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1 INTRODUCTION

Due to attractive structural properties like high strength-to-weight and high stiffness-to-weight ratios, the
demand of composite materials is increased in many engineering industries such as mechanical engineering,
marine engineering, civil engineering, aerospace engineering, etc. Therefore, accurate prediction of bending
behaviour of the structures made of advanced composite materials is an important part of the analysis. One of the
important steps to develop accurate analysis of composite plates is to select a proper structural theory for the
problem.

The analyses of laminated composite plates have been based on one of the following approaches. 1)
Equivalent single layer (ESL) theories 2) Layer wise theories and 3) Three dimensional elasticity theories. The
fundamental objective in the development of elasticity solution is to obtain accurate results of global and local
quantities. These solutions are serving as benchmark solution for approximate theories. Pagano (1970) and
Zenkour (2007) have developed exact elasticity solutions for rectangular bidirectional composites and sandwich
plates. Since three dimensional elasticity theories and layer wise theories are computationally difficult, equivalent
single layer theories are widely used for the modeling and analysis of laminated composite thick plates. The ESL
theories are those in which a heterogeneous laminate plate is treated as a statically equivalent single layer having
a complex constitutive behaviour, reducing the 3D continuum problem to a 2D problem.

The simplest ESL laminate theory is the classical laminated plate theory (CLPT) of Kirchhoff (1850). But,
when CLPT is applied to the analysis of composite plates it underpredicts the deflections and stresses, and
overpredicts natural frequencies and critical buckling loads. This is due to neglect of transverse shear
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deformation. Therefore, CLPT is suitable for thin plate only. To overcome this drawback of CLPT, Mindlin (1951)
has developed first order shear deformation theory (FSDT) which considers the linear variation of transverse
shear deformation across the thickness of the plate. The FSDT shows constant variation of transverse shear stress
through the thickness of the plate and required shear correction factor to properly account the strain energy due
to shear deformation. These limitations of CLPT and FSDT leads to the development of higher order refined plate
theories.

Several higher order refined plate theories are developed by various researchers which uses polynomial and
non-polynomial type shape functions to properly account the effect of shear deformation (Polynomial:
Ambartsumian, 1958; Reddy, 1984; Pandya and Kant, 1988; etc. Non-polynomial: Levy, 1877; Touratier, 1991;
Soldatos, 1992; Karama et al., 2009; Mantari et al,, 2012; Grover et al,, 2013; Sayyad and Ghugal, 2017a etc.). One
can refer recently published review articles by Sayyad and Ghugal (2015a, 2017b) for other refined beam and
plate theories available in the literature. Chakrabarti and Sheikh (2005) have studied the bending response of
sandwich plates with stiff laminated face using six noded triangular element having seven degrees of freedom at
each node. Zhen and Wanji (2007) have presented a study of global-local higher order theories for laminated
composite plates. Thai et al. (2012) have presented a novel finite element formulation for static, free vibration
and buckling analyses of laminated composite plates. Thai and Choi (2013) have developed a simple first order
shear deformation theory for laminated composite plates, the theory contains only four unknowns and having
similarities with the CPT and Navier’s solution approach is used to obtain solution. Sayyad and Ghugal (2015b)
have presented a four-variable trigonometric plate theory for thermoelastic bending analysis of laminated
composite plates subjected to thermal load liner across the thickness.

In all the aforementioned refined plate theories, the effect of transverse normal deformation i.e. thickness
stretching is neglected to minimize the unknown variables. But, according to recommendations of Kant and
Swaminathan (2002) and Carrera (2005); the effects of both transverse shear and normal deformations plays
important role to predict accurate structural behaviour of laminated composite thick plates. Few researchers
have developed refined plate theories for the analysis of laminated composite plates considering both transverse
shear and normal deformations such as Ghugal and Sayyad (2013), Sayyad and Ghugal (2013, 20144, b, c), Neves
etal. (2011, 2012), Zenkour (2013), Carrera (1999a, 1999b, 2002, 2003).

In this paper, a new quasi-3D polynomial type plate theory is developed for the bidirectional bending
analysis of laminated composite and sandwich plates. The present theory does not require a problem dependent
shear correction factor as it satisfies traction free boundary conditions at top and bottom surfaces of the plate.
The governing differential equations and associated boundary conditions are obtained using the principle of
virtual work. The plate is analysed for simply supported boundary conditions using Navier’s solution technique.
To prove the efficiency of the present theory, the non-dimensional displacements and stresses obtained for
laminated composite and sandwich plates and are compared with existing exact elasticity solutions and other

theories. The important contributions in the present study are summarized as follows:

1) In the present study, a new higher-order shear and normal deformation theory is developed and applied for the bi-directional bending of
laminated composite and sandwich plates subjected to transverse loadings.

2) Since the present theory is polynomial type, it is computationally simpler than non-polynomial type plate theories recently developed by
many researchers.

3) The present theory different from the existing theories since, it considers the effects of transverse shear and normal deformations which
are essential to avoid delamination type failures. Many theories available in the literature including theory of Reddy (1984) have
neglected effect of transverse normal deformation i.e. thickness stretching.

4) The present theory is strongly recommended for the analysis of laminated composite and sandwich plates, because it yields accurate
prediction of displacements and stresses compared to existing non-polynomial type theories.

5) The most important feature of the present theory is it predicts accurate interlaminar shear stresses as compared to any other refined plate
theories available in the literature.

1.1 Modeling of the composite plate

For the present study, a cross-ply laminated composite plate made of orthotropic fibrous composite material
having length @’in xdirection, ‘b’ in ydirection and thickness ‘A’in zdirection is considered (see Fig. 1). The plate
is subjected to an out of plane load g (x, ) and the mid-plane is located at z=0.
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Figure 1: Layer numbering system of laminated composite plate.

2 FIFTH-ORDER SHEAR AND NORMAL DEFORMATION THEORY

A fifth-order shear and normal deformation theory is initially developed by authors for the cylindrical
bending i.e. 1D analysis of laminated composite plates (Naik and Sayyad 2018). In this study, it is extended for the
bi-directional bending analysis of laminated composite and sandwich plates.

2.1 Kinematics of the present theory (FOSNDT)

The displacement field of the present theory (FOSNDT) can be expressed as

ow, 4z [ 162° ]
s = ) —z—+ — 5 B + - ¢ )
u(x,y,z) =, (x,y) 2> [Z 3h2}¢x(xy) _Z 5h4_%(xy)
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where u, vand ware the x, yand zdirectional displacements respectively of any point on the plate; uy, v and wy
are the displacements of mid-plane in x, y and z-directions respectively; ¢,y ,,¢,, andy, are rotations of the

normal to the mid-plane about y and x axes which account the effect of transverse shear deformation. ¢ andy

repressent higher-order transverse cross-sectional deformation modes i.e. effect of transverse normal
deformations. The normal and shear strains are obtained within the framework of linear theory of elasticity as
follows.
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where
4z 162" 4z’ , 162*

The 3D constitutive equations for the &h lamina of laminated plate under bending can be written as

o, ’ [0, 0, 0O; 0 07 &y ‘

o, O, O, Oy O 0 0 €,

x| _ O; Oy 0Oy 0 0 0 €. )
T, 0 0 0 9, O 0 -

Te 0 0 0 Qs 0|7

T, | 0 0 0 0 0 Ol |70

whererare the reduced elastic constants, (O'x,O'y,O'Z, T

w0 T,,) are the stress components and (
€.,6,,6,,Y,YY,.) are the strain components. The following relationships between the reduced elastic

constants and the engineering elastic constants are used for the present study.
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where £i, £ and £3 are the Young’s moduli; Giz, G13 and Gz3 are the shear moduli and g4, , 4, , f3 5 ls, 5 Moy » M3y

are Poisson’s ratios; the subscripts 1, 2, 3 correspond to x, J; z directions of Cartesian coordinate systems,
respectively.

2.2 Governing equations and boundary conditions
The nine variationally consistent governing differential equations associated with the present theory are
obtained using the principle of virtual work. The analytical form of the principle of virtual work stated in Eq. (6)

b +h/2 ab
j j (O'xd‘,‘X +0,0¢,+0.0¢6, +7,,0y,, +7,.07,. +7 .0y, )dzdy dx— “q(x,y) ow,dydx=0 (6)
0 00
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O© ey

where ¢ is the variational operator. After introducing stress resultants, the Eq. (6) can be written in following
form
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where N ,N ,N  are the resultant in-plane forces, M” Mb Mb are the moment resultants analogus to classical
plate theory; MM, M ,M>,M,M_ are the moment resultants due to transverse shear deformation effects;

1 2 1 2

52
.,02,0,.,0:,0., 0> are the transverse shear and transverse normal stress resultants.
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The governing differential equations and associated boundary conditions for the present theory can be
obtained by integrating Eq. (7) by parts; collecting the coefficients of = JSu,,Sv,,w,,

09,0y ,,09,,0y,,0¢. and oy, and equating them equal to zero, the following equations can be obtained
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The boundary conditions along edges are of the following form:
Along the edges x=0 and x=4,
either u,=0 or N_ is prescribed
either v, =0 or N, is prescribed
either w, =0 or M’ is prescribed
either aaﬂ =0 or M, is prescribed
X
either ¢ =0 or M is prescribed (18)

either y =0 or M”* is prescribed
either ¢, =0 or M i

xy

72}

prescribed
either y, =0 or M} is prescribed
cither ¢ =0 or Q.. is prescribed
either w_=0 or Q) is prescribed

Along the edges y =0 and y=5,
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either u, =0 or N is prescribed
either v, =0 or N, is prescribed
either w, =0 or Mf , 1s  prescribed

My

either =0 or Mj is prescribed

either ¢ =0 or M, is prescribed (19)
either y, =0 or M7 is prescribed
either ¢ =0 or M is prescribed
either w, =0 or M} is prescribed
either ¢ =0 or Q) is prescribed
either ., =0 or Qiz is  prescribed

The extension, bending, bending-extension, bending-twisting stiffnesses used in the governing equations (9)-
(17) can be obtained as
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2.4 Analytical solutions

Here, the analytical solutions of Egs. (9)- (17) for laminated composite and sandwich plates are considered.
Assuming that the plate is simply supported in such a way that tangential displacement is not admisible while the
normal displacement is admisible. Following are the boundary conditions which will be satisfied the Navier’s
solution.

Atedges x=0 and x=a, v, =0, w, =0, ¢y =0, v, =0,¢ =0,y =0, Mf =0, M}=0,M*>=0, N =0
Atedges y=0and y=b; u, =0, w, =0, ¢. =0, v =0, ¢. =0, y_. =0, Mf =0, M} =0, M =0, N =0 2D

Following Navier’s solution procedure, the solution to the displacement variables to satisfy the above
boundary conditions can be expressesd in the following forms.
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MO umn f2 -f3
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W0 Wmn fi f‘3
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Vo= 2 2 Wl fs (22)
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where
ﬁ:sin(mﬂxj, ﬁzcos(mﬂxj, ﬂ:sin(mj, ﬂzcos(mJ (23)
a a b b
and the loading term g (x,») is expanded as
q('x7y)= z z qmnflf; (24)

m=1,3,5..n=1,3,5..

where .V, Wi > B s ¥ con s Pron > W ymn » P @0 W, are the unknowns to be determined. ¢, is the coefficient of

mn?
Fourier series expansion and; m and n are the positive integers. For sinusoidal load, ¢,, =¢q, and m=n=1.

Substitution of Egs. (22)- (24) into governing Eqgs. (9)-(17) leads to the following equation.

K, K, K, K, K; K, K; Kg Kgy||Un 0
K, K, Ky K, Ky Ky K, Ky Ky|| Vi 0
Ky, Ky, Ky Ky Ky Ky Ky Ky Ky || Wan 9n
K, K, K; K, K; Kg K, Kg Ky mn 0
Ky K, Ky Ky K5 Ky Ky Ky Ksg |[3Waom p =7 0 (25)
K Ky Ky Ko K Ko Ky K K ¢ymn 0
K, K, K, K, K, K, K, Ky K, Y ymn 0
Ky Ky Ky Ky Ky Ky Ky Ky Ky || 4, 0
| Ky Ky, Ky Ky Ko Koo Ky Koy Koo ||y, 0

where the elements of stiffness matrix [ Ajj] can be defined as below
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D I’I’l27Z'2 D I’l27Z'2
99 = T Mss155 a2 T Hss144 bz _Jsssl33

After knowing the values of unknown displacement variablesu,,v,, w,,8. ¥, @,,¥, 4. andy, from Eq. (22), all

the displacement and stress components within the laminated composite plate under consideration can be
calculated using Egs. (1) through (5). The evaluation of transverse shear stresses from the constitutive relations
leads to the discontinuity at the inter face of two adjacent layers of a laminate and thus violates the equilibrium

conditions. Hence, transverse shear stresses z,_and 7. can be obtained by using equilibrium equations of theory

of elasticity neglecting body forces stated in Eq. (27).

0o, Ot Or
L4—+—==0

ox Oy 0Oz

or,, N oo, . o7, 0 @7
ox oy Oz

0

az-)cz + TJ’Z + aGz :O

ox oy Oz
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The in-plane normal and shear stresses o,, 0,,7,, calculated from constitutive relations are substituted in

Eq. (27). The transverse stress stresses (7

xz?

7,.) are evaluated by integrating Eq. (27) layerwise through the

thickness coordinate (2).

3.0 NUMERICAL RESULTS AND DISCUSSION

In this section, various numerical examples solved are described and discussed for the bending analysis of
laminated composite and sandwich plates using the present theory. In the present study, different configurations
of the laminates are used and a simply supported plate subjected to transverse sinusoidal loading is considerd.
Results are obtained using the present FOSNDT in closed form using Navier’s solution technique for above
geometry and loading. The accuracy of the solution is checked by comparing results obtained using the present
theory (FOSNDT) with the other theories and the exact elasticity solution wherever available in the literature. The

following sets of material properties are used in obtaining numerical results for the present study.
a) Isotropic

E
E =E,=FE,=210GPa, G, =G, =G, =G=———, t, =y, =y, =4 =03 (28)
2(1 + y)
b) Transversely Isotropic
E =E,=0.04, E,=05, G, =G,;,=0.06,G,, =0.016, 1, = 45, = 43, =0.25 (29)
¢) Fibrous Composite (Graphite-Epoxy)
E, E G G G
—L=25 2=1 L2="1=05 —2=0.2, = = =0.25 30
E, E, E, E, E, Hip = Hiy = Moy (30)

For the validity of the present theory, following examples are solved for the numerical study.
1. Bi-directional bending analysis of isotropic square plate under sinusoidal loading.
2. Bi-directional bending of two-layer (0°/90°) antisymmetric cross-ply laminated composite plates under sinusoidal loading.
3. Bi-directional bending of three-layer (0°/90%0°) symmetric cross-ply laminated composite plates under sinusoidal loading.
4. Bi-directional bending of three-layer (0%core/0°) symmetric sandwich plates under sinusoidal loading.

Displacements and stresses for isotropic, laminated composite and sandwich plates under bi-directional
bending obtained by using the present theory (FOSNDT) are presented in Tables 1-4 and compared with those
obtained by using the CLPT, the FSDT of Mindlin (1951), HSDT of Reddy (1984), SSNPT of Sayyad and Ghugal
(2014b) and exact elasticity solution of Zenkour (2007). The displacements and stresses are calculated at typical
important locations using the following non-dimensional form.

_[ b h) uE _(a b hj wl00E, _ _ (a b n) (o.0,)
u ’_’__ = 3; W _5_’__ = 4 ; ()-x’o-y _5_’__ 2—2;
2 2) qhS 22 2) ghS 22 2) 4.8

T 7,
)=—"y2 ; fxz(o,é,ij= fe T, (E,O,i} >
q,S 2 h) ¢q,S 2 h) q,S

where S=a/h and E3is the elastic modulus of the middle layer.

Example 1: In this example bi-directional bending analysis of isotropic square plate under sinusoidal loading
is carried out. Material properties defined by Eq. (28) are used for the numerical study. Displacements and
stresses obtained using the present theory are presented in non-dimensional form defined by Eq. (31). Results
obtained by using the present theory are compared with exact elasticity solution given by Zenkour (2007) and
sinusoidal shear and normal plate theory (SSNPT) of Sayyad and Ghugal (2014b). The results shown in Table 1
reveals that, the present theory accurately predicts the displacements and in-plane normal stresses for thin,
moderately thick and thick plates, whereas exact results for in-plane shear stresses are not available in the
literature. Transverse shear stresses predicted by the present theory are in excellent agreement with those
obtained by using exact elasticity solution.

Example 2: In this example, the present theory is applied for the bending analysis of two-layer (0°/90°) anti-
symmetric laminated composite plates subjected to sinusoidal load. The plate is made up of fibrous composite
material defined in Eq. (30). The layers are of equal thickness i.e. 4#/2. The non-dimensional displacements and
stresses obtained using the present theory are presented in Table 2 and are compared with classical laminated

(BD
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plate theory (CLPT) of Kirchhoff, first order shear deformation theory (FSDT) of Mindlin (1951), SSNPT of Sayyad
and Ghugal (2014b), HSDT of Reddy (1984), and exact elasticity solution given by Zenkour (2007). The
examination of Table 2 shows that the transverse displacements obtained by using the present theory are in
excellent agreement with exact solution compared to HSDT and SSNPT. This is in fact due to inclusion of
transverse normal deformation along with fourth-order variation of transverse displacement. The in-plane

normal stress (0, ) predicted by the present theory is also in excellent agreement with exact solution. The

present theory yields accurate transverse shear stresses compared to HSDT and SSNPT. This can be considered as
a major contribution of the present theory over existing theories. This accuracy of transverse shear stresses is not
achieved by other theories such as HSDT of Reddy (1984) and SSNPT of Sayyad and Ghugal (2014b). FSDT and
CLPT underestimate the numerical results due to negelect of transverse shear and normal stresses. Through-the-
thickness distributions of in-plane displacement, in-plane normal stresses and transverse shear stresses for
09/900 laminated composite plates subjected to sinusoidal load are shown in Figs. 2 through 6. The variation of
transverse displacement with respect to aspect ratio is shown in Fig. 7.

Example 3: In this example, an efficiency of the present theory is checked for the symmetric laminated
laminated composite plates. Three layered (0°/900/0°) symmetric laminated composite plate made up of fibrous
composite material subjected to sinusoidal load is considered for the numerical study. Material properites are
mentioned in Eq. (30). The layers are of equal thickness i.e. 4#/3. Non-dimensional displacements and stresses are
tabulated in Table 3 and the through thickness distributions of in-plane displacement at support, normal stress at
mid span and transverse shear stress at boundary edges under the sinusoidal loading are plotted in Figs. 8
through 12. Variation of transverse displacement with respect to aspect ratio is plotted in Fig. 13. The present
results are compared with exact solution, CLPT, FSDT, HSDT and SSNPT. It is pointed out from the Table 3 that the
transverse displacements and shear stresses obtained by using the present theory are in excellent agreement
with exact elasticity solutions. In-plane normal stresses are slightly on higher side compared to other theories
available in the literature. FSDT and CLPT underestimate the results.

Example 4: Composite sandwich plates are basically a special form of fibre reinforced composite plates
composed of two thin strong, stiff layers (face sheets) which resist bending bonded to a relatively thicker, less
dense layer (core) to resist shear force. The validity of the present theory is also checked for the bending analysis
of symmetric sandwich plate. A three layered (0°/core/90°) sandwich plate having face sheets of thickness 0.14
each and soft core of thickness 0.8/ is considered for the analysis. The material properties of the face sheets are
given by Eq. (30) while those for core are given by Eq. (29). Table 4 shows the non-dimensional displacements
and stresses. The numerical results obtained by using the present theory are compared with those obtained by
SSNPT and exact solution. It is observed that the results obtained by using the present theory are in good
agreement with the exact elasticity solution and SSNPT. The through thickness distributions of in-plane
displacement, in-plane normal stresses and transverse shear stresses are plotted in Figs. 14 through 18. It is
pointed from the distribution that the normal stresses in the core (middle layer) are very less compared to those
in face sheets. This is in fact due to high face sheet stiffness to core stiffness ratio. Variation of transverse
displacement with aspect ratio is shown in Fig. 19.
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Table 1. Non-Dimensional Displacements and Stresses for Isotropic Square Plate

S Model u w o, g, T_X(;R TCr T chzR —yEZE
(-h/2)  (0) (-h/2)  (-h/2)  (-h/2)  (h/2) ©  (h/2) (O
4  FOSNDT 0.0449 3.6858 02132 0.2132 0.1080 0.2765 0.2354 0.2474 0.2354
SSNPT  0.0440 3.653  0.2267 0.2267 0.1063  0.2444 02355 0.2424 0.2355
4
Exact  0.0450  3.6630 0.2040  0.2040 0.2361 - 02361 -
10  FOSNDT 0.0442 29491 0.2005 0.2005 0.1068 0.2770 0.2383 0.2727 0.2383
SSNPT  0.0439 29333 0.2125 0.2125 0.1060 0.2454 02380 0.2454 0.2380
Exact  0.0443 29425 0.1988 0.1988 0.2383 - 0.2383 -
20 FOSNDT 0.0441 28412 0.1986 0.1986 0.1066 0.2772 0.2387 0.2769 0.2387
SSNPT  0.0439 2.8286 0.2105 0.2105 0.1060 0.2455 0.2384 0.2455 0.2384
Exact  0.0440 2.8377 0.1979  0.1979 0.2386 - 0.2386 -
50 FOSNDT 0.0441 28109 0.1981 0.1981 0.1065 0.2772 0.2388 0.2781 0.2388
SSNPT  0.0439 27991 0.2100 0.2100 0.1060 0.2456 0.2385 0.2456 0.2385
Exact  0.0440 2.8082 0.1976  0.1976 0.2386 - 02386  ----
100 FOSNDT 0.0441 28066 0.1980 0.1980 0.1065 0.2772 0.2388 0.2783 0.2388
SSNPT  0.0439 27949 0.2099 0.2099 0.1060 0.2456 0.2385 0.2456 0.2385
Exact  0.0440 2.8040 0.1976  0.1976 0.2387 - 02387 -

FOSNDT: Present, SSNPT: Sayyad and Ghugal (2014b), Exact: Zenkour (2007)

Table 2. Non-Dimensional Displacements and Stresses for (0°/90°) Laminated Composite Square Plates.

S Model i w G, g, NN S Sl e
¢h/2) (0 (h/2) (h/2) (h/2) (¢h/2) (0)  (h/2)  (0)
4 FOSNDT 0.0111 2.0169 0.8960 0.0953 0.0549 0.123 0.116 0.120 0.117
SSNPT 0.0111 19424 0.9062 0.0964 0.0562 0.127 0.112 0.127 0.112
HSDT 0.0113 1.9985 0.9060 0.0891 0.0577 0.125 0.110 0.125 0.110
FSDT 0.0088 19682 0.7157 0.0843 0.0525 0.091 0.122 0.091 0.122
CLPT 0.0088 1.0636 0.7157 0.0843 0.0525 0.122 0.122
Exact 2.0670 0.8410 0.1090 0.0591 0.120 0.125
10 FOSNDT 0.0090 1.2144 0.7398 0.0862 0.0528 0.122 0.121 0.115 0.121
SSNPT 0.0092 1.2089 0.7471 0.0876 0.0530 0.130 0.120 0.130 0.120
HSDT 0.0092 1.2161 0.7468 0.0851 0.0533 0.127 0.120 0.127 0.120
FSDT 0.0088 1.2083 0.7157 0.0843 0.0525 0.091 0.122 0.091 0.122
CLPT 0.0088 1.0636 0.7157 0.0843 0.0525 0.122 0.122
Exact 1.2250 0.7302 0.0886 0.0535 0.121 0.125

FOSNDT: Present, SSNPT: Sayyad and Ghugal (2014b), HSDT: Reddy (1984), FSDT: Mindlin (1951), CLPT: Kirchhoff (1850), Exact: Zenkour (2007)
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Figure 2: Through thickness variation of in-plane displacement (u ) for two-layer (0°/90°) antisymmetric laminated
composite plate subjected to sinusoidal load. (s=4)
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Figure 3: Through thickness variation of in-plane normal stress (O, ) for two-layer (0°/90°) antisymmetric laminated

composite plate subjected to sinusoidal load. (s=4)
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z/h
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Figure 4: Through thickness variation of in-plane normal stress (O B ) for two-layer (0°/90°) antisymmetric laminated

composite plate subjected to sinusoidal load. (s=4)
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Figure 5: Through thickness variation of transverse shear stress (T _ ) for two-layer (0°/90°) antisymmetric laminated

composite plate subjected to sinusoidal load. (s=4)
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Figure 6: Through thickness variation of transverse shear stress ( z_'yz ) for two-layer (0°/90°) antisymmetric laminated

composite plate subjected to sinusoidal load. (s=4)
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Figure 7: Variation of transverse displacement (W ) with respect to aspect ratio for two-layer (0°/90°) antisymmetric
laminated composite plate subjected to sinusoidal load,
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Table 3. Non-Dimensional Displacements and Stresses for (0°/90°/0°) Laminated Composite Square Plates.

S Model u w ~ ~ —CR —CR —EE —CR —EE
“ o O-Y T Xy xz sz vz Tyz

(-h/2) 0) (-h/2)  (h/2)  (-h/2)  (-h/2) 0) (-h/2) (0)
4  FOSNDT 0.0100 19331 0.8146 0.0846 0.0500 0.1908 02653 0.1720 0.2168
SSNPT  0.0092 19015 0.7535 0.0880 0.0496 0.2092 02768 0.1914 0.2088
HSDT 0.0091 19218 0.7345 0.0782 0.0497 0.2024 0.2855 0.1832  0.2086
FSDT 0.0055 1.5681 0.4370 0.0614 0.0369 0.1201 0.3368 0.1301  0.1968
CLPT 0.0068 04312 0.5387 0.0267 0.0213 0.3951 0.0823
Exact 2.0046  0.7550 0.0949  0.0505 0.2550 0.2170
10 FOSNDT  0.0074 0.7305 0.5941 0.0408 0.0285 0.2467 03622 0.0958 0.1203
SSNPT  0.0071 0.7155 0.5720 0.0411 0.0278 0.2577 03670 0.1070 0.1179
HSDT 0.0071 07125 0.5684 0.0387 0.0277 0.2447 03693 0.1033  0.1167
FSDT 0.0065 0.6306 0.5134 0.0353 0.0252 0.1363 0.3806 0.0762  0.1108
CLPT 0.0068 04312 0.5387 0.0267 0.0213 0.3951 0.0823
Exact 0.7528 0.5898  0.0418  0.0289  0.3570 0.1200

FOSNDT: Present, SSNPT: Sayyad and Ghugal (2014b), HSDT: Reddy (1984), FSDT: Mindlin (1951), CLPT: Kirchhoff (1850), Exact: Zenkour (2007)

—@—® FOSNDT
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0.005 0.01

u

Figure 8: Through thickness variation of in-plane displacement (u ) for three-layer (0°/90°/0°) symmetric laminated
composite plate subjected to sinusoidal load. (s=4)
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Figure 9: Through thickness variation of in-plane normal stress (O ) for three-layer (0°/90°/0°) symmetric laminated

composite plate subjected to sinusoidal load. (s=4)
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Figure 10: Through thickness variation of in-plane normal stress (O \, ) for three-layer (0°/90°/0°) symmetric

laminated composite plate subjected to sinusoidal load. (s=4)
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Figure 11: Through thickness variation of transverse shear stress (T ) for three-layer (0°/90°/0°) symmetric

laminated composite plate subjected to sinusoidal load. (s=4)
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Figure 12: Through thickness variation of transverse shear stress ( Z_'yz ) for three-layer (0°/90°/0°) symmetric

laminated composite plate subjected to sinusoidal load. (s=4)
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Figure 13: Variation of transverse displacement (W ) with respect to aspect ratio for three-layer (0°/90°/0°) symmetric
laminated composite plate subjected to sinusoidal load.

Table 4. Non-Dimensional Displacements and Stresses for sandwich (0°/core/(°) Square Plate.

S Model i w = G, TCR  FCR T Tk T
X

¥y xy xz Xz yz yz

Gh/2)  (0)  (h/2) (h/2) (h/2) (h/2)  (0)  (h/2)  (0)

4 FOSNDT 0.00890 3.599 1.4623 0.2433 0.1392 0.293 0.248 0.111 0.103
SSNPT 0.00858 3.513 1.4313 0.2526 0.1358 0.280 0.243 0.123 0.102
Exact 0.00922 3.798 1.5120 0.2532 0.1430 0.238 = 0.101

10 FOSNDT 0.00690 1.037 1.1355 0.1031 0.0682 0.354 0.303 0.054 0.050
SSNPT  0.00699 1.028 1.1310 0.1089 0.0676 0.345 0.301 0.061 0.050
Exact 0.00715 1.100 1.1518 0.1098 0.0706 0.299 === 0.052 ===

20 FOSNDT 0.00690 0.595 1.1048 0.0671 0.0502 0.371 0.318 0.038 0.035
SSNPT  0.00689 0.591 1.1033 0.0715 0.0499 0.363 0.317 0.043 0.035
Exact 0.00695 0.613 1.1096 0.0699 0.0510 0.317 === 0.036 ===

50 FOSNDT 0.00690 0.464 1.0977 0.0555 0.0445 0.377 0.323 0.033 0.030
SSNPT  0.00687 0.462 1.0970 0.0594 0.0443 0.369 0.322 0.037 0.030
Exact 0.00690 0.467 1.0991 0.0569 0.0446 0.323 = 0.030

100 FOSNDT 0.00690 0.445 1.0967 0.0538 0.0437 0.378 0.324 0.032 0.029
SSNPT 0.00687 0.443 1.0962 0.0576 0.0434 0.369 0.322 0.036 0.030
Exact 0.00690 0.446 1.0980 0.0549 0.0436 0.324 === 0.029 ===

FOSNDT: Present, SSNPT: Sayyad and Ghugal (2014b), Exact: Zenkour (2007)
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Figure 14: Through thickness variation of in-plane displacement (u ) for three-layer (0°/core/0°) symmetric sandwich
plate subjected to sinusoidal load. (s=4)
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Figurel5: Through thickness variation of in-plane normal stress (O ) for three- layer (0°/core/0°) symmetric
sandwich plate subjected to sinusoidal load. (s=4)
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Figurel6: Through thickness variation of in-plane normal stress (O B ) for three- layer (0°/core/0°) symmetric

sandwich plate subjected to sinusoidal load. (s=4)
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Figure 17: Through thickness variation of transverse shear stress (T _ ) for three-layer (0°/core/0°) symmetric

sandwich plate subjected to sinusoidal load. (s=4)
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Figure 18: Through thickness variation of transverse shear stress (- Z_'yz ) for three-layer (0°/core/0°) symmetric

sandwich plate subjected to sinusoidal load. (s=4)
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Figure 19: Variation of transverse displacement (W ) with respect to aspect ratio for three-layer (0°/core/90°)
symmetric sandwich plate subjected to sinusoidal load,

4.0 CONCLUSIONS

A new fifth-order shear and normal deformation theory is developed for the bi-directional bending analysis
of laminated composite and sandwich plates subjected to transverse loads. This theory considered the effects of
both transverse shear and normal deformations. In-plane and transverse displacements uses a polynomial shape
function expanded up to fifth-order in terms of the thickness coordinate to properly account the effects of
transverse shear and normal deformations. The present theory does not require a problem dependent shear
correction factor as it satisfies traction free boundary conditions at top and bottom surfaces of the plate using
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constitutive relations. The plate is analysed for simply supported boundary conditions using Navier’s solution
technique. From the numerical study and discussion of results it is concluded that the present theory yields
accurate prediction of displacements and stresses for all types of laminate configurations compared to other
lower and higher order plate theories available in the iterature. The most important contribution of the present
theory over existing theories is, it estimates accurate transverse shear stresses for laminated composite and
sandwich plates. This accuracy is achieved by including fifth-order variation of displacements and transverse
normal deformation. Therefore, it is strongly recommended that, for the accurate analysis of laminated composite
and sandwich thick plates, effects of both transverse shear and normal deformations are essential.
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