δλk = Δλ(k-1) + δλk and ΔUk = ΔU(k-1) + δUkg + δλk δUkr 
 t1 λk = t λ + Δλk and t1Uk = t U + ΔUk 

31. end for 
32. Update the structural system variables (nodal coordinates, internal forces vector and Sp) 
33. end for 
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 (22) 
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where εci, εcu and εcr are the strain limits of the nonlinear concrete behavior, the ultimate strain of the concrete in 
compression, and the concrete cracking strain, respectively; fcr is the tensile strength and Etr is the elastic tensile 
modulus of the concrete before cracking. 

A constitutive relationship that neglects the strain hardening effects and considers a gradual transition be-
tween the elastic and plastic regimes was used to describe the steel reinforcements behavior (Caldas, 2004; Lemes, 
2015). Thus: 
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where: 
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with fy and εy being respectively the steel yield stress and strain, Es is the modulus of elasticity, and the elastic 
regime is limited by the strain ε1. The steel’s ultimate strain is named εu. 

Figure 5 illustrates the uniaxial behavior of the reinforced concrete section’s constituent materials. 
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Figure 5: Constitutive relationships adopted for concrete and steel 

 

3.2 Moment-curvature relationship 

To describe the strain distribution, the cross-section discretization in layers, shown in Figure 6, is very effi-
cient. It is done to capture the axial strain, ε in the plastic centroid (PC) of each layer, and then (through the material 
constitutive relationships) to obtain the respective stresses, σi. In this same figure, the distribution of strains in a 
reinforced concrete section is illustrated for a combination of axial force and bending moment. Thus, the axial strain 
in the ith layer is given by: 

0i iy     (25) 

where yi is the distance between the plastic centroids of the analyzed layer and the cross section, ε0 is the axial 
strain of the PC section, and ϕ its curvature. 

In the matrix notation that follows, ε0 and ø are the terms of the strain vector X = [ε0 ø] T. Furthermore, the 
cross-section underformed configuration avoids convergence problems related to the balance between the external 
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and internal forces. Numerically, it can be said that the section equilibrium is obtained when the following equation 
is satisfied: 

  ext int  F X f f 0  (26) 

where the external forces vector fext is given by the axial force, N, and bending moment, M. In matrix form, the above 
equation is described as: 
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Figure 6: Linear strain field 

 
 

 

0
1

0
1

,

,

lay

lay

n

i i
i
n

i i i
i

AN
M

y A

   

   





 
                      




F X  (27) 

in which, nlay is the number of layers generated by section discretization. 
The internal forces are obtained from the cross section’s deformed shape through classical integrals. Once the 

areas Ai, and positions, yi, of each layer are known, the integral is determined as described by the sums in Eq. (27). 
Although it is efficient to start the process with X = 0, convergence is achieved only in the first iteration if 

external forces are null. Thus, for the next iteration (k + 1), the strain vector is calculated as: 

   11 'k k k k  X X F X F X  (28) 

where F’ is the Jacobian matrix of the nonlinear problem, that is: 
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 (29) 

where Et,i is the tangent modulus of elasticity taken directly from the material constitutive relationship of the ith 
layer. 

The convergence criterion adopted in this work is based on the ratio of the Euclidean norms of the unbalanced 
force vector, F, and the external forces vector fext. Thus, it is written: 

ext
Tol

F
f

 (30) 

with Tol being a given tolerance, which is assumed here to be 10-5 (Chiorean, 2013). 
The iterative process described in this section for a given external forces is illustrated in Figure 7. 
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Figure 7: Moment-curvature relationship 

 

3.3 Interaction curves 

The interaction curves are obtained before the structural analysis (out of incremental-iterative cycle). This 
strategy is adopted to reduce the execution time of the numerical simulations and it is shown in Figure 8. 

Thus, the procedure described in subsection 3.2 is made for each increment of bending moment until it singu-
larizes the Jacobian matrix (Eq. 29). Herein, the incremental strategy is given by (Zubydan, 2013): 

1j jM M EI    (31) 

in which the index j refers to the previous increment, ϕ is a constant curvature increment, EI is the cross-section 
flexural stiffness. 

The initial cracking and yield curves follow the same form of construction; that is, when, for a given bending 
moment, the first layer reaches a strain higher than εcr, the initial cracking bending moment is reached. And when 
the first layer reaches the axial strain εci/2 (Izzuddin and Smith, 2000), it is the initial yield bending moment. 

It is necessary, however, to simplify the interaction curves. Thus, these curves are constructed by a series of 
ordered pairs NM. Once the structural analysis has been initiated, it is necessary to know the value of reduced 
bending moments, Mpr, Mer, and Mcr for a given value of axial force, N. Thus, any point on the interaction curve shown 
in Figure 9 can be obtained by linear interpolation (Lemes et al., 2017c). 

 

 
 

Figure 8: Flowchart for obtaining interaction curves 
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Figure 9: Arbitrary interaction curve points (bending moment, axial force) 

4 NUMERICAL ANALYSIS 

In this section the numerical procedure described here will be tested. The proposed formulation allows for 
analysis of exclusively reinforced concrete (RC) structural systems. Hence, some classic problems in literature — 
at both the numerical and experimental levels — will be studied. The examples discussed are divided into three 
groups: a typical cross section analysis, Foure’s column, and Cranston portal frame. A structure global mesh refine-
ment test will be made, as the plasticity is considered in a concentrated approach. Following Lemes et al. (2017a) 
study, the cross section are discretized here in 16 layers. 

4.1 Interaction curves in a typical RC section 

Liu et al. (2012a) simulated the reinforced concrete section bearing capacity shown in Figure 10. The proper-
ties of the materials that make up the section are presented in Table 3. Two situations are analyzed here: consider-
ing (CCTS) and disregarding (DCTS) the concrete tensile strength, and the steel behavior were limited by the ulti-
mate strain εu = 0.01. The purpose of this example is to test the local nonlinear procedure for the definition of the 
uncracked, elastic and bearing capacity boundaries of the RC cross-section. Thus, the major and minor axis bending 
are studied here. 

Table 3: RC section: material data. 

Concrete 
fc 

(kN/cm2) 
fcr 

(kN/cm2) 
γc εci εcu 

4.0 0.269 1.5 -0.002 -0.0035 
Steel 

fy (kN/cm2) Es (kN/cm2) γs ϕ (cm) εu 
35.5 20500 1.15 2 0.01 
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Figure 10: Typical RC section (dimensions in cm) 

In Figure 11, the interaction curves for the two previously described situations are shown: major and minor 
axis bending. One can easily see the definition of the limits described in Section 2.2 without numerical instability 
effects and disagreements with the expected results. Liu et al. (2012a) presents only the bearing capacity curves 
and the concrete tensile strength is neglected. Thus a convergence of the DCTS results with those of the said authors 
is observed. Other information worth mentioning is the good functioning of the stopping criterion adopted for the 
bearing capacity curve (singularity of the section constitutive matrix, Eq. 29). As noted by Lemes et al. (2017a), the 
concrete tensile strength amplifies this cross-section bearing capacity by approximately 6%. 
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As already expected, the initial cracking curve shows larger bending moments as the axial compression force 
is greater until it is coincident with the bearing capacity curve. In this latter condition, the cross section achieves its 
maximum strength without cracking in the section layers. In the CCTS analysis, this curve is obtained when the first 
layer reaches the εcr strain, and in the DCTS analysis, when the first layer presents positive axial strain. 

In the initial yield curves, an angular point can be seen close to the axial compression force of 1000 kN. This 
point represents the change in the material influence in the definition of this curve. That is, for values greater than 
-1000 kN, the reinforcement is determinant and the curve is constructed when the reinforcement axial strain 
reaches εy. For N values smaller than -1000 kN, the concrete plastic strains govern the construction of this curve, 
being assembled when the first layer reaches εcin (Izzuddin and Smith, 2000). 

Figure 12 shows the variation of the cracked moment of inertia by the axial force applied in the section for 
both major and minor axis. As expected, for high values of compressive axial forces the cross section reaches the 
critical point of the moment-curvature relationship without cracking, that is, the Icr is equal to Ic (uncracked mo-
ment of inertia). Another observation is about the slight influence of the concrete tensile strength consideration. 
Note that in the CCTS analysis, we have higher values of Icr because some layers that have low values of tensile 
strain can still be with an axial strain smaller than a εcr. Consequently, for axial force values close to zero or positive, 
a smaller cracked moment of inertia has been cracked, since the tensile stresses arising from the bending moment 
become more relevant. 

4.2 Foure’s column 

Figure 13 shows the Foure’s column, which was experimentally tested by Espion (1993) and then studied by 
several researchers (Bratina et al., 2004; Liu et al., 2012b; Iu, 2016; Lemes et al., 2017c) for validation of their 
numerical results. This is a fixed-free reinforced concrete column with 225 cm subjected to minor-axis bending. 
Such bending occurs because of an eccentricity of the vertical load applied 1.5 cm from the cross section centroid. 
Moreover, according to Liu et al. (2012b), this column has an initial geometric imperfection, Δ, equal to h/1000. 
The finite element mesh used in this example is studied varying from 1 to 6 FE. The material data are given in Table 
4. 

 

 
 

Figure 11: RC cross section: interaction curves 
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Figure 12: RC cross section: cracked moment of inertia for various normal efforts 

 

Table 4: Foure’s column: material data. 

Concrete Steel 
fc 

(kN/cm2) 
fcr (kN/cm2) Ec (kN/cm2) εci εcu fy 

(kN/cm2) 
Es 

(kN/cm2) 
εu 

3.83 0.292 2930 -0.0023 -0.0035 46.5 20000 0.02 

 
The study of mesh refinement is extremely important since the nonlinear effects are treated exclusively at 

nodal points. Thus, 6 FE meshes are tested and the results obtained using the Branson and Metz (1963) approach 
with each one are shown in Figure 14a. For this RC column, there is a low influence of the FE mesh in the global 
system response. The equilibrium paths are very close, evidencing the good convergence of the proposed formula-
tion for low refinement indices. Another important information that can be made regarding the critical load of each 
tested mesh is a stabilization tendency of the critical load close to the experimental value (Pexp = 454 kN), visualized 
in Figure 14a. 

 
 

Figure 13: Foure’s column: geometry, loading, cross section and FE meshes 
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The same study was carried out considering the proposal of Patel et al. (2015). Although the same previously 
made conclusions are adequate in these analyses, in all situations, the critical loads encountered for this condition 
were, on average, approximately 1.3% higher than those simulated with the BM equation, as can be seen in Figure 
14b. 

For the comparison with the experimental results provided by Espion (1993), it was chosen the FE mesh with 
4 elements and 5 nodal points. This was defined based on the discretization adopted by Lemes et al. (2017c) and 
the fact that this mesh provides a critical load very close to the most refined meshes. For this same mesh, an analysis 
disregarding cracking effect (DCE) was performed, so it is possible to measure how important it is to consider this 
effect in RC structures analysis, even in elements with great influence of axial compression force. 

In Figure 15 the results obtained with the numerical formulation presented in this article are plotted and com-
pared with the test results (Espion, 1993). In general, we can see a good behavior of the equilibrium paths consid-
ering the equation of Branson and Metz (1963) - BM, and the equation of Patel et al. (2015) - P, being well adjusted 
to the experimental curve. However, it is worth noting that after cracking starts, λP = 383.55 kN, the DCE analysis 
diverges and losing accuracy. 

After the cracking starts, each of the effective moment of inertia equations presents different values, altering 
the system stiffness, which causes each of the equilibrium paths to reach the initial yield for different values of the 
incremental load, as highlighted in Figure 15. 

For all numerical responses, the cracking was achieved before the material yield behavior. This observation is 
visible in Figure 16. The point where the greatest demand for the forces acting on the structure occurs is in the fixed 
support. Thus, along with the interaction curves, Lemes et al. (2017c) provided the internal force behavior at the 
node 1. In a brief comparison of the results obtained here, a good convergence of both can be verified with those of 
Lemes et al. (2017c), shown in the Figure 16. It is also worth noting that the internal forces obtained with the anal-
ysis using the BM equation are practically equal to the fibers/concentrated plasticity model of Lemes et al. (2017c). 

 

 
 

Figure 14: Mesh refinement effect in equilibrium path and critical load of the structural system 
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Figure 15: Foure’s column: equilibrium paths comparisons using FE mesh 4 
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Figure 16: Foure’s column: interaction curves and internal forces in node 1 (FE mesh 4) 

 

Figure 16 also provides other important information. Note that the internal forces of node 1 do not reach the 
bearing capacity curve, that is, there are no plastic hinges in the structure. However, the combination of the forces 
at node 1 exceeds the initial yield curve, degrading the parameter Sp, and the initial cracking curve, changing the 
effective moment of inertia, Ieq. 

Figure 17 illustrates the percentage of the pseudo-springs stiffness degradation under critical load, Pcr, and the 
displacement u = 4 cm. As stated previously, it is evident there are no plastic hinges in the Foure's column, since in 
none of the situations was a pseudo-spring with 100% degradation verified. Comparing the analysis with BM and 
P equations, shows that the simulation results using the P equation show higher values of degradation. This can be 
explained by the fact that the critical load of this analysis was found for larger displacement values, u, as can be 
seen in Figure 15. With greater displacements, there are higher internal bending moment values, increasing the 
request at the nodal points. If we compare the values found for the same displacement value, u = 4 cm, the analysis 
using P equation still has higher degradation values. Again, by looking at Figure 15, we see that in this situation the 
analysis using the P equation has the highest λP value, consequently increasing the internal forces in the structure. 
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Figure 17: Percentage of the pseudo-spring rotational stiffness degradation in FE mesh 4 

4.3 Two-hinge pinned portal frame 

A two-hinge RC frame tested by Cranston (1965) and shown in Figure 18 is analyzed. This structure is sub-
jected to two equally spaced incremental vertical loads inserted into the beam. Cranston (1965) provides only fc 
and fy, and the other data are taken from several researchers (Bratina et al., 2004; Valipour and Foster, 2009; Liu 
et al., 2012b) who simulated this frame numerically, based on Eurocode 2 (2004), and given in Table 5. All elements 
are under major axis bending and all reinforcement bars present diameter of 9.5 mm. The cross-sections are defined 
based on the nodal points of the FE mesh 1. 

 

 
 

Figure 18: Cranston’s portal frame: geometry, loading, cross sections and FE meshes 
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Table 5: Cranston’s portal frame: material data. 

Concrete Steel 
fc 

(kN/cm2) 
fcr 

(kN/cm2) 
Ec 

(kN/cm2) 
εci εcu fy 

(kN/cm2) 
Es 

(kN/cm2) 
εu 

3.65 0.32 2777.1 -0.0023 -0.0035 29.3 20000 0.015 

 
Three finite element meshes are tested. Basically, FE mesh 1 is considered as the least refined mesh possible. 

The columns were discretized in two elements, as studied in the previous example, and the beam was divided based 
on the variations of cross sections in this structural element. FE meshes 2 and 3 test the influence of beam and 
column discretization, respectively. 

As can be seen in Figure 19, the formulation presented low sensitivity to the used mesh again, using both BM 
and P equations. It is possible to visualize that the structure’s critical load tends to a fixed value as the mesh becomes 
more refined. It can be noted that the critical loads were very close in both situations. In this example specifically, 
the values found for Pcr using the P equation were smaller than those found using the BM equation, unlike the pre-
vious example. Patel et al. (2015) show that the P equation presents less rigid responses than the one proposed by 
Branson and Metz (1963), when the beam section is already cracked. This generates a proximity in the response 
because, by slightly overestimating the column capacity, this equation is less conservative in relation to the beam 
behavior. 

 

 
 

Figure 19: Mesh refinement effect in equilibrium path and critical load of the structural system 

FE mesh 1 presents a load limit point for displacement values somewhat smaller than the other meshes. This 
is due to the quick plastic hinge formation at the ends and at the center of the beam. Thus, it is possible to see in 
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Figure 19 a more pronounced softening in the overall behavior of this mesh. Note that the mesh refinement of the 
column, FE mesh 3, shows a low change in the critical load and in the equilibrium path. 

It can be seen that the mesh 2 is sufficient for the structural analysis, and this mesh will be used now. Thus, the 
results obtained numerically are compared with those obtained by Cranston (1965). Two curves are plotted in 
Figure 20, load x displacement and bending moment at the beam left end x displacement. In both situations, one 
can observe a good proximity of the numerical and experimental curves. It is possible to highlight the good initial 
stiffness and the structural system critical load for both effective moment of inertia equations. 

 

 
 

Figure 20: Cranston’s portal frame: equilibrium paths 

 

Two plastic hinges are formed along the loading history of the structural analysis. The plastic hinges are 
formed on nodes 3 and 13 (on the beam). Thus, due to the symmetry of the problem, it was chosen to monitor the 
pseudo spring stiffness degradation exclusively at node 3, as illustrated in Figure 21. In this same figure, it is possi-
ble to identify the initial and full yield moments of the cross section, indicated by dotted lines. The results obtained 
with both equations are coincident. This can be explained since Mer and Mpr are obtained by cross-sectional analysis, 
via SCM. Considering the proximity of the results obtained in Figure 21, and the internal bending moments dis-
cussed below, it can be concluded that Eq. (13) becomes practically the same. 

Note that in the situation where the structure is under critical load action, the bending moment diagrams using 
the two effective moment of inertia equations for the cracking simulation are the same. In Figure 22, the bending 
moment diagram is shown and the values numerically obtained, using both (BM and P) equations are presented in 
Table 6. 
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Figure 21: Cranston’s portal frame: monitoring in a plastified section 
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Figure 22: Bending moment diagrams: under critical load 

 

Table 6: Internal bending moments values. 

Node 
Analysis 

BM P 
1 0 0 
2 6.2 6.2 
3 12.24 12.24 
4 6.17 6.17 
5 0.1 0.1 
6 6.08 6.08 
7 12.27 12.27 
8 12.28 12.28 
9 12.27 12.27 

10 6.08 6.08 
11 0.1 0.1 
12 6.17 6.17 
13 12.24 12.24 
14 6.2 6.2 
15 0 0 

5 CONCLUSIONS 

This article presents a displacement-based formulation using the finite element method for physical and geo-
metric nonlinear analysis of reinforced concrete (RC) planar structures. In this proposal, the plasticity is treated in 
a concentrated way using the refined plastic hinge method, where rotational pseudo springs simulate the cross 
section flexural stiffness degradation. Cracking is also approached through the effective moment of inertia of the 
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section, considered through two approaches: Branson and Metz (1963) and Patel et al. (2015). Some general con-
clusions can be made: 
- isolated beams were not analyzed, since the Cranston portal frame has its nonlinear material behavior with greater beam influence, both in 

the plasticity and cracking context; 
- low refinement indices were sufficient for a satisfactory global response in the two examples tested; 
- the use of the effective moment of inertia equation of RC elements improves the analyses accuracy, since the cracking is an inherent 

problem of concrete elements under tensile stress; 
- more refined meshes tend to convergent solutions without presenting numerical instabilities and critical load oscillations of the simulated 

structural systems; and 
- the proposal of union of the classical RPHM with the effective moment of inertia equation provided satisfactory results in the context of 

nonlinear analysis of planar RC structures. 
More specifically, in the comparison of the effective moment of inertia equations, we highlight: 

- both equations were developed for beams. An adjustment in the cracked moment of inertia was necessary to allow them to be used in 
columns/frames analysis; 

- as observed by Patel et al. (2015), the P equation provides less rigid responses to post-cracking beams when compared to the BM equation. 
This observation can be seen by analyzing the two examples tested, in the Foure's column there was a higher critical load when the 
P equation was used. In the Cranston portal frame, as the beam presents higher cracking rates, it is possible to see that the situation 
is reversed, and the results are obtained through the equation P are more conservative than the BM equation. 

As future work, we intend to develop an equation capable of describing the variation of the cross section effec-
tive moment of inertia in a cracking regime for elements submitted to combined efforts (N x M) and apply it to the 
global formulation presented here. Although the results obtained have already presented considerable precision, 
high order terms can be included in the geometric nonlinear formulation to improve the accuracy in the analyses 
of large RC structures. 
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