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Abstract

Some improvements in the dynamic behavior of two-degree-of-freedom planar articulated
open-loop mechanisms can be achieved by means of adaptive balancing. Among the ben-
efits of this technique are static balancing, complete decoupling of dynamic equations and
annulling the reactive moment at base. The procedure to accomplish these goals consists of
adding movable compensation inertias to the kinematic chain of the mechanism. Through
a performed simulation, we provide a comparison between a mechanism using the proposed
method with an unbalanced one.
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1 Introduction

Mechanisms with open-loop kinematic chains present highly complex, nonlinear and strongly
coupled dynamic models. Because of these characteristics, the consideration of a complete
dynamic model is not viable for real time applications using simple classical feedback control
strategies – like PID – with satisfactory results [6].

Paul [10] considered a simplification of the complete dynamic model, taking into account only
torques (or forces) due to effective inertia and gravitational effects. Another different approach
to the problem is to create efficient algorithms for the dynamic model computation either using
a solution table, dealing with a model expressed symbolically [9] or even removing redundantly
calculated terms [4].

Balancing [11] is also another attractive alternative to this issue. Typically, it brings some
modifications in the architecture of the original mechanism, which actually makes simpler its
dynamic model and, as a consequence, its control as well. Besides control simplification, bal-
ancing can also provide reduction or even removal of reactive moment at the mechanism base
or locomotion platform, preventing it to vibrate and suffer unnecessary wear [2, 7].
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Even though some authors [6, 8] discussed control simplification and reduction of actuator
torques (or forces) simultaneously, most of them focused on one of these objectives. Besides,
the influence of the payload, or even its variation, is rarely mentioned [3]. Only a few published
articles treated of balancing of open-loop mechanisms, which eliminates dynamic terms due
to cross inertia, centripetal and Coriolis forces [1]. Diken [5] recommended minimizing the
consumed energy as a criterion to evaluate compensation inertias, whose values are dependent
on the path chosen and adopted velocity profiles.

This article presents some improvements in the dynamic behavior of two-degree-of-freedom
planar articulated open-loop mechanisms, which can be achieved by means of adaptive balancing.
Among the benefits of this technique are static balancing, complete decoupling of dynamic
equations and annulling the reactive moment at base. The procedure to accomplish these goals
consists of adding movable compensation inertias to the kinematic chain of the mechanism.
Through a performed simulation, we provide a comparison between a mechanism using the
proposed method with an unbalanced one.

2 Adaptive balancing

In this section, we present the dynamic models of two-degree-of-freedom planar articulated
open-loop kinematic chain mechanisms subjected to two different conditions: unbalanced and
adaptively balanced. Such mechanisms are composed by three links: one fixed link – base –
and two moving ones – links 1 and 2 (Figure 1). These links are connected by two revolute
joints. This mechanical system, driven by two independent actuators, can be employed as a
robot manipulator for ”pick-and place” operations. During part of its motion cycle, the payload
remains temporarily attached to link 2 by a gripper.

In order to introduce the equations of motion, we define the following parameters and vari-
ables:

`1 - distance between revolute joint centers in link 1 (unbalanced mechanism);
`2 - distance between revolute joint center and gripper tip in link 2;
`1c - position of the center of mass of link 1 with respect to the center of the revolute joint that
connects link 1 to the base (unbalanced mechanism);
`2c - position of the center of mass of link 2 with respect to the center of the revolute joint that
connects link 2 to link 1 (unbalanced mechanism);
m1 - mass of link 1 (unbalanced mechanism);
m2 - mass of link 2 (unbalanced mechanism);
m0 - payload mass;
I1 - mass moment of inertia of link 1 with respect to the center of mass of the same link (un-
balanced mechanism);
I2 - mass moment of inertia of link 2 with respect to the center of mass of the same link (un-
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balanced mechanism);
θ1 - angular displacement of link 1 relative to the base;
θ2 - angular displacement of link 2 relative to link 1;
θ̇1 - angular velocity of link 1 relative to the base;
θ̇2 - angular velocity of link 2 relative to link 1;
θ̈1 - angular acceleration of link 1 relative to the base;
θ̈2 - angular acceleration of link 2 relative to link 1;
τ1 - driving torque furnished by the actuator that moves link 1;
τ2 - driving torque furnished by the actuator that moves link 2.

Figure 1: Parameters and variables of the unbalanced mechanism.

We assume the links of the mechanism are rigid bodies, performing planar motions parallel to
the vertical plane, and therefore, subjected to gravitational forces. Friction effects on both joints
and the mass moment of inertia of payload with respect to its own center of mass are neglected.
The mass of the actuator that moves link 2 is included in the mass of link 1 and gripper mass
is added to the mass of link 2. The equations of motion of the unbalanced mechanism can be
written as:

Latin American Journal of Solids and Structures 1 (2004)



222 Tarcisio A. H. Coelho, Liang Yong and Valter F. A. Alves

τ1 = D11θ̈1 + D12θ̈2 + D111θ̇
2
1 + D122θ̇

2
2 + D112θ̇1θ̇2 + D121θ̇2θ̇1 + D1 (1)

τ2 = D21θ̈1 + D22θ̈2 + D211θ̇
2
1 + D222θ̇

2
2 + D212θ̇1θ̇2 + D221θ̇2θ̇1 + D2 (2)

where the coefficients of kinematic variables and gravitational terms are:

D11 = m1`
2
1c + I1 + m2(`2

1 + `2
2c) + I2 + m0(`2

1 + `2
2) + 2`1 cos θ2(m2`2c + m0`2) (3)

D12 = m2`
2
2c + I2 + m0`

2
2 + `1 cos θ2(m2`2c + m0`2) (4)

D111 = 0 (5)

D112 = D121 = −`1 sin θ2(m2`2c + m0`2) (6)

D122 = D112 (7)

D1 = g cos θ1(m0`1 + m1`1c + m2`1) + g cos(θ1 + θ2)(m2`2c + m0`2) (8)

D21 = D12 (9)

D22 = m2`
2
2c + I2 + m0`

2
2 (10)

D211 = `1 sin θ2(m2`2c + m0`2) (11)

D222 = 0 (12)

D212 = D221 = 0 (13)

D2 = g cos(θ1 + θ2)(m2`2c + m0`2) (14)
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2.1 Static Balancing

Adaptive Balancing is a technique that modifies the original kinematic chain of unbalanced
mechanisms in such a way to obtain static balancing, complete decoupling of dynamic equations
and annulling the reactive moment at base. In order to ensure static balancing, we adopt here the
procedure first proposed by Chung et al. [3]. It consists of adding two movable compensation
inertias m1B e m2B to links 1 and 2, respectively. These inertias eliminate not only gravity
torques due to masses of links 1 and 2, but also to the presence of payload m0. Each of these
movable inertias is connected to its respective link by means of a prismatic joint and changes
its position according to changes on payload values (Figure2(a),2(b)). Constructively, we can
implement this feature using a force transducer that measures the payload weight and feedbacks
acquired signals to two additional actuators that move compensation inertias. Despite of this
procedure being successful on removing most of the terms from the dynamic equations, both
mentioned equations remain coupled. They still show terms due to cross inertia.

2.2 Decoupling the dynamic equations

To eliminate those terms due to cross inertia and annul reactive moment acting on the base
(see also section 2.3) as well, two steps are necessary. First, a rotor is added to the kinematic
chain and connected to link 1 by a revolute joint. This rotor is geared to link 2 and rotates in
opposite direction with respect to this link. The mass of the rotor remains unchanged, but its
mass moment of inertia may be altered by moving the radial position of two other compensation
inertias connected to it by prismatic joints, whose values are m2I/2. The second step is similar
to the first one and we can implement it by adding a second rotor connected to the base and
geared to link 1. Two other compensation inertias, whose values are m1I/2, can be added and
connected to this rotor by prismatic joints, working the same way as the previous two ones with
the first rotor.

Constructively, these rotors can be helical gears or pulleys conveniently coupled to their
respective links. Compensation inertias can be positioned by means of two additional actuators
working similarly as the previous ones for static balancing. In the general case, the coefficients
of kinematic variables and gravitational terms of equations (1) and (2) are:

D11 = m1`
2
1c + I1 + m2(`2

1 + `2
2c) + I2 + m0(`2

1 + `2
2) + m2B(`2

1 + `2
2B) + m1B`2

1B

+2`1 cos θ2(m2`2c + m0`2 −m2B`2B) + m1I`
2
1Ir

2
T + m2I(`2

12B + `2
2I)

(15)

D12 = m2`
2
2c + I2 + m0`

2
2 + m2B`2

2B + `1 cos θ2(m2`2c + m0`2 −m2B`2B)−m2I`
2
2IrT (16)

D111 = 0 (17)
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(a) (b)

Figure 2: (a) Mechanism adaptively and completely balanced; (b) Parameters and variables of
the balanced mechanism.

D112 = D121 = −`1 sin θ2(m2`2c + m0`2 −m2B`2B) (18)

D122 = D112 (19)

D1 = g cos θ1(m0`1 + m2I`12B + m1`1c + m2`1 −m1B`1B + m2B`1)
+ g cos(θ1 + θ2)(m2`2c + m0`2 −m2B`2B)

(20)

D21 = D12 (21)

D22 = m2`
2
2c + I2 + m0`

2
2 + m2B`2

2B + m2I`
2
2Ir

2
T (22)

D211 = `1 sin θ2(m2`2c + m0`2 −m2B`2B) (23)

D222 = 0 (24)

D212 = D221 = 0 (25)

D2 = g cos(θ1 + θ2)(m2`2c + m0`2 −m2B`2B) (26)

where `12B is the distance between the center of the revolute joint that connects the first rotor
to link 1 and the center of revolute joint that connects link 1 to the base; `2I is the position

Latin American Journal of Solids and Structures 1 (2004)



Dynamic behavior of planar mechanisms 225

of both compensation masses m2I/2 with respect to the center of revolute joint that connects
the first rotor to link 1; `1I is the position of both compensation masses m1I/2 with respect
to the center of revolute joint that connects the second rotor to the base (Figure2(b)); and rT

is the transmission ratio. For the sake of clearness, gear masses are not explicitly included in
presented equations.

We can choose compensation inertias values and their relative positions in such a way to
make null those terms due to cross inertia. Consequently, both dynamic equations will become
decoupled. The four conditions for the adaptive balancing are:

m2`2c + m0`2 −m2B`2B = 0 (27)

m0`1 + m2I`12B + m1`1c + m2`1 −m1B`1B + m2B`1 = 0 (28)

m2`
2
2c + I2 + m0`

2
2 + m2B`2

2B + `1 cos θ2(m2`2c + m0`2 −m2B`2B)−m2I`
2
2IrT = 0 (29)

m1`
2
1c + I1 + m2(`2

1 + `2
2c) + I2 + m0(`2

1 + `2
2) + m2B(`2

1 + `2
2B) + m1B`2

1B

+ 2`1 cos θ2(m2`2c + m0`2 −m2B`2B)−m1I`
2
1IrT + m2I(`2

12B + `2
2I) = 0

(30)

Substituting the calculated compensation inertias from the previous conditions, the coeffi-
cients of kinematic variables and gravitational terms become:

D11 = m1I`
2
1IrT (1 + rT ) (31)

D12 = 0 (32)

D111 = 0 (33)

D112 = D121 = 0 (34)

D122 = D112 (35)

D1 = 0 (36)

D21 = D12 (37)

D22 = m2I`
2
2IrT (1 + rT ) (38)
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D211 = 0 (39)

D222 = 0 (40)

D212 = D221 = 0 (41)

D2 = 0 (42)

In order to improve the feasibility of the proposed method, we can alter the positions of
actuators. The shaft of second actuator may be connected to the first rotor shaft instead of
being directly coupled to link 2. Analogously, we may connect the shaft of first actuator to the
second rotor shaft. Hence with these modifications the dynamic equations are:

τ1 = −m1I`
2
1I(1 + rT )θ̈1 (43)

τ2 = −m2I`
2
2I(1 + rT )θ̈2 (44)

2.3 Annulling reactive moment at base

For an unbalanced mechanism, the reactive moment
(

~MO1

)
base

acting on the base, with respect

to pole O1 (Figure3(a)), corresponds to the negative value of driving torque τ1. This reactive
moment can be determined by calculating the time derivative of the angular momentum of the
whole system. For a mechanism balanced according to the adaptive method, we can develop the
expression of the angular momentum ~HO1 with respect to a pole O1,

~HO1 = ( ~HO1)link1 + (
⇀

HO1)link2 + ( ~HO1)rotor1 + ( ~HO1)rotor2 (45)

For link1,

( ~HO1)link1 = (m1`
2
1c + I1 + m1B`2

1B)θ̇1
~k (46)

For link2,

( ~HO1)link2 = ( ~HO2)link2 + (O2 −O1) ∧ (m2 + mo + m2B)~vO2 (47)

( ~HO2)link2 = (m2`
2
2c + m0`

2
2 + I2 + m2B`2

2B)(θ̇1 + θ̇2)~k (48)

(O2 −O1) = `1(cos θ1
~i + senθ1

~j) (49)
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~vO2 = `1θ̇1(−senθ1
~i + cos θ1

~j) (50)

( ~HO1)link2 = (m2`
2
2c + m0`

2
2 + I2 + m2B`2

2B)(θ̇1 + θ̇2)~k + (m2 + mo + m2B)`2
1θ̇1

~k (51)

For the first rotor,

( ~HO1)rotor1 = ( ~HO3)rotor1 + (O3 −O1) ∧m2I~vO3 (52)

( ~HO3)rotor1 = m2I`
2
2I(θ̇1 − rT θ̇2)~k (53)

(O3 −O1) = `12B(cos θ1
~i + senθ1

~j) (54)

~vO3 = `12B θ̇1(−senθ1
~i + cos θ1

~j) (55)

( ~HO1)rotor1 = m2I`
2
2I(θ̇1 − rT θ̇2)~k + m2I`

2
12B θ̇1

~k (56)

For the second rotor,

( ~HO1)rotor2 = ( ~HO4)rotor2 + (O4 −O1) ∧m1I~vO4 (57)

( ~HO4)rotor2 = m1I`
2
1I(−rT θ̇1)~k (58)

~vO4 = ~0 (59)

Therefore,

~HO1 =
[
m1`

2
1c + I1 + m2(`2

1 + `2
2c) + I2 + m0(`2

1 + `2
2)+ m2B(`2

1 + `2
2B)

+ m1B`2
1B −m1I`

2
1IrT + m2I(`2

12B + `2
2I)

]
θ̇1

~k

+
(
m2`

2
2c + I2 + m0`

2
2 + m2B`2

2B −m2I`
2
2IrT

)
θ̇2.~k

(60)
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(a) (b)

Figure 3: (a) Used poles for calculating angular momentum; (b) Forces and torque acting on the
base.

Reactive moment acting on the base is equal to the time derivative of the angular momentum
and also depends on τ1and moments of the forces ~Frotor2,base ,~Flink1,base, which are reactive forces
of the second rotor and link 1(Figure3(b)), respectively, acting on the base:

d ~HO1

dt
=

(
~MO1

)
base

= (O4 −O1) ∧ ~Frotor2,base + (O1 −O1) ∧ ~Flink1,base − τ1
~k (61)

(
~MO1

)
base

= [ m1`
2
1c + I1 + m2(`2

1 + `2
2c) + I2 + m0(`2

1 + `2
2) + m1B`2

1B

+ m2B(`2
1 + `2

2B)−m1I`
2
1IrT + m2I(`2

12B + `2
2I)

]
θ̈1.~k

+
(
m2`

2
2c + I2 + m0`

2
2 + m2B`2

2B −m2I`
2
2IrT

)
θ̈2.~k

(62)

To cancel
(

~MO1

)
base

, it is necessary that the coefficients of θ̈1 and θ̈2 are null. These

conditions are already satisfied by equations (27-30). Therefore, for the adaptively balanced
mechanism,

(
~MO1

)
base

is always a null vector.
According to what we stated before, to achieve adaptive balancing is necessary to employ six

movable compensation inertias conveniently positioned into the kinematic chain of the mecha-
nism. Otherwise, if the desired characteristics are only static balancing and complete decoupling
of dynamic equations, then four compensation inertias will be enough to accomplish these tasks.
The second rotor, the one that is connected to the base and geared to link 1, will be no longer
needed.

3 Simulation

In order to evaluate quantitatively the dynamic behavior of a two-degree-of-freedom planar
articulated open kinematic chain mechanism balanced according to adaptive method, one type
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of simulation is performed. The simulation considers that gripper tip develops a straight-line
path with a specified velocity profile.

We chose driving torques as valid criteria to establish a comparison between an unbalanced
and an adaptively balanced mechanism. Table 1 includes both geometric and dynamic param-
eters of the unbalanced mechanism. Transmission ratio and compensation inertia values are
shown on table 2, and table 3 presents corresponding positions of compensation inertias on the
kinematic chain.

Table 1: Geometric and dynamic parameters

Link 1 Link 2 Payload

`1 `1c m1 I1 `2 `2c m2 I2 m0

(m) (m) (kg) (kg .m2 ) (m) (m) (kg) (kg .m2 ) (kg)
0.5 0.25 12 0.25 0.5 0.25 6 0.125 4

Table 2: Compensation inertias and transmission ratio.
m1B(kg) m2B(kg) m1I (kg) m2I (kg) rT

45 15 46 32.5 2

The motion characteristics of the straight-line path developed by the gripper tip are shown
on table 4. The velocity profile has a trapezoidal shape and we assume that each motion phase
lasts the same time. The behavior of kinematic and dynamic variables during motion cycle is
presented on figure 4.

Table 3: Positions of compensation inertias.
for m0=0kg for m0=4kg

`1B(m) 0.25 0.34
`2B(m) 0.25 0.23
`1I(m) 0.25 0.42
`2I(m) 0.25 0.19
`12B(m) 0 0
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Figure 4: Straight-line path of the gripper tip: (a) Mechanism configurations during its motion;
(b) angular displacements; (c) angular velocities; (d) angular accelerations; (e) driving torque of
the first actuator; (f) driving torque of the second actuator;(g) reactive moment at base.
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Table 4: Parameters for straight-line path
Initial point Terminal point Duration amax vmax

x(m) y(m) x(m) y(m) (s) (m/s2) (m/s)
0.55 -0.8 0.55 0.8 6 0.2 0.4

4 Conclusions

Adaptive balancing is a technique that accomplishes many improvements to the dynamic behav-
ior of two degree-of-freedom planar articulated open-loop mechanisms. One important contri-
bution is that total decoupling of dynamic equations is possible. So, differently from previously
published works that propose partial decoupling, this method really eliminates from equations
those torques due to gravitational, centripetal, Coriolis forces, and cross inertia terms as well,
without neglecting them. Therefore, we can control each actuator independently, which really
simplifies the control of the system as a whole. The method also annuls reaction moment acting
on the base, which can be a very convenient feature that avoids vibration transmission from the
moving links to their base or locomotion platform. Besides, adaptive balancing considers the
payload presence and its eventual change in different operations.

Performed simulation considered a straight-line path of the gripper tip. For this trajectory,
an adaptively balanced mechanism presented lower driving torques (Figures 4(e) and 4(f)) than
a kinematically identical but unbalanced mechanism. Due to chosen velocity profile, Figures
4.b and 4.c present two transitions separating three motion phases. If specified motions for the
gripper tip result in extremely high angular accelerations, then driving torques of an adaptively
balanced mechanism will be strongly affected and their values will increase accordingly. This
predictable and undesirable consequence can be minimized by adopting a transmission ratio
more than 1, which will decrease driving torques, make compensation inertias have more feasible
values, despite overall driving power increases. The figure 5 shows a possible architecture for
the mechanism after making the necessary modifications required for the adaptive balancing.

Future works will be concentrated on the generalization of the adaptive balancing to any
kind of open-loop mechanism, planar or spatial, with different joints. Such a balancing should be
achieved under the presence of perturbation forces of different natures, not only due to payload
weight, but also generated when robot gripper holds a workpiece (machining forces).
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Figure 5: Possible architecture for the mechanism balanced according to the proposed method.
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