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Abstract 
This paper applies acoustic analysis of Sound Transmission Loss (STL) through infinite Functionally Graded 
(FG) thick plate employing Hyperbolic Shear Deformation Theory (HSDT). The procedure for applying a FG 
plate is followed by considering the material properties are changed continually based on power-law 
distribution of the materials in terms of volume fraction. The main benefit of HSDT can be justified knowing 
the fact that, it uses parabolic transverse shear strain across thickness direction. Therefore, no need to enter 
the extra effect of shear correction coefficient factor. Besides, the displacement field is extended as a 
combination of polynomial as well as hyperbolic tangent function by neglecting the effect of thickness 
stretching. Furthermore, the equations of motion are obtained employing Hamilton’s Principle. To provide 
an analytical solution based on HSDT, equations of motion are combined with acoustic wave equations. 
Moreover, some comparisons are made with the known theoretical and experimental results available in 
literature to verify the accuracy and efficiency of the current formulation. These comparisons reveal an 
excellent agreement. Consequently, some configurations are presented to demonstrate which parameters 
appear to be effective to improve the behavior of STL including the effects of modulus of elasticity and 
density in the thickness direction with respect to various power-law distributions. 

Keywords 
Functionally Graded Material, power transmission, Hyperbolic Shear Deformation Theory, orthotropic thick 
plate, acoustic 

1 INTRODUCTION 

The application of the Functionally Graded Material (FGM) as new type of inhomogeneous composite materials in 
many various typical aspects including space rockets, launchers, space shuttles, nuclear reactors and chemical plants is 
extensively well defined in literature. Besides, another application of these materials can be addressed in high 
temperature environments. As it is obvious, the importance of using these materials was remarked for the first time by 
Japanese scientists in 1984 so that many years later the first conference around them was held in Japan based on 
Yamanouchi et al. (1991). The main benefit of this material is devoted to the smoothness as well as continuousness 
variation of the material properties in various directions. In addition, when the constituent volume fraction is altered, 
the various properties of these materials are changed continuously. Accordingly, the properties of these materials are 
gradually changed based on specific application and environmental loading. As another aspect, the other application of 
FGM can be found at the interface due to preventing the interface disbanding as well as cracking. 
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Noise transmission, measured by Sound Transmission Loss (STL) through flat or curved wall has been proposed by 
many authors in the past and it is still continuing. Accordingly, in an analytical model presented by London (1950), 
acoustic transmission through two identical parallel plates was determined in both theoretical as well as experimental 
methods. Next, Maestrello (1995) presented a formulation for acoustic and dynamic response of the finite baffled plate 
using both experimental and analytical approaches. In the following, Galerkin’s method was applied by Clark et al. 
(1996 a, 1996 b) across STL of the convected fluid loaded plate employing singular value decomposition method. In 
another work, sound transmission of the elastic plate was achieved to show the transmission of turbulent boundary 
layer noise in the presence of external full potential flow considering acoustic energy in the cavity. Afterwards, the 
wave propagation across finite plate backed with or without cavity was done by Bhattachary et al. (1971). Moreover, 
Koval (1976) suggested an analytical model across STL of the single-walled panel in the diffuse sound field considering 
the influences of panel curvature, external air flow and internal fuselage pressurization. Then, Roussos (1984) 
calculated noise transmission through composite finite plate considering classical-thin plate theory under simply 
supported boundary condition on all four edges. The procedure was followed based on considering an oblique plane 
sound wave with an arbitrary angle. Renji et al. (1997) presented coincidence and critical frequencies of the isotropic 
and composite thick panel under acoustic excitation. In another work presented by Tang et al. (2006a, 2006b), acoustic 
transmission of the triple layered panel composed of two plastic plates was offered. Next, last research was developed 
by Xin et al. (2009, 2010 and 2011) through double-leaf plate in the presence of external flow. In addition, another 
work on simply supported rectangular aero elastic panel was presented. Besides, the wave propagation on clamped 
triple-panel was done to show STL of the structure as a function of excitation frequency. Chandra et al. (2015) obtained 
STL of the sandwich plate with functionally core. Recently, Talebitooti et al. (2018a) considered two-variable refined 
theory to obtain acoustic transmission of a plate in the external flow. 

In the following, it is attempted to present some literature review through acoustic transmission of the cylindrical 
shell due to various technical applications including aircraft and launcher as a fuselage skin. Liu et al. (2016) determined 
STL through double-walled sandwich shell with further effects of air gap. Next, Talebitooti et al. (2016a and 2016b) 
investigated 3D elasticity theory to designate STL of the orthotropic cylindrical shell with arbitrary thickness. In another 
work, third order shear deformation theory as a one of the derivate of higher order theories was considered to obtain 
power transmission through laminated composite cylindrical shell in the presence of external flow. Following the last 
works, Talebitooti et al. (2017a and 2018b) determined STL of the multilayered cylindrical shell so that in the first 
model 3D elasticity theory was employed for the special case of double-walled composite shell subjected to porous 
material. On the other hand, Non-dominated sorting Genetic algorithm was applied in another work for optimization of 
STL through cylinder interlayered with porous material. 

The inspection of the last literature shows that although the wave propagation across various types of plate 
including isotropic, orthotropic and laminated composite based on various kinds of theories such as Classical Laminated 
Plate Theory(CLPT) , First-order Shear Deformation Theory (FSDT) and Higher order Theory Reddy (1984) has been 
done, the shortage of presenting the work that considers Hyperbolic Shear Deformation Theory (HSDT) through 
acoustic transmission of the thick plate is considerably concerned. Accordingly, this paper applies HSDT with the 
assumption of Mahi et al. (2015) in which in-plane displacements are extracted as a combination of polynomial as well 
as hyperbolic tangent functions by neglecting the effect of thickness stretching. It is also gives parabolic distribution of 
transverse shear strains and shear stresses across each layer. Therefore, it is not essential to consider the shear 
correction factor. Finally, the results are validated and the effective parameters on STL are discussed in numerical 
results. 

2 System description 

Consider a Functionally Graded (FG) infinite plate in both sides with thickness h and mass density of , as shown in 
Fig.1. The construction is excited by an oblique plane sound wave with two angles of incidence as  and 𝛽 , in which 
𝛾 denotes the angle between wave and horizontal plane and 𝛽 is known as azimuthal angle. In addition, 𝑐𝑖  and 𝜌𝑖 
denote to the speed of sound and density in which the subscript 𝑖 presents the incident side (𝑖 = 1) and transmitted 
side (𝑖 = 2) of the structure, respectively. 
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Figure 1: The configuration of a FG plate under excitation of a plane wave with incident angle 𝛾 and azimuthal 
angle 𝛽 

3 Fundamental formulation: 

3.1 Displacement field: 

Since Hyperbolic Shear Deformation Theory (HSDT) is employed to acoustic analyze of a FG plate. Therefore, the 
following displacement fields are considered as (Mahi et al., 2015): 

U(x, y, z) = u(x, y) − z
∂w

∂x
+ öu(𝑧)[𝜓𝑥(𝑥, 𝑦) +

𝜕𝑤

𝜕𝑥
] (1) 

𝑉(𝑥, 𝑦, z) = 𝜈(𝑥, 𝑦) − z
∂w

∂x
+ öí(𝑧)[𝜓𝑦(𝑥, 𝑦) +

𝜕𝑤

𝜕𝑦
] (2) 

𝑊(𝑥, 𝑦, z) = 𝑤(𝑥, 𝑦)(3) 

In Eqs. (1)- (3), 𝜓𝑥 and 𝜓𝑦 present the rotations of the transverse normal in 𝑥 and 𝑦 directions, respectively. Moreover, 

𝑢, 𝑣 and 𝑤 describe the displacements on the middle surface of the structure. However, 𝜑𝑢 and 𝜑𝑣 show the shape 
functions as a combination of polynomial and hyperbolic tangent functions as below: 

𝜑𝑢(𝑧) = 𝜑𝜈(𝑧) = 𝜑(𝑧) =
ℎ

2
𝑡𝑎𝑛ℎ (2

𝑧

ℎ
) −

4

3𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
) (4) 
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3.2 Strains relationship 

According to HSDT, the strains are considered as fallow (Zhou et al., 2013): 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕𝑤

𝜕𝑥
+ ö(𝑧) [

𝜕𝜓𝑥

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥2
]  (5) 

𝜀𝑦 =
𝜕𝜈

𝜕𝑦
− 𝑧

𝜕𝑤

𝜕𝑦
+ ö(𝑧) [

𝜕𝜓𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
]  (6) 

𝜀𝑧 = 0  (7) 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝜈

𝜕𝑥
− 2𝑧

𝜕𝑤

𝜕𝑥𝜕𝑦
+ ö(𝑧) [

𝜕𝜓𝑥

𝜕𝑦
+
𝜕𝜓𝑦

𝜕𝑥
+ 2

𝜕𝑤

𝜕𝑥𝜕𝑦
]  (8) 

𝛾𝑥𝑧 =
𝜕𝜑

𝜕𝑧
(𝜓𝑥 +

𝜕𝑤

𝜕𝑥
)  (9) 

𝛾𝑦𝑧 =
𝜕𝜑

𝜕𝑧
(𝜓𝑦 +

𝜕𝑤

𝜕𝑦
)  (10) 

3 Functionally Graded plate 

In this section, it is noteworthy that the material properties of a FG plate are formulated through thickness 
coordinate as below (see Fig.2): 

𝑃(𝑧) = 𝑃𝑏 + (𝑃𝑡 − 𝑃𝑏)𝑉(𝑧) (11) 

In Eq. (11), 𝑉(𝑧) denotes to the volume fraction in the following form: 

𝑉(𝑧) = (𝑧/ℎ + 1/2)𝑁, −ℎ/2 ≤ 𝑧 ≤ ℎ/2  (12) 

In above equation, 𝑁 describes the power-law exponent in the interval of [0,∞]. Moreover, 𝑃(𝑧) is one of the 
specifications of a FG plate including Young modulus 𝐸𝑖 , Poisson’s ratio 𝜐𝑖 and density 𝜌𝑖 in which the subscript 𝑖 can 
be (𝑏, 𝑡). Note that the parameters 𝑏 and 𝑡 are the material properties at the bottom and top of the structure, 
respectively. It is noteworthy that these material properties are continuously changed through thickness coordinate 
with respect to power-law component. As another consequence, 𝑝𝑡  and 𝑝𝑏 denote the material properties at top and 
bottom of the construction. 

For the orthotropic shells the stress-strain components can be written as below (Mahi et al., 2015): 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

{
 
 

 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66}

 
 

 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

 (13) 

In Eq. (13) 𝜎𝑖𝑗 and 𝜀𝑖𝑗 illustrate stress and strain relation in the orthotropic layer and 𝑄𝑖𝑗 present reduced stiffness 

constants in terms of coordinate 𝑧 , which can be obtained by following equations: 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1−𝜈2(𝑧)
 , 𝑄12 = 𝑄21 = 𝜈(𝑧)𝑄11, 𝑄44 = 𝑄55 = 𝑄66 =

𝐸(𝑧)

2[1+𝜈(𝑧)]
  (14) 

𝒬11 =
𝐸1

1−𝑣12𝜐21
 , 𝒬22 =

𝐸2

1−𝑣12𝜐21
 , 𝒬12 =

𝑣12𝐸2

1−𝑣12𝜐21
, 𝒬66 = 𝐺12 , 𝒬44 = 𝐺23 , 𝒬55 = 𝐺13  (15) 
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It should be considered that these stiffness constants in Eqs. (14) and (15) are devoted to the FG and orthotropic 
plates, respectively. As clearly defined in Eq. (15), 𝐸𝑖  in which 𝑖 = (1, 2), denotes to the modulus of elasticity, 𝐺𝑖𝑗  in 

which 𝑖 = (1, 2) and 𝑗 = (2,3), present the modulus of rigidity. Moreover, 𝜐𝑖𝑗 shows the Poisson’s ratio. 

 
Figure 2: Schematic diagram of a FG plate. 

3.4 Moments and forces resultants 

By substituting Eqs. (14) and (15) into Eq. (13), the forces and moments related to FG plate are achieved as a result 
of integrating the stresses over the shell thicknesses as below: 

(𝑁𝑥,𝑀𝑥 , 𝑀𝑥
′ ) = ∫ (1, 𝑧, 𝜑)

ℎ/2

−ℎ/2
𝜎𝑥𝑑𝑧  (16) 

(𝑁𝑦, 𝑀𝑦, 𝑀𝑦
′ ) = ∫ (1, 𝑧, 𝜑)

ℎ/2

−ℎ/2
𝜎𝑦𝑑𝑧  (17) 

(∅𝑥𝑦, 𝑀𝑥𝑦,𝑀𝑥𝑦
′ ) = ∫ (1, 𝑧, 𝜑)

ℎ/2

−ℎ/2
𝜎𝑥𝑦𝑑𝑧  (18) 

(∅𝑥𝑧
′ , ∅𝑦𝑧

′ ) = ∫ (𝜎𝑥𝑧, 𝜎𝑦𝑧)
ℎ/2

−ℎ/2

𝜕𝜑

𝜕𝑧
𝑑𝑧 (19) 

As another consequence, the following equations are considered: 

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥
′

𝑀𝑦
′}
  
 

  
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐵11 𝐵12 𝐵11

′ 𝐵12
′

𝐴12 𝐴22 𝐵12 𝐵22 𝐵12
′ 𝐵22

′

𝐵11 𝐵12 𝐷11 𝐷12 𝐷11
′ 𝐷12

′

𝐵12 𝐵22 𝐷12 𝐷22 𝐷12
′ 𝐷22

′

𝐵11
′ 𝐵12

′ 𝐷11
′ 𝐷12

′ 𝐷11
′′ 𝐷12

′′

𝐵12
′ 𝐵22

′ 𝐷12
′ 𝐷22

′ 𝐷12
′′ 𝐷22

′′ ]
 
 
 
 
 
 

{
 
 

 
 

𝑢,𝑥
𝜈,𝑦
−𝑤,𝑥𝑥
−𝑤,𝑦𝑦

𝜓𝑥,𝑥 +𝑤,𝑥𝑥
𝜓𝑦,𝑦 +𝑤,𝑦𝑦}

 
 

 
 

 (20) 

{

𝑄𝑥𝑦
𝑀𝑥𝑦

𝑀𝑥𝑦
′
} = [

𝐴66 𝐵66 𝐵66
′

𝐵66 𝐷66 𝐷66
′

𝐵66
′ 𝐷66

′ 𝐷66
′′
] {

𝑢,𝑦 + 𝜈,𝑥
−2𝑤,𝑥𝑦

𝜓𝑥,𝑦 +𝜓𝑦,𝑥 + 2𝑤,𝑥𝑦

} (21) 

{
𝑄𝑥𝑧
′

𝑄𝑦𝑧
′ } = [

𝐴55
′ 0

0 𝐴44
′ ] {

𝜓𝑥 +𝑤,𝑥
𝜓𝑦 +𝑤,𝑦

}, (22) 

In Eqs. (20) - (22), 𝑀𝑥
′ ,𝑀𝑦

′ and 𝑀𝑥𝑦
′  present the higher order moments. However, some other constants 

including extensional stiffness 𝐴𝑖𝑗, bending stiffness  𝐷𝑖𝑗  , coupling stiffness 𝐵𝑖𝑗 , transverse shear stiffness 𝐴𝑖𝑗
′ , and 

also some higher-order coupling and bending rigidity including 𝐵𝑖𝑗
′ , 𝐷𝑖𝑗

′ and 𝐷𝑖𝑗
′′ are formulated as below: 

𝒂 
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(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐵𝑖𝑗
′ ) = ∫ 𝑄𝑖𝑗(1, 𝑧, 𝜑)𝑑𝑧, ( 𝑖, 𝑗 = 1,2,6),

ℎ/2

−ℎ/2
 (23) 

(𝐷𝑖𝑗 , 𝐷𝑖𝑗
′ , 𝐷𝑖𝑗

′′) = ∫ 𝑄𝑖𝑗(𝑧
2, 𝜑𝑧, 𝜑2)𝑑𝑧, ( 𝑖, 𝑗 = 1,2,6),

ℎ/2

−ℎ/2
 (24) 

𝐴𝑖𝑗
′ = ∫ 𝑄𝑖𝑗 (

𝜕𝜑

𝜕𝑧
)
2
𝑑𝑧, ( 𝑖, 𝑗 = 4, 5),

ℎ/2

−ℎ/2
  (25) 

The moment’s inertia terms are presented in the following form: 

(𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧,
ℎ/2

−ℎ/2
  (26) 

(𝐼2
′ , 𝐼3

′ , 𝐼3
′′) = ∫ 𝜌(𝑧)𝜑(𝑧)(1, 𝑧, 𝜑)𝑑𝑧,

ℎ/2

−ℎ/2
  (27) 

In Eq. (26), 𝐼1, 𝐼2 and 𝐼3 demonstrate the axial, coupling and rotary inertia terms. Furthermore, 

𝐼2
′ , 𝐼3

′ and 𝐼3
′′ present the higher-order terms, respectively. 

3.5 Equations of motion 

Since Hyperbolic Shear Deformation Theory (HSDT) is employed to achieve the results, therefore the following 
equations are considered based on Hamilton’s principle as: 

𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑄𝑥𝑦

𝜕𝑦
= 𝐼1

𝜕2𝑢

𝜕𝑡2
+ 𝐼2

′ 𝜕
2𝜓𝑥

𝜕𝑡2
+ (𝐼2

′ − 𝐼2)
𝜕3𝑤

𝜕𝑥𝜕𝑡2
, (28) 

𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑄𝑥𝑦

𝜕𝑥
= 𝐼1

𝜕2𝜈

𝜕𝑡2
+ 𝐼2

′ 𝜕
2𝜓𝑦

𝜕𝑡2
+ (𝐼2

′ − 𝐼2)
𝜕3𝑤

𝜕𝑦𝜕𝑡2
, (29) 

𝜕2

𝜕𝑥2
(𝑀𝑥 −𝑀𝑥

′ ) + 2
𝜕2

𝜕𝑥𝜕𝑦
(𝑀𝑥𝑦 −𝑀𝑥𝑦

′ ) +
𝜕2

𝜕𝑦2
(𝑀𝑦 −𝑀𝑦

′ ) +
𝜕𝑄𝑥𝑧

′

𝜕𝑥
+
𝜕𝑄𝑦𝑧

′

𝜕𝑦
+ 𝑞 = (𝐼2 − 𝐼2

′) (
𝜕3𝑢

𝜕𝑥𝜕𝑡2
+

𝜕3𝜈

𝜕𝑦𝜕𝑡2
) + (𝐼3

′ −

𝐼3
′′) (

𝜕3𝜓𝑥

𝜕𝑥𝜕𝑡2
+

𝜕3𝜓𝑦

𝜕𝑦𝜕𝑡2
) + 𝐼1

𝜕2𝑤

𝜕𝑡2
− (𝐼3 − 2𝐼3

′ + 𝐼3
′′) (

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤

𝜕𝑦2𝜕𝑡2
), (30) 

𝜕𝑀𝑥
′

𝜕𝑥
+
𝜕𝑀𝑥𝑦

′

𝜕𝑦
− 𝑄𝑥𝑧

′ = 𝐼2
′ 𝜕

2𝑢

𝜕𝑡2
+ 𝐼3

′′ 𝜕
2𝜓𝑥

𝜕𝑡2
+ (𝐼3

′′ − 𝐼3
′)

𝜕3𝑤

𝜕𝑥𝜕𝑡2
 (31) 

𝜕𝑀𝑦
′

𝜕𝑦
+
𝜕𝑀𝑥𝑦

′

𝜕𝑥
−𝑄𝑦𝑧

′ = 𝐼2
′ 𝜕

2𝜈

𝜕𝑡2
+ 𝐼3

′′ 𝜕
2𝜓𝑦

𝜕𝑡2
+ (𝐼3

′′ − 𝐼3
′)

𝜕3𝑤

𝜕𝑦𝜕𝑡2
, (32) 

Since the structure is excited acoustically, therefore 𝑞 = (𝑃1
𝐼 + 𝑃1

𝑅 − 𝑃1
𝑇) presents the external force. 

3.6 Boundary condition 

In this section, it is essential to create a coupling between fluid particle and shell surface in the internal and 
external spaces, therefore the following equations should be taken into account (Talebitooti et al., 2018c): 

𝜕(𝑝1
𝐼+𝑝1

𝑅)

𝜕𝑧
= −𝜌1 (

𝜕2𝑤

𝜕𝑡2
) (33) 

𝜕(𝑝2
𝑇)

𝜕𝑧
= −𝜌2

𝜕2𝑤

𝜕𝑡2
 (34) 

It is also essential to note that in Eqs. (33) and (34), 𝑝1
𝐼  devotes to the incident wave,  𝑝2

𝑇  presents the transmitted 
wave and 𝑝1

𝑅 denotes to the reflected wave as below (Talebitooti et al., 2018d): 
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𝑝1
𝐼(𝑥, 𝑦, 𝑧, 𝑡) = 𝑃0

𝐼 𝑒𝑖(𝜔𝑡−𝑘1𝑥𝑥−𝑘1𝑦𝑦−𝑘1𝑧𝑧)  (35) 

𝑝1
𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0

𝑅 𝑒𝑖(𝜔𝑡−𝑘1𝑥𝑥−𝑘1𝑦𝑦−𝑘1𝑧𝑧)  (36) 

𝑝2
𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0

𝑇  𝑒𝑖(𝜔𝑡−𝑘2𝑥𝑥−𝑘2𝑦𝑦−𝑘2𝑧𝑧)  (37) 

Note that 𝜔 in Eqs. (35)- (37) demonstrates the angular frequency,  𝑃0 presents the amplitude of the incident 

wave. As another consequence, 𝑘1 =
𝜔

𝑐1
(

1

1+𝑀1𝑠𝑖𝑛(𝛾)
) illustrates the wave number which propagates in the 

𝑥, 𝑦 and 𝑧 directions as follow: 

𝑘1𝑥 = 𝑘1𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠𝛽, 𝑘1𝑦 = 𝑘1𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛𝛽, 𝑘1𝑧 = 𝑘1𝑠𝑖𝑛𝛾  (38) 

These equations in the transmitted side are presented as below: 

𝑘2 =
𝜔

𝑐2
, 𝑘2𝑥 = 𝑘1𝑥 , 𝑘2𝑦 = 𝑘1𝑦 , 𝑘2𝑧 = √𝑘2

2 − (𝑘2𝑥
2 + 𝑘2𝑦

2 ) ,  (39) 

3.7 Solution procedure 

In this section the displacements and rotation terms are considered as: 

{
 
 

 
 
𝑢
𝑣
𝑤
𝜓𝑥
𝜓𝑦}
 
 

 
 

=

{
 
 

 
 
𝑗𝑈0
𝑗𝑉0
𝑊0

𝑗𝛹𝑥0
𝑗𝛹𝑦0}

 
 

 
 

exp(𝑗(𝜔𝑡 − 𝑘1𝑥𝑥 − 𝑘1𝑦𝑦)) (40) 

Now, it is well defined to insert Eqs. (35) – (37) and (40) into Eqs. (28) - (32) along with Eqs. (33) - (34). Afterwards, 
these seven equations are arranged in a matrix form, as below: 

𝐿𝑈 = 𝐹 (41) 

Where 

𝑈 = [𝑈0, 𝑉0,𝑊0, 𝛹𝑥0, 𝛹𝑦0, 𝑃0
𝑅 , 𝑃0

𝑇]
𝑇

 (42) 

Note that in above equation, F demonstrates the acoustic forces. However, L describes the coefficient matrix by 
considering that the detailed descriptions of these variables are presented in Appendix 1. Eventually, by solving Eq. 
(41), the unknown constants in Eq. (42) can be achieved. 

4 Sound Transmission Loss: 

The power transmission coefficient 𝜏 can be obtained as a ratio of transmitted power and incident power per unit 
area of the structure as follow (Talebitooti et al., 2018e): 

𝜏 =
𝐼𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝐼𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡
=

𝜌1𝑐1

𝜌2𝑐2
|
𝑃0
𝑇

𝑃0
𝐼 |
2

 (43) 

Finally, STL of the construction in the logarithmic scale can be prepared as below: 

𝑆𝑇𝐿 = 10 log (
1

𝜏
)  (44) 
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5 Discussion 

5.1 Validation 

At the beginning of this section, it is nominated to bring forward one major frequency, known as coincidence 
frequency, due to equating the speed of the forced bending wave with the speed of the free bending wave based on 
(Talebitooti et al., 2017b) as below: 

𝑓𝑐𝑜𝑖𝑛 =
𝑐2

2𝜋ℎ 𝑐𝑜𝑠2 𝛾
√
12𝜌(1−𝜈2)

𝐸
 (45) 

In Eq. (45), 𝐸 represents the modulus of elasticity, 𝜌 denotes the density and 𝜈 devotes the Poisson’s ratio, 
respectively. Moreover, the symbol ℎ is related to the wall thickness. 

In order to provide accuracy of the present model (HSDT), the obtained results are verified with those available in 
literature. Therefore, the results are compared with those of (Roussos, 1984), (Abid et al., 2012) and (Howard et al., 
2006). Hence, some configurations are brought up based on isotropic plate considering the same specifications at their 
papers. 

In Fig.3, the obtained STL from present formulation (HSDT) for the special case of isotropic plate made of 
Aluminum according to Table 1 is compared with those of (Roussos, 1984). As it is seen, the achieved results from two 
theories are corroborated to each other in entire range of frequency as a consequence of presenting the result for thin 
shell. In fact, since isotropic thin plate is employed, therefore no discrepancies between HSDT and applied classical 
shell theory with Roussos can be observed. Moreover, the effects of the shear and rotation that offered by HSDT due to 
thin shell are not highlighted in this comparison. In addition, both theories predict the coincidence frequency at the 
same location. 

 
Figure 3: STL comparison between present formulation (HSDT) and obtained results by (Roussos, 1984). 

 

 

Table 1: Material and geometrical characteristics 

 Metal  Ceramic Acoustic field 

Material (fluid) Aluminum Steel  Alumina Zirconia Air 

Density (kg/m3) 2700 7850  3800 5700 1.21 

Young’s modulus(Gpa) 70 210  380 200 - 

Poisson’s ratio 0.28 0.3  0.3 0.3 - 

Sound speed (m/s) - -  - - 343 

Thickness (mm) 

Incidence angle 

0.81 3     

30 45     
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As illustrated in Fig.4, another comparison is made between present work (HSDT) and that of (Abid et al., 2012) for 
an isotropic thick plate made of Steel with the listed specifications in Table 1. Although, the obtained results 
demonstrate a good validity in entire range of frequency, a little discrepancy is observed below the coincidence 
frequency as a result of some numerical deviations occurred in Transfer matrix approach applied by Abid et al. Since in 
the present result the rotary inertia terms are extended up to higher order terms, therefore the accuracy of the current 
formulation would be assured. 

 
Figure 4: The comparison of present study (HSDT) and (Abid et al., 2012). 

In Fig.5, the obtained STL from the present formulation is compared with Experimental results offered by (Howard 
et al., 2006) for the especial case of isotropic plate made of Aluminum with the thickness of 1.5 𝑚𝑚 in which the 
excitation of the structure is performed by an oblique plane sound wave with the angle of 30° .As it is obvious, some 
discrepancies can be observed in entire range of frequency. The inspection of the results indicates that although both 
of structures are excited acoustically, the type of the incident wave is different which result in these variations. In fact, 
in the present study the excitation of the structure is done by an oblique plane sound wave whereas the field incidence 
acoustic condition is considered by Howard et al. 

 
Figure 5: STL comparison between present study (HSDT) and those of Experimental results obtained by (Howard et al., 2006). 
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Additionally, the accuracy of the current results (HSDT) is also provided with comparing the obtained 
dimensionless natural frequencies from HSDT with those available in literature (Chandra et al., 2014) and (Vel et al., 
2004) for the especial case of FG square plate made of Al/ZrO2, as shown in Table.2. The inspection of this table shows 
that not only a good agreement is observed in comparing these natural frequencies but also the obtained results are 
appeared to be much closer to 3D method. On the other hand, some deviations exist in the natural frequencies of First 
order Shear Deformation Theory as a result of applying the shear correction factor by (Chandra et al., 2014) whereas 
the present work is not employed this correction factor in its equations. 

Table 2: Dimensionless Natural frequencies provided from HSDT in comparison with Literature 

  𝒂

𝒉
= 𝟓 

Results  Present study(HSDT) FSDT(Chandra et al., 
2014) 

Exact 3D(Vel et 
al., 2004) 

 N    

 2 0.2193 0.2189 0.2197 

Power law          
index 

3 0.2110 0.2207 0.2211 

 5 0.2225 0.2222 0.2225 

5.2 Numerical results 

In this section, some configurations are presented based on HSDT to analyze acoustic transmission of a FG plate 
constituted of Al-Alumina with the power-law index of 𝑁 = 1 according to Table 1. The thickness of the plate is 

considered to be 1 𝑚𝑚 and it is excited by an oblique plane sound wave with the angle of 30°. 
In Fig.6, the effects of various power-law distributions on STL are presented and discussed. The achieved results 

demonstrate that increasing the power-law exponents will enhance STL in frequency region above coincidence 
frequency. Besides, the coincidence frequency shifts downward in this case. Furthermore, it is essential to note that in 
high frequency region the trend is also similar to low frequency zone. However, when the power-law exponent goes to 
zero, the whole of the structure constituted of pure Aluminum, presents the minimum level of STL. On the other hand, 
when the power-law exponent is set to be infinite, the structure composed of pure Alumina, reveals the maximum 
level of STL in entire range of frequency. Moreover, the obtained results for 𝑁 = 10 (physical power) are nearly 
corroborated with those of 𝑁 = ∞ (theoretical concept) in frequency region above coincidence frequency. 

 
Figure 6: The obtained STL versus to frequency with respect to different power-law distributions. 

Another configuration is plotted in Fig.7 to illustrate the influence of various thicknesses on STL of the FG plate. 
The obtained result from the figure demonstrates that the thickness of the structure can significantly influence on STL 
so that by increasing this parameter, STL is enhanced in entire range of frequency. In fact, by thickening the plate, the 
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incident wave cannot penetrate the structure which results in enhancing STL. As another consequence, with increasing 
the thickness of the FG plate, the coincidence frequency shifts downward. 

 
Figure 7: The influences of various FG plate thicknesses on STL curves. 

As depicted in Fig.8, the effects of various isotropic and FG materials with 𝑁 = 1 on power transmission of the 
structure are discussed. The obtained results show that in low frequency domain, Steel as a result of having the 
maximum density, present the highest level of STL. Since the isotropic material includes high weight (which is 
addressed as a negative point for these structures) therefore employing the combination of Isotropic-FG materials such 
as Steel-Alumina which has the acceptable STL and less weight has the high proficiency. Besides, the location of the 
coincidence frequency is changed by varying this material so that AL-Alumina includes the lowest value and Al contains 
the highest value of coincidence frequency, respectively. It is also essential to note that at high frequency domain, 
Steel-Alumina, as a result of taking the upper stiffness, presents the maximum level of STL. 

 
Figure 8: The effects of various FG and isotropic materials on STL curves 

Fig.9 illustrates the effects of various graded elasticity modulus on STL curves for different power-low distribution. 
Herewith, Aluminum is selected as a basis so that Young’s modulus is continually changed from 72 (GPa) at the bottom 
of the plate to 380 (GPa) at the top of the plate based on power-law distribution of volume fraction. As depicted in this 
figure, by varying this parameter, no considerable improvement on STL can be observed in frequency region 
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below 1600 𝐻𝑧. However, over this frequency, the trend is quite different so that STL will enhance with increasing the 
power-law exponent as a result of shifting the coincidence frequency downward. This event can be fulfilled due to 
enhancing stiffness of the FG plate. 

 
Figure 9: The effects of various graded elasticity modulus on STL curves for different power-law distributions. 

As indicated in Fig.10, the influences of graded density from 2760 (top of the plate) to 3800 (bottom of the plate) 
with respect to various power-law distributions on STL of the FG plate are presented and discussed. The results show 
that with increasing the power-law index, the value of STL is enhanced in low frequency domain. Although, coincidence 
frequency (𝐻𝑧) shifts forward in this case, no considerable improvement on STL can be observed in low frequency 
zone. 

 
Figure 10: The effects of various FG and isotropic materials on STL curves. 

In Fig.11, the effect of graded Poisson’s ratio on acoustic transmission of the FG plate is shown based on two 
various quantities of 0.3 and 0.28 for the bottom and top of the plate, respectively. It is easily seen that by changing 
this parameter, no significant deviations are appeared in entire range of frequency. By increasing awareness of this 
issue, it is noteworthy that in interpreting acoustic transmission of the structure, the graded Poisson’s ratio in 
corresponding equations can be ignored to decrease the volume of calculations. 
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Figure 11: STL provided for various poison’s ratio with respect to different power-law exponents. 

Fig.12 is representative of variations in STL resulted from various 𝛽 angles, in the absence of external flow. The 
results show that the direct effect exists between increasing this angle and STL in frequency region below coincidence 
frequency which results in improving the behavior of STL. However, at high frequency zone, STL behaves in opposite 
way due to decreasing the wave number in 𝑥 , 𝑧 directions. As another aspect, by varying this parameter, coincidence 
frequency shifts upward. 

 
Figure 12: STL provided versus to frequency with respect to different 𝛽 angles. 

As shown in Fig.13, STL comparison between FG (Al-Alumina) and various orthotropic material plates is presented 
and discussed. It is easily seen that structure made of AL-Alumina presents the maximum level of STL in entire range of 
frequency. However, when structure with loss weight becomes important in practical application, Glass/Epoxy in low 
frequency zone is employed. Meanwhile, FG material is considerably used where the resistance temperature becomes 
important. Since the higher modulus of elasticity leads to improving the behavior of STL in high frequency zone, 
therefore the lowest value of STL from Glass/Epoxy can be observed. 
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Figure 13: STL comparison between achieved results from FG (Al-Alumina) plate in contrast to orthotropic plate. 

6 Concluding remarks 

In this paper, Hyperbolic Shear Deformation Theory was considered to obtain acoustic transmission of the FG 
plate. Accordingly, in the first step, the equations of motion were determined. Consequently, an analytical solution was 
provided to solve the obtained equation besides acoustic wave equation. Moreover, the accuracy of the current 
formulation was prepared by bringing up some validations with previously published data. Finally, following results can 
be remarked: 

Since Hyperbolic Shear Deformation Theory is considered, therefore the displacements are developed up to cubic 
order of thickness coordinate so that the effects of the main terms including coupling, bending and inertia are 
extended up to higher order components. Accordingly, in obtaining STL of the thick plate, the more precise results can 
be achieved. 

The results illustrate the direct effect between power-law distribution (𝑁 ) and STL of the structure. Besides, by 
increasing 𝑁, coincidence frequency is reduced. 

For the structure made of FG material, graded Young modulus is known as parameter which appears to be 
effective to produce noticeable improvement on STL in comparison with graded poison's ratio and graded density. 
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