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Indirect Identification of the Complex Poisson's Ratio in Fractional  
Viscoelasticity 

Abstract 
The use of viscoelastic materials (VEMs) has becoming more and more fre-
quent both as vibration control in general or as parts of structural components. 
In all applications, the mechanical behavior of such materials can be predicted 
by the complex moduli (Young’s, shear or volumetric) and the complex Pois-
son’s ratio. Over recent decades, various methodologies have been presented 
aiming at characterizing complex moduli. On the other hand, the indirect identi-
fication of the Poisson’s ratio, in the frequency domain, proves to be underex-
plored. The present paper discusses two computational methodologies in order 
to obtain, indirectly, the complex Poisson’s ratio in linear and thermorheologi-
cally simple solid VEMs. The first of them uses a traditional methodology, 
which individually identifies the complex Young’s and the shear moduli and, 
from them, one obtains the complex Poisson’s ratio. The second methodology – 
proposed in the present paper and called ‘integrated’ – obtains the complex 
Poisson’s ratio through a simultaneous identification of those two complex 
moduli. Both methodologies start from a set of experimental points of the com-
plex moduli in the frequency domain, carried out at different temperatures. 
From those points, a hybrid optimization technique is applied (Genetic Algo-
rithms and Non-Linear Programming) in order to obtain the parameters of the 
constitutive models for the VEM under analysis. For the experiments described 
here, the integrated methodology proves to be very promising and with a great 
application potential. 

Keywords 
Viscoelastic behavior; Complex Poisson's ratio; Complex Young's modulus; 
Complex shear modulus; Hybrid optimization. 

 

1 INTRODUCTION 

In engineering, viscoelastic materials (VEMs) are used not only in vibration and noise control but also as structural 
components (Nashif et al., 1985; Pacheco et al., 2014; Ribeiro et al., 2015). In both cases, in bidimensional (or tridimen-
sional) stress-strain analysis, it's necessary the knowledge of the complex moduli (shear, Young and volumetric) and the 
complex Poisson's ratio of the material (Benedetto et al, 2007; Allou et al., 2015). 

In perfectly incompressible materials, the value of the dynamic Poisson's ratio tends to 0.5. In general, elastomers 
are treated as almost incompressible materials with values of this parameter assumed to be constant and slightly less than 
0.5 (Sim and Kim, 1990; Espíndola et al., 2005; Hecht et al., 2015). It is notable that such considerations ignore time and 
frequency effects. However, in practice, this parameter is variable in frequency, as well as in time (Pritz, 1998; Pritz, 
2000; Tschoegl et al., 2002; Pritz, 2007; Chen et al., 2017). 

The identification of the complex Poisson’s ratio in the frequency domain can be performed through direct or indi-
rect methods (Pritz, 1998; Tschoegl et al., 2002). In direct methods, the ratio can be obtained from measurements per-
formed directly on the structure (Kabeer et al. 2013; Cui et al. 2016). On the other hand, in indirect methods, the identifi-
cation occurs by constructing and evaluating auxiliary complex viscoelastic functions (Young's, shear and/or bulk modu-
lus). The present work focuses on the indirect method, which has been little explored by researchers in recent decades 
(Philippoff and Brodnyan, 1955; Koppelman, 1959; Thomson, 1966; Waterman, 1977; Pritz,1998; Pritz, 2000; Pritz, 
2007; Chen et al., 2017). 

Tiago Lima de Sousaa* 
Jéderson da Silvaa,b 
Jucélio Tomás Pereiraa 

a Programa de Pós-graduação em Engenharia 
Mecânica, Universidade Federal do Paraná - UFPR, 
Curitiba, Paraná, Brasil. E-mail: 
tiago.sousa.eng@gmail.com, jucelio.tomas@ufpr.br 

b Departamento de Engenharia Mecânica, 
Universidade Tecnológica Federal do Paraná - 
UTFPR, Londrina, Paraná, Brasil. E-mail: 
dasilva.jederson@gmail.com 

*Corresponding author 

http://dx.doi.org/10.1590/1679-78254920 

Received: February 18, 2018 
In Revised Form: May 09, 2018 
Accepted: July 16, 2018 
Available online: July 17, 2018 



Tiago Lima de Sousa et al. 
Indirect Identification of the Complex Poisson's Ratio in Fractional Viscoelasticity 

Latin American Journal of Solids and Structures, 2018, 15(9), e111 2/21 

One of the pioneering works on this issue is present by Philippoff and Brodnyan (1955), which obtains the Pois-
son’s ratio, firstly, through the complex Young’s and the shear moduli and, subsequently, through the complex Young’s 
and bulk moduli. As a result, different functions are obtained for the Poisson’s ratio. 

Koppelman (1959) carries out experiments in the frequency domain, varying between 510 and 110  Hz, consider-
ing the influence of temperature, which varies from 20°C to 100°C, for both the complex Young’s modulus and the 
complex shear modulus. This temperature range corresponds to the glassy region of the material (polymethyl methacry-
late). In the experiments, the absolute Poisson’s ratio is around the average value of 0.31, independently of either fre-
quency or temperature. However, no analysis is carried out in the rubbery region, which makes it difficult to identify the 
complex Poisson’s ratio properly. 

Later on, Thomson (1966) uses experimental data from the literature for the complex moduli (Young’s and shear) 
and carries out a point-by-point calculation of the complex Poisson’s ratio, the real part of which is a non-monotonic 
function in the frequency domain. However, Theocaris (1968), Waterman (1977) and Pritz (1998) mathematically show - 
together with experimental evidences - that the real part of the complex Poisson’s ratio is monotonically decreasing, the 
loss factor has at least one maximum with respect to frequency, and the imaginary part has strong evidence of being 
negative, regarding polymeric materials. 

Pritz (2000) suggests that the most effective method for determining the complex Poisson’s ratio modulus - using 
the indirect method and a wide frequency range - is by measuring the complex bulk and shear moduli. Pritz (2007) car-
ries out a theoretical and experimental study of the Poisson’s loss factor for linear VEMs. As a result, it has been found 
that the Poisson’s loss factor is approximately proportional to the difference between the shear and bulk loss factors. In 
addition, it is shown that the Poisson’s loss factor is smaller than the shear loss factor usually by one order of magnitude 
at least. 

Recently, Chen et al. (2017) have obtained experimental data for dynamic moduli in traction and shear and, through 
Prony’s fractional viscoelastic model, they have obtained the functions for Poisson’s ratio and the bulk modulus. An 
important premise in the present work is the fact of considering the bulk modulus as constant. 

From this brief review of literature, one notices that some methodologies face difficulties in identifying indirectly 
the viscoelastic function of the complex Poisson’s ratio. Some papers suggest that it should be obtained through the shear 
and bulk moduli. However, obtaining the complex bulk modulus requires high costs and complex apparatus (Fillers and 
Tschoegl, 1977; Tschoegl et al., 2002; Emri and Prodan, 2006). Other methodologies suggest that the bulk modulus stays 
constant, which, in practice, according to Tschoegl (1989), Pritz (1998), and Emri and Prodan (2006), proves to be varia-
ble. It is important to note that all mentioned methodologies seek to identify VEMs with linear and thermorheologically 
simple behaviors. 

Additionally, the mathematical modeling of the mechanical behavior of VEMs can be described through rheological 
models involving integer or fractional order derivatives. According to Pritz (1998), Espíndola et al. (2005), Mainardi 
(2010) and Ribeiro et al. (2015), the fractional models are powerful tools in projects involving vibration control, in par-
ticular the fractional Zener model. The advantage of such models is not only their ability to describe actual dynamic 
behavior, but also that they are causal and simple enough for engineering calculations. In addition, the fractional Zener 
model can be used to describe the variations of dynamic properties over a wide range of frequency and temperature, 
since that the loss factor has a single peak (Pritz, 2003; Sousa et al. 2017). 

In this context, the aim of the present work is to develop and apply a numerical and integrated methodology to ob-
tain, indirectly, the complex Poisson’s ratio of linear and thermorelogically simple VEMs. Such methodology is based on 
the reading of a set of experimental points of the complex Young’s and shear moduli in the frequency domain and at 
different temperatures. Based on those points, a hybrid optimization technique is applied using Genetic Algorithms (GA) 
and Non-Linear Programming (NLP) to obtain the parameters of the constitutive model, i.e. fractional Zener model, for 
the VEM in present study. Lastly, relating the identified complex moduli (Young’s and shear) the complex Poisson’s 
ratio and the complex bulk modulus are obtained. 

2 THEORETICAL CONCEPTS 

According to Ferry (1980), Nashif et al. (1985), Brinson and Brinson (2008) and Lemini (2014), VEMs are defined 
as materials that exhibit, simultaneously, elastic and viscous behaviors which may be described by means of the combi-
nations of rheological models of springs and dampers. These combinations give rise to rheological models such as Voigt, 
Maxwell, Zener, Burgers etc.. Due to the simplicity of such models, it is not possible to describe with good accuracy the 
creep, relaxation, harmonic tests (frequency domain) etc. (Pritz, 1996). One way to overcome this difficulty is to associ-
ate several models in series and/or in parallel, creating the so-called generalized models of Kelvin-Voigt, Maxwell etc. 
(Renaud et al., 2011). However, in order to accurately model VEMs, a large number of rheological elements are required 
(Sousa et al., 2017). For many complex VEMs, this approach is often impractical and expensive from computational 
modeling viewpoint. 
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According to Mainardi (2010), an improvement on the classical models of linear viscoelasticity may occur when re-
placing Newton’s viscous dampers by Scott-Blair’s fractional dampers. Thus, the mechanical model differential equa-
tion, written in terms of integer order derivatives, is replaced by an equation involving fractional derivatives. According 
to Glöckle and Nonnenmacher (1994), Galucio et al. (2004), Mainardi (2010), Rouleau et al. (2015) and Ciniello et al. 
(2016), there are several constitutive models involving fractional order derivatives: Maxwell, Kelvin-Voigt, Zener etc.. 
As presented by Mainardi and Spada (2011) and Ciniello et al. (2016), the Zener fractional model (Figure 1) proves to be 
fairly efficient in predicting the behavior of linear VEMs. 

Bagley and Torvik (1986), Galucio et al. (2004) and Mainardi (2010) show that the fractional order differential 
equation that governs the fractional Zener physical system (Figure 1) may be written as 

0 01 ( ) ( ),
E E

E E

E E
E E E

d dt E E r t
dt dt

 
 

 
   

                 
 (1) 

where ( )t  and ( )t  are stress and strain history, respectively. The equation parameters are related with Zener 
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are stiffness moduli of the elastic elements, ()E Ed dt    represents a differential operator of fractional order E  and E  

is the viscosity ratio of the Scott-Blair's damper (Mainardi, 2010). It is important to note that, in the International System 

of Units (SI), the variables 0E , 1E  and 2E  have units MPa, E  and E  have units, respectively, s  and Es MPa , and 

Er  is dimensionless. 

In the present study, the Riemann-Liouville definitions (Mainardi, 2010), for the fractional derivative, are the most 
appropriate, since it is considered that the structural system is initially at rest and there is no need to treat the information 

that occurs for a time 0t  . Thus, considering a function  f t , the definition of the Riemann-Liouville fractional de-

rivative on the left, with differentiation order of , is given as 
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where  is a positive real number, m is a positive integer number and     is the Euler's Gamma function (Li and Zeng, 

2015). In this case, according to Mainardi (2010) and Kazem (2013), the Laplace transform for the Riemann-Liouville 
fractional derivative of order , can be placed as 

    0 .tL D f t s f s    
  (3) 

In such a way, according to Tschoegl (1989), Mainardi (2010) applying Laplace transform to all terms of Eq. (1), 
for t > 0, considering a steady state sinusoidal excitation of axial frequency, the steady-state response may be written as 
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where E
E Eb  , 0 EE E r   and  E s  is defined as Young’s operational modulus (Tschoegl, 1989; Rahman and 

Tarefder, 2016). In SI, the units of Eb  and E  are, respectively, s   and MPa . In general, during the identification of 

VEMs, several works find proper adjustments when 1m , resulting in 0 1E   (Espíndola et al., 2006; Agirre 

and Elejabarrieta, 2010; Guedes, 2011; Ciniello et al., 2016; Chen et al., 2017; Sousa et al., 2017). 
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Figure 1: Fractional Zener rheological model. The parameters on this illustration are related to uniaxial and shear testing. 

 

Note that Eq. (1) is written in terms of a uniaxial tension testing. Such equation has a corresponding form that re-
lates history of stress, ( )t , and strains, ( )t , in pure shear tests. Therefore, according to Mainardi (2010), Pritz (2003) 

and Ciniello et al. (2016), following a similar reasoning, the shear operational modulus,  G s , can be presented as 
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where 1 2/ ( )G
G G Gb G G    , 0 1 2 1 2/(G )G GG G  , 0GG Gr  and 1 2 1( )/Gr G G G  . In this case, 1G  

and 2G  are the stiffness moduli of the elastic elements, G  is the viscosity ratio, and G , with 0 1G  , is the 

fractional-order of Scott-Blair shock absorber (see Figure 1). Analogously, in SI, the variables 0G , G , 1G , 2G , have 

units MPa, G , G  and Gb  have units s , Gs MPa  and s  , respectively, and Gr  is dimensionless. 

According to Tschoegl (1989) and Park and Schapery (1999), the complex viscoelastic functions arise from the re-
sponse to a steady-state sinusoidal loading, and are related to the operational functions as follows 
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where
*( )E   and 

*( )G   are the complex Young’s modulus and the complex shear modulus, respectively. This way, Eqs. 

(4) e (5) may be rewritten as 
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These moduli have a real and an imaginary components, which can be placed as 
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which represent storage and loss of energy, respectively. In addition, the components  'E  ,  'G  ,  ''E  , and 

 ''G   are defined, respectively, as the dynamic Young’s modulus, the dynamic shear modulus, the loss Young’s 

modulus and the loss shear modulus. By relating the two complex moduli discussed, in the frequency domain, it is 

possible to obtain a third modulus, defined as complex bulk modulus,  *K  , which can be presented as 
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where  'K   and  ''K   are defined, respectively, as the dynamic bulk modulus and loss bulk modulus (Tschoegl, 

1989). 
Given the initial definitions, the loss and storage moduli can be related as follows 
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where  E  ,  G   and  K  are functions defined as ‘loss factors’ of the complex Young’s, shear and bulk moduli, 

respectively. 
In addition, according to Nashif et al. (1985) and Tschoegl (1989), the complex Poisson’s ratio in the frequency 

domain,  *  , may be obtained relating the complex moduli of Eq. (8) as 

      * * *2 1.E G       (11) 

This way of obtaining the complex's Poisson ratio is called the indirect method which is based on the evaluation of 
auxiliary functions (complex Young’s and shear moduli). Another way of obtaining it is through the direct method, 
which is discussed in section 2.1. 

2.1 COMPLEX POISSON'S RATIO 

Physically, the complex Poisson's ratio is defined as the ratio of lateral strain to axial strain. Assuming application 
of a dynamic strain in the longitudinal direction, the lateral strain is delayed in relation to the axial strain due to the ener-
gy dissipation capacity of the material (Theocaris, 1968; Kugler et al., 1990; Pritz, 1998; Cui et al., 2016). As a result, if 
the dynamic axial strain is a harmonic function, represented in the complex form according to 

  ˆ i t
x xt e   , (12) 

the lateral strain can be placed as 

   ˆ i t
y yt e     , (13) 

where x̂  and ŷ  are the strain amplitudes,  is the angle of delay of the lateral strain in relation to the applied axial 

strain (Tschoegl, 1989; Pritz, 2007; Graziani et al., 2014). 

 
Figure 2: Illustration of measurement the Poisson's ratio by means of the direct method. 

 

Therefore, the ratio of the lateral strain,  y t , to the axial strain,  x t , results in the complex Poisson’s ratio 
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in which  *
y i   and  *

x i   are the Fourier transform of the lateral and axial strain functions in the time domain, 

 y t  and  x t , respectively,  '   is the dynamic Poisson’s ratio,  ''   is the loss component. In this case, due to 

the lateral strain delay, the imaginary component of this complex ratio is negative (Pritz, 1998). Furthermore,     is 

the loss factor obtained as 

     '' '      . (15) 

The complex Poisson's ratio describes, in the frequency domain, ratio of the lateral strain to axial strain. So, if it's 
supposed that the complex Poisson's ratio can be interpreted as the frequency response function of a linear system, the 
system may be a material specimen as shown in Figure 2. Thereby, Booij e Thoone (1982), Pritz (1998), Pritz (2000), 
Pritz (2007) and Rouleau et al. (2015) demonstrate that the real and imaginary components of the complex Poisson's 
ratio are linked through the Kramers-Kronig relations as 
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It follows from Eq. (16) that the slope of the curve  '   is negative (  '' 0   ) (Theocaris, 1968; Tschoegl, 

1989; Pritz, 2007). Thus, the dynamic Poisson's ratio of solid VEMs must decreases monotonically with increasing fre-
quency. 

The viscoelastic functions presented in this section constitute a basis from which it is possible to predict the behav-
iors of linear and thermorheologically simple VEMs, in the frequency domain. In addition, by means of interconversions, 
one can obtain the corresponding viscoelastic functions in time domain. 

2.2 COMPLEX MODULI CONSIDERING TEMPERATURE 

In order to analyze the viscoelastic behavior of the material in the frequency domain and considering the influence 
of temperature, the complex moduli (Young's, shear and bulk), Eqs. (6) and (9), may be rewritten as function of a re-

duced frequency, R , as (Jones 1974; Nashif et al., 1985; Pritz, 1996) 

 * * * * * *( , ) ( ), ( , ) ( ) , ( ),r r rE T E G T G and K T K          (17) 

where r  groups the temperature effects, T, and the frequency effects,  . This variable is represented by 

.r T    (18) 

Additionally, T  is a function - defined as a shift factor - that describes the dependency of the VEMs relaxation 

times regarding temperature; and, in the present paper, it follows the Williams-Landel-Ferry (WLF) model (Williams et 
al., 1955) given by 
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where 1
TC  and 2

TC  are constants to be determined, which are related to the material properties; and 0T  represents the 

reference temperature (Ferry, 1980; Ward and Sweeney, 2004; Brinson and Brinson, 2008). Thus, considering the 
influence of temperature, the complex Young’s and shear moduli can be presented as 
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 (20) 

Analyzing the Eq. (20), it is noted that each complex modulus (Young's or shear) has six material properties, result-
ing in a total of twelve material parameters for a VEM's complete characterization. 

On the other hand, according to Ernst et al. (2003), Lakes and Winemam (2006), O’Brien et al. (2007), and Chen et 
al. (2017), the influence of temperature and the orders of differentiation are the same for both complex moduli (Young's 
or shear). In this case, the WLF constants can be obtained as ,1 ,1 , 1= T T T

E G EGC C C  and ,2 ,2 ,2= T T T
E G EGC C C . Moreo-

ver, that the order of differentiation can be simplified as E G    . In view of such considerations, the complete 

identification of the VEM parameters is reduced to a total of nine material parameters. 

3 EXPERIMENTAL DATA, METHODOLOGY, AND COMPUTATIONAL STRUCTURE 

3.1 EXPERIMENTAL DATA 

In the current work, the material under study is the EAR® C-1002. This is a elastomeric polymer, known commer-
cially as ISODAMP C-1002, manufactured by EAR® Specialty Composites (Indianápolis, EUA) and made from polyvi-
nyl chloride (Dandekar et al, 1991; Szabo e Keough, 2002). This material has been used in studies involving typical 
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VEMs (Espíndola et al., 2006; Nayfeh, 2004; Sousa et al. 2017). Jones (1992) takes a set of samples of this material and 
sends them to some laboratories in the world (named generically Laboratory A to Laboratory F). These laboratories have 
the mission to carry out experimental tests involving the complex moduli (Young and Shear) in frequency domain and 
considering the temperature effects. 

Considering the experimental data analysis, the linear viscoelasticity theory (Ferry, 1980; Tschoegl, 1989; Mainardi 
2010), and aiming at evaluating the identification methodology proposed here, the present paper uses the experimental 
data presented by laboratories C and E. Graphic representations of those experimental data are provided from Figure 3 to 
Figure 6. 

From the available experiments, it is possible to identify the material using the fractional Zener model, either 
through the traditional method or through the proposed method, here referred to as the ‘integrated method’. 

 
Figure 3: Lab C. Experimental data for complex Young's modulus: dynamic Young's modulus (left) and wicket plot (right). 

 

 
Figure 4:Lab C. Experimental data for complex shear modulus: dynamic shear modulus (left) and wicket plot (right). 
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Figure 5: Lab E. Experimental data for complex Young's modulus: dynamic Young's modulus (left) and wicket plot (right). 

 

 
Figure 6: Lab E. Experimental data for complex shear modulus: dynamic shear modulus (left) and wicket plot (right). 

 

3.2 METHODOLOGY 

Given a set of experimental points, a standard optimization problem is constructed aiming at minimizing a function 
that represents a measurement of the relative distance between the experimental curves and their respective theoretical 
curves described by the fractional Zener model. The aim is to obtain indirectly the complex Poisson’s ratio through the 
complex Young’s and shear moduli, Eq. (11). 

Considering uniaxial tension testing for the complex Young’s modulus (Figure 3 or Figure 5), a distance function 

between the model, *( , )E T , and the experimental data, *
exp ( , )E T , is constructed. Thus, one has the kj-th component 

of the distance - named *
kjDE  - obtained from the quadratic difference between the curves of the k-th frequency and at the 

j-th temperature given by 

 * *
exp*

*
exp

( , ) ( , )
( ) ,

( , )
k j k j

kj
k j

E T E T
DE

E T

           
 (21) 

where 1 j nT  , 1 jk nF  , nT  is the amount of curves evaluated at different temperatures and jnF  is the 

number of points sampled at different frequencies (at the j-th temperature). Consequently, the scalar and real value that 

represents a global quadratic measure of the relative distance for all points, totDE , can be presented as 
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      2 * * 2

1 1 1 1

1 1 1 1' .
j jnF nFnT nT

tot kj kj kj
j k j kj j

DE DE DE DE
nT nF nT nF   

    (22) 

In this case, ()'  represents the conjugate complex number of ( ) . Similarly, for a set of pure shear tests (Figure 4 or 

Figure 6), the kj-th relative distance associated to each experimental point can be obtained by 

 * *
exp*

*
exp

( , ) ( , )
( ) .

( , )
k j k j

kj
k j

G T G T
DG

G T

           
 (23) 

As a result, the global quadratic measure of the relative distance for all temperature curves may be presented as 

2 * * 2

1 1 1 1

1 1 1 1( ) ( )( ) ' ( ) .
j jnF nFnT nT

tot kj kj kj
j k j kj j

DG DG DG DG
nT nF nT nF   

             (24) 

Thus, having defined the two functions, Eqs. (22) and (24), one observes that the standard optimization problem for 
identifying the viscoelastic constitutive parameters may be formulated through two distinct methodologies: the tradition-
al method and the integrated method. 

3.2.1 Traditional methodology 

In the first method, each complex viscoelastic function is identified individually. Thus, initially, considering the 
complex Young’s modulus, the standard optimization problem can be written as 

 
x

x      
x x x

2 6

0 ,1 ,2
inf sup

Minimize ( ) ( ) : ,
: where , , , , , ,

Constraints : ,

tot
T T

E E E E E

DE R
P E E b C C

    


 (25) 

where the inf and sup superscripts indicate the vector with lower and upper limit values, respectively, for the design 

variables, ,1
T
EC  and ,2

T
EC  are WLF model's constants for the complex Young’s modulus. 

On the other hand, for identifying the complex shear modulus, the standard optimization problem can be written as 

 
2 6

0 ,1 ,2
inf sup

Minimize ( ) ( ) : ,
: where , , , , , ,

Constraints : ,

tot
T T

G G G G G

DG R
P G G b C C

    

x
x      

x x x


 (26) 

where ,1
T
GC  and ,2

T
GC  are WLF model's constants for the complex shear modulus. 

3.2.2 Integrated methodology 

The methodology proposed in the present paper consists of a grouping of common parameters of the complex 
Young’s and shear moduli and establishing a hybrid optimization process. To this end, according to Ernst et al. (2003), 
Lakes and Winemam (2006), O’Brien et al. (2007), and Chen et al. (2017), it is considered that the influence of tempera-
ture and the differentiation orders are the same for both the complex Young’s and shear moduli. In addition, according to 
Waterman (1977), Tschoegl (1989), and Pritz (1998), the Poisson’s ratio of a rubbery material only has only has physical 
meanings when its real part fluctuates between 0 and 0.5 – and is thus monotonically decreasing–along the frequency. 
Another important characteristic is that its imaginary part is negative. 

In this context, considering that the global quadratic relative distance, which considers the uniaxial traction and pure 
shear tests, in the frequency domain, can be presented as 

     2 2
2 ,

2
tot tot

tot
DE DG

DEG


  (27) 

the standard optimization problem for the proposed methodology can be mathematically written as 
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 
2 9

0 0 1 2
inf sup

*

*

Minimize ( ) ( ) : ;
where , , , , , , , ;

;
: 0 Re ( , ) 0.5;

Constraints :
Im ( , ) 0;
( '( , ) ) 0.

tot
T T

E G EG EG

EG

DEG R
E E b G G b C C

P T
T

d T d








 

                                

x
x ,

x x x



 (28) 

The numerical solution of the problem, Eq. (28), through a hybrid method of optimization allows for the complete 
specification of the VEM parameters. 

3.3 COMPUTATIONAL STRUCTURE 

The computational implementation is performed in a MATLAB® environment, according to the algorithm presented 
in Table 1. The process of characterizing VEM is crucial in the numerical solution of an optimization problem using a 
hybrid optimization technique. In such technique, initially, the optimal material parameters, close to those of the global 
optimum, are obtained by GA. Subsequently, having as a starting point the vector of the project variables found via GAs, 
a deterministic algorithm of NLP is applied in order to determine the material parameters with more precision. As each 
optimization by GA is a random process, and different optimum vectors can be obtained, the present work carries out 10 
GA optimization processes followed by NLP. Additionally, in all GA optimization processes, the ga.m subroutine is 
used with a population of 1000 individuals, 2000 generations, and a 9.0% mutation rate. Besides, in NLP, an fmincon.m 
subroutine is used with a maximum number of iterations equal to 1000, a maximum number of evaluations of the objec-
tive function of 10000, and stopping criteria (TolFun) of 1.0E-11. 

 

Table 1: Pseudocode: Algorithm implemented on MatLab® environment. 

Numerical Implementation: 
Step 1. Defining the material and obtaining the experimental data. 
Step 2. Defining limits of the design variables. 
Step 3. For each optimization process i (i =1, ... NOP, where NOP is the number of optimization process), do the following: 

Step 3.1. Approximate the global minimum point by GA. 
a) Definition of parameters to be used by GA in MatLab®. 
b) Optimization by GA. 
c) Approximation of global optimum by GA, XGA. 

Step 3.2. Refine the approximation of the global minimum point by NLP in MatLAB®. 
a) Definition of parameters to be used by NLP in MatLab®. 
b) Optimization by NLP and obtaining XNLP(i) (Initial point: XGA). 

Step 4. Definition as the optimum point through the best point of XNLP(i). 
Step 5. Results presentation. 

 
For the optimization process, the simple limits for the parameters related to the fractional Zener model and the con-

stants regarding the WLF model, for the shift factor, are listed in Table 2. Those limits were based on numerical experi-
ments, so that the upper and/or lower limits were not reached at the optimum point. 
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Table 2: Interval limits of the material properties used in the optimization process. 

Variable Nomenclature Interval limits 

Material constant WLF 1 1 1 1, ,T T T
E G EGC C C  0; 100     

Material constant WLF 2 C    
2 2 2, ,T T T

E G EGC C C  0; 200     

Equilibrium modulus Pa    0 0,E G  
3 710 ; 10     

Instantaneous modulus Pa    ,E G   
7 1010 ; 10     

Relaxation time parameter s     ,E Gb b  
4 110 ; 10      

Fractional derivative order , ,E G     0; 1  

4 RESULTS AND DISCUSSION 

This section discusses the identification results using the methods presented above, considering the experiments 
presented by Laboratories (Labs) C and E. As the included experiments involved the same material (EAR®-C1002), 
some comparisons are also presented involving the complex Poisson’s ratio. It is important to point out that all master 
curves were constructed considering a reference temperature of 5°C. 

4.1 IDENTIFICATION OF VISCOELASTIC PARAMETERS – LABORATORY C 

Based on the experimental data provided by Lab C (Jones, 1992), the complex Young’s and shear moduli are identi-
fied by means of the traditional and the integrated methodologies. For each situation, the viscoelastic parameters ob-
tained are presented in Table 3. In addition, the fitting results can be compared graphically in Figure 7 and Figure 8. 
Based on the identified models for both complex moduli (Table 3), the complex Poisson’s ratio is obtained using Eq. 
(11). As different results are found, each method is discussed in detail below. 

 
Figure 7: Lab C. Experimental data and fitted models for the complex Young's modulus: Dynamic Young's modulus (left), and 

wicket plot (right). 
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Figure 8: Lab C. Experimental data and fitted models for the complex shear modulus: Dynamic shear modulus (left) and wick-

et plot (right). 

 

4.1.1 Traditional identification methodology 

Regarding the traditional method, one observes an adequate fit for the complex Young’s modulus (Figure 7) and the 
complex shear modulus (Figure 8). On the other hand, by analyzing the graphics referring to the complex Poisson’s ratio 
(Figure 9), one observes that the dynamic Poisson’s ratio is not monotonically decreasing and the Poisson’s loss factor 
presents negative values. These behaviors violate a physical meaning that the VEM, under study, is energy-dissipating. 
In addition, the Poisson's ratio is greater than 0.5 what implies that the volume of the VEM would decrease in a axial 
traction test (negative dynamic bulk modulus) which is unlikely. These results do not have a physical meaning according 
to the theory presented by Tschoegl (1989), Pritz (1998, 2007) and Tschoegl et al. (2002). 

 
Figure 9: Traditional method. Complex Poisson's ratio: dynamic modulus (left) and loss factor (right). 

 
Additionally, when analyzing the shift factors obtained for the complex Young’s and shear moduli (Figure 10), one 

observes that the influence of temperature is similar for both complex moduli, in the common temperature range from -
20oC to 20oC. It must be emphasized that the complex Young’s modulus has experiments only within that range. Another 
similarity is the order of differentiation of the complex Young’s and shear moduli, which has a relative difference lower 
than 5% (Table 3). 
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Figure 10: Lab C. Shift factor as a function of temperature. The dotted lines refer to the traditional method and the continuous 

lines refers to the integrated method. 

 

Thus, in order to characterize a consistent set of viscoelastic functions that meet the basic physical requirements, a 
more robust identification process is implemented based on optimization techniques, Eq. (28), in which some restrictions 
are inserted regarding the viscoelastic function of the complex Poisson’s ratio. Furthermore, the premise assumed here is 
that the complex Young’s and shear moduli have the same order of differentiation and that temperature influences both 
moduli equally. 

4.1.2 Integrated identification methodology 

Regarding the integrated identification process, adequately fits are also observed, which are close to those obtained 
by using the traditional methodology (Figure 7 and Figure 8). Regarding the complex Poisson’s ratio (Figure 11), one 
observes that its dynamic modulus is a decreasing monotonic curve. In relation to the Poisson's loss factor, a curve is 
obtained with a maximum point. Furthermore, using the properties obtained from the complex Young’s and shear modu-
li, one obtains the complex bulk modulus point-to-point through Eq.(9). Such function can be visualized in Figure 12. 
One should observe that, in this case, the complex bulk modulus is a monotonically increasing curve in the range of fre-
quencies considered. In addition, such curve is located above the complex Young’s and shear moduli. Therefore, the 
results obtained are in accordance with the theory presented by Tschoegl (1989), Pritz (1998), and Tschoegl et al. (2002). 

Furthermore, Figure 10 presents a graphic representation of the shift factor in function of temperature. One observes 
that the shift factor obtained by the integrated method practically overlaps the curve obtained by the traditional method 
for the complex shear modulus. This is explained, because the experiments for the complex Young’s modulus are per-
formed in a smaller temperature range (-20°C to 20°C) and, thus, the tendency is that the shift factor curve, found by the 
integrated methodology, follows the influence of temperature for the complex shear modulus, since it covers a broader 
range of temperatures. 

 
Figure 11: Integrated method. Complex Poisson's ratio: dynamic modulus (left) and loss factor (right). 
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Figure 12: Lab C. Complex viscoelastic functions (bulk, Young's and shear): dynamic modulus (left) and wicket plot (right). 

 

Table 3: Lab C. Identified properties of the complex viscoelastic functions (Young's and shear) by traditional and integrated 

methods. 

 
Traditional fit Integrated fit 

Model parameters Young's modulus Shear modulus Young's and shear modulus 

0E  1.82E+06 - 2.13E+06 

E  1.77E+09 - 1.69E+09 

Eb  1.41E-02 - 1.42E-02 

0G  - 7.25E+05 7.18E+05 

G  - 6.55E+08 6.15E+08 

Gb  - 8.63E-03 1.31E-02 

  4.66E-01 4.88E-01 4.69E-01 

1
TC  24.74 15.83 13.78 

2
TC  172.95 139.84 102.63 

NLP error 1.38E-02 1.81E-02 1.99E-02 

 

4.2 IDENTIFICATION OF THE VISCOELASTIC PARAMETERS – LABORATORY E 

Using the experimental data produced by Lab E, similarly to the previous section, the identification of viscoelastic 
material EAR®-C1002 is performed through the traditional and the integrated methodologies. The fitting results are visu-
alized graphically in Figure 13 and in Figure 14. The values of the properties obtained in the optimization process are 
presented in Table 4. 

Thus, through the identified models, one obtains the complex Poisson’s ratio (Figure 9 and Figure 11). Since differ-
ent viscoelastic functions are obtained, the main characteristics of each methodology are indicated below. 

4.2.1 Traditional methodology 

Regarding the traditional method, one notices that the analytical models are adequately fitted to the experimental 
data (Figure 13 and Figure 14). However, analyzing the complex Poisson’s ratio modulus (Figure 9), one notices inade-
quate behaviors for the dynamics modulus and the loss factor related to it. The first is dynamic Poisson's ratio is not 
monotonically decreasing, which violates a physical meaning that the VEM under analysis is a damping material. Fur-
thermore, the dynamic Poisson's ratio is 0.5 which implies that the VEM is a perfectly incompressible material which is 
unlikely. Thus, according to Tschoegl (1989), Pritz (1998), Tschoegl et al. (2002), and Pritz (2007), such behavior has no 
physical significance. 

On the other hand, when analyzing the shift factors obtained for the complex Young’s and shear moduli (Figure 
15), one notices that the influence of temperature is similar. This is noticeable, for the graphics overlap in the interval 
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between -20°C and 55°C. It must be pointed out that experimental data for the complex Young’s modulus lie only within 
that range. 

Thus, in order to obtain physically coherent results – for the complex Poisson’s ratio – it's supposed that the tem-
perature influences in the same way the mechanical behavior of the complex Young's and shear moduli, and that both 
moduli have the same order of differentiation (as carried out by Chen et al. 2017). In addition, constraints are inserted 
into the standard optimization problem, Eq. (28), preventing the inadequate physical behavior of the complex Poisson’s 
ratio function. Next, the characterization results obtained by the integrated method are discussed, involving experimental 
data of complex Young’s and shear moduli, simultaneously. 

 
Figure 13: Lab E. Experimental data and fitted models for the complex Young's modulus: dynamic modulus (left) and wicket 

plot (right). 

 

 
Figure 14: Lab E. Experimental data and fitted models for the complex shear modulus: dynamic modulus (left) and wicket plot 

(right). 
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Figure 15: Lab E. Shift factor as a function of temperature. The dotted lines refer to the traditional method and the continuous 

lines to the integrated method. 

 

4.2.2 Integrated methodology 

Using the integrated methodology, the complex moduli (Figure 13 and Figure 14) are identified and, by relating 
them, one obtains the complex Poisson’s ratio (Figure 11). It should be noted that, for the proposed methodology, the 
function obtained for the complex Poisson's ratio is coherent, for its dynamic modulus is a decreasing monotonic curve, 

along frequency, and its loss factor has a maximum point. In addition, based on both complex moduli identified, 
*( )E   

and 
*( )G  , one obtains the complex bulk modulus, using Eq. (9), in the frequency domain. Those three complex moduli 

may be graphically visualized in Figure 16. One observes that the complex bulk modulus is an increasing monotonic 
function, along frequency, and that its curve is above the other two complex moduli (Young’s and shear). These results 
are in accordance with the theory presented by Pritz (1998) and Tschoegl et al. (2002). 

 
Figure 16: Lab E. Complex viscoelastic functions (bulk, Young's and shear): dynamic modulus (left) and wicket plot (right). 
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Table 4: Lab E: Properties identified for the complex dynamic and shear modulus through traditional and integrated methods 

 
Traditional fit Integrated fit 

 
Dynamic properties 

Shear properties 
Dynamic and shear properties 

0E  2.17E+06 - 2.10E+06 
E  1.83E+09 - 2.02E+09 

Eb  7.13E-03 - 1.03E-02 

0G  - 7.20E+05 7.13E+05 
G  - 7.12E+08 7.35E+08 

Gb  - 7.29E-03 9.60E-03 
  5.43E-01 4.84E-01 4.73E-01 

1
TC  16.17 19.31 15.92 

2
TC  133.80 157.97 111.08 

NLP error 2.03E-02 2.20E-02 2.77E-02 

 
Additionally, Figure 15 presents a graphic of the shift factor in function of the temperature. One notices that, despite 

the fact the numerical results present small differences for the constants of the WLF model (Table 4), the function of the 
shift factor obtained by the integrated methodology (Figure 15) follows a behavior similar to those presented by the tra-
ditional method. This fact makes it possible to apply the methodology in a reliable way. 

5 CONCLUSIONS 

The present paper discusses two methodologies for identifying mechanical properties of linear and thermorheologi-
cally simple VEMs, here referred to as the ‘traditional method’ and the ‘integrated method’. Both methodologies use 
hybrid optimization process (GA and NLP) to obtain the optimum material parameters. As constitutive model, one em-
ploys the fractional Zener model. 

One observes that, by using the traditional methodology, the models are adequately fitted to the experimental data. 
However, the curve of the dynamic modulus and the loss factor of the complex Poisson’s ratio present inadequate behav-
iors. Such results have no physical meaning and diverge from the theory. Consequently, one infers that a more robust 
procedure is needed in order to obtain a consistent set of viscoelastic functions, which can meet the basic physical re-
quirements. 

In this context, a new methodology is implemented, here referred to as ‘integrated’. Such methodology is based on 
the premise that temperature influences equally the mechanical behaviors of the complex Young’s and shear moduli and, 
in addition, such complex moduli have the same order of differentiation. Furthermore, in the optimization process, some 
constraints are imposed to the complex Poisson’s ratio viscoelastic function. As result, adequate fits are obtained of the 
analytical models to the experimental data. Besides, the dynamic modulus of the complex Poisson’s ratio proves to be 
monotonically decreasing and the Poisson's loss factor has a maximum point. Furthermore, based on the models identi-
fied for the complex Young’s and shear moduli, one obtains the complex bulk modulus. One notices that the presented 
curve is monotonically increasing, along frequency, and that it is located above the complex Young’s and shear moduli. 
Such results are coherent with the theory, for both complex Poisson’s ratio and the complex bulk modulus have a physi-
cal significance. 

Therefore, considering the experiments reported here, the current paper presents a robust and efficient methodology 
for a hybrid characterization of the complex moduli (Young's and shear) and, subsequently, to obtain the complex Pois-
son’s ratio and the complex bulk modulus for linear and thermorheologically simple solid VEMs. 
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