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Abstract 
The Updated Lagrangian formulation for non-linear finite element 
analysis is applied to the problem of thin-walled composites box beams 
undergoing large displacements. A shear correction factor for thin-
closed rectangular sections is introduced into some terms of the varia-
tional formulation and its influence in the results is analyzed, in both 
linear and non-linear problems. The Vlasov’s theory describing the 
coupled flexural-torsional phenomenon and the implementation of the 
FSDT theory in thin-walled beams is discussed, as well as the strains, 
stress resultants and constitutive relationships for composites box 
beams. The application of the Mechanic of Laminated Beam theory 
(MLB) to the calculation of the shear correction factors considering 
more constitutive terms for computing the shear flow in flanges and 
webs than those ones used in the original theory is also debated. The 
Updated Lagrangian finite element model applied in this work for non-
linear analysis of box beams is described. A comparison of the numeri-
cal results with those obtained experimentally, analytically and by the 
numerical models proposed by other authors is done for both linear and 
non-linear problems. The assumptions made in this work and the for-
mulation developed only applies to thin-walled beams that undergo 
large displacements, but small to moderate twist rotations. 
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1  INTRODUCTION 

The thin-walled box beams are one of the most common industrial applications of composites mate-
rials. They can be found currently in the aerospace, naval and construction industries, principally 
like elements supporting flexural and torsional loads. Most of these elements are produced by pul-
trusion. 

In many practical situations, flexural-torsional coupling and nonlinearities arise in those beams. 
The finite element method has emerged as an efficient computational numerical technique to ana-
lyze that kind of problems. The theoretical foundations of most of the FEA methods for this kind of 
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analysis have been extracted from the theories of Vlasov [1] and Gjelsvik [2]. Hodges et al [3] ap-
plied the Variational Asymptotic Method (VAM) to non-linear three dimensional analysis of beams, 
obtaining the well-known VABS method (Variational Asymptotic Beam Section analysis), that 
reduces the three dimensional problem to a one-dimensional cross-sectional one, leading to the 
Vlasov beam element shown in the Figure 2 and used in this work. 

In order to simplify the analysis of thin-walled beams, many authors have modeled the plate el-
ements of the beams by separately using the CLPT theory [4,5], that can be done if transverse 
shear effects can be neglected. However, as it was shown by Gu and Chattopadhyay [6], the trans-
verse shear strains have relevant effects in the case box beams made of anisotropic composite mate-
rials, even for very thin-walled beams. In the present work, both transverse and warping shear 
strains are considered in the FEM formulation using the model proposed by Vo and Lee [7], but the 
warping shear strain energy is neglected in the shear correction factors computations based on the 
premise of small to moderate twist rotations. 

Ones of the most valuable researches about the analytical and numerical treatment of the flex-
ural-torsional behavior of thin-walled beams have been conducted by Jaehong Lee. A general theo-
retical model based on the FSDT theory to describe the behavior of composites box beams under 
flexural and torsional loads was developed by this author and his co-workers, for both linear and 
non-linear problems [7,8]. The present work makes use of the aforementioned theoretical model, so 
it is concisely presented in the Part 2 of the paper. One substantial difference between the Lee’s 
model and the model presented here is the introduction of the shear correction factor into the varia-
tional formulation for some special cases of laminates, as it is explained in Section 4. The shear-
corrected linearized equation of motion in Updated Lagrangian formulation is presented in the Sec-
tion 3. 

As it was mentioned above, shear correction factors will be introduced into the variational for-
mulation of the problem treated in this work for some special cases of plating. One of the most used 
methods for the shear correction factor determination comes from the theory of Mechanics of Lami-
nated Beams (MLB) constructed by Barbero et al [9]. This theory has been employed by many 
authors to compute shear correction factors in analysis of pultruded composites beams [10,11] and it 
will be also used in this work to calculate the shear correction factors added in the stiffness matrix 
of the finite element model. 
 

2  THE VLASOV WARPING THEORY AND THE MODEL OF LEE 

The axial displacement of the cross section due to the torsion is called warping and it causes the 
deplanation of the transverse planes. When a torsion-loaded thin-walled beam does not warp be-
cause of the form of the cross-sections (circular, X-shaped, T-shaped, L-shaped, among others) or 
when the warp displacement is not constrained in this element, the classical Saint Venant torsion 
theory describes well the torsion phenomenon. In that case, it is considered that all torsional torque 
originates only shear stresses [12]. However, when the cross section is restrained against axial dis-
placement at some locations along the member or when a torsion moment loading is imposed in any 
position of the cross section, it appears a warping moment and the normal stresses in the longitudi-
nal direction arise [13]. In that case, Saint Venant theory does not apply anymore and Vlasov warp-
ing theory emerges to describe this complex stress state [12,13,14]. 
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In the Vlasov warping theory, for a free warping section, the axial displacement is compute by: 
u! z = −ω s .ϕ!(z), where “z” represents the longitudinal axis of the beam and “s” is called the 
contour coordinate of the section. For a restrained warping condition, normal stresses appear and 
they can be expressed by: σ!!,! s, z = −E z .ω s .ϕ!! z  [14]. In the last expressions, ϕ is the twist 
angle and ω(s) is called the warping function.  

To a better understanding of the Vlasov warping theory, two coordinate systems are defined 
(Figure 1):  The Cartesian coordinate system (x, y, z), and the local plate coordinate system (n, s, z). 
There is a point, P, with respect to which all global displacements and rotations are taken; this 
point is called the pole, shear center or center of twists and the axis passing through it and parallel 
to the “z” axis is called the pole axis; the angle of rotation of the cross section about that pole axis 
is the twist angle (ϕ).  Both coordinate systems are related between them by an angle θ.  

Taking into account the Figure 1, the general expression for the warping function, ω(s), can be 
written as [15]: 

 

ω s = r s − F(s) t(s)
!

!!
. ds (1) 

 

 

 

 

 

 

 

 

 

Figure 1   Coordinate systems of the Vlasov Warping Theory. 

 

Where F(s)  is the Saint-Venant circuit shear flow and t(s) is the thickness of each point of the 
cross section. In the particular case of a box beams, the explicit expressions for the Saint-Venant 
circuit shear flow, F(s), and the warping functions, ω(s), can be found in [16]. 

According to Vlasov theory, when the warping is restrained, a warping moment or bi-moment is 
originated in the cross-section. This moment is considered in the present work and its equation and 
relationship with primary Saint Venant torsional moment can be found in [14,17]. 

The present formulation is based on the one-dimensional Vlasov beam element [8,18-21], in 
which seven degrees of freedom are considered per master node (Figure 2), namely one axial dis-
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placement, two transverse displacements, one torsional rotation, two flexural rotations and one 
warping rotation. The last rotation is a measure of the warping intensity and its rate, of the magni-
tude of the warping moment [22]. 

 

 

 

 

 

 

 

 

 
Figure 2   Vlasov beam element. 

In the Vlasov beam element, transverse shear strains γ!" and γ!" and warping shear strain γ! 
are included and it is assumed that they are uniform in each cross section of the beam element. 
According to this consideration and to the assumptions of the FSDT theory, Vo and Lee [7,8,23] 
obtained the following relationships (See Figure 1 for reference): 

• Displacement field of  the contour midline in terms of displacements of the pole point P: 

u∗ s, z = u z . sen θ s − v z . cos θ s − ϕ z . q(s) (2a) 

  v∗ s, z = u z . cos θ s + v z . sen θ s + ϕ z . r(s)                                                  (2b) 

  w∗ s, z = w z + ψ! z . x s + ψ! z . y s + ψ! z .ω s                                              (2c) 

 

• Displacement field of any generic point C in the section in terms of displacements of the contour 
midline (FSDT theory): 

u! n, s, z = u∗(s, z)                                                                              (3a) 

v! n, s, z = v∗ s, z + n!ψ!∗(s, z) (3b) 

w! n, s, z = w∗ s, z + n!ψ!∗(s, z)                                                                  (3c) 

 

Where“n!” is the distance along the normal direction between the midline contour and the ge-
neric point C and ψ!∗(s, z)  and ψ!∗(s, z) denote the rotations of transverse plane about the “z” 
and “s” axis of the local plate coordinate system, respectively. The expressions for those rota-
tions can be found in [7,8]. 
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3  STRAINS, STRESS RESULTANTS AND CONSTITUVE RELATIONSHIPS 

In the UL formulation, the work-conjugated pair used for the variational statement is the Almansi 
strain- Cauchy Stress tensor. In agreement with many authors that have analysed large deformation 
in Timoshenko`s beams [7,8,24,25], only nonlinear terms product of the variation in the longitudinal 
direction of transverse displacements will be considered in this work (Von Karman strains), leading 
to the following simplification of the Almansi strain tensor for any generic C point on the contour: 

 

e!!,! n, s, z!!∆! = ! !!(!,!)!!∆!

! !!
− !

!
. ! !!!!∆!

! !!

!
+ ! !!!!∆!

! !!

!
                                       (4a) 

e!",!!!∆! n, s, z = !
!

! !! !,!!!∆!

! !!
+ ! !!(!,!)!!∆!

! !!
                                                    (4b) 

e!",!!!∆! n, s, z = ! !!(!,!)!!∆!

! !!
+ ! !! !,!!!∆!

! !!
                                                       (4c) 

 

A more complex analysis of composites beams by FSDT considering the whole terms of the 
strain tensor can be found in [26], where the shear locking effects are reduced significantly, but the 
computational cost is high.  In this case, for sake of numerical simplicity, shear locking is dealt with 
the application of a reduced integration scheme in the components of the linear stiffness matrix 
containing A!!, A!" and A!!, which are shear extensional stiffnesses implicit in some coefficients of 
the constitutive matrix of the composites box beam. 

Following the same procedure employed by Machado and Cortínez [27], the following expressions 
are gotten for the Von Karman strains of a generic C point in terms of the strains and curvatures of 
the midsurface of the wall: 

 

e!!,! n, s, z!!∆! = e!!,!(!) s, z + κ!!,!(!) s, z . n!!!∆!!!∆! +κ!!,!(!) s, z . n!! (5a) 

e!",! n, s, z!!∆! = e!",!(!) s, z + 1 2 κ!",!(!) s, z . n!!!∆!!!∆!  (5b) 

e!",! n, s, z!!∆! = e!",!(!) s, z + 1 2 κ!",!(!) s, z . n!!!∆!!!∆!  (5c) 

 

Where: 

e!!,!(!)!!!! s, z , e!",!(!)!!!! s, z and e!",!(!)!!!! s, z are the Almansi strains in the midsurface  

κ!!,!(!) s, z!!∆! , κ!",!(!) s, z!!∆! and κ!",!(!) s, z!!∆!  are the biaxial curvatures in the midsurface. 

κ!!,!(!) s, z!!∆! is the high order biaxial curvature in midsurface of the wall. 

Both the explicit expressions for the strains and curvatures in the midsurface in terms of the 
seven degrees of freedom of a Vlasov beam element (Figure 2) and the expressions for the stress 
resultant for flexural-torsional analysis of thin-walled beams can be found in [8] and those expres-
sions are fitted to the UL formulation in the present work. 
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Based on the constitutive in-plane and out-plane relationships for a lamina [28], direct constitu-
tive equations relating the stress resultants and the global strains and curvatures of the cross sec-
tion can be obtained, as it is detailed in [29].  In general, these expressions can be represented in UL 
formulation as: 

 

F!!!!! = E. ε!!!!  (6) 

 

Where:  F!!!!! = [N!;M!;M!;M!;M!;V!;V!;T;R!]!
!!!!   , 

ε  !!!! = ε! ; κ!; κ!; κ!; κ!"; γ!"; γ!"; γ! ; λ!
!!!!

      

The explicit values for E!" can be gotten from [8,29].  

 

4  SHEAR CORRECTION FACTOR 

Like in most of the works about thin-walled composite beams considering shear deformability 
[7,22,30], here it is assumed that shear transverse strains (γ!",γ!") and warping shear strains (γ!) 
are uniform over the entire cross sections of the beam. This assumption leads to uniform shear 
strain energy in the global coordinate system (x, y, z), which is not necessarily true in most of cases. 
To account for the error involved in this assumption, they are introduced shear correction factors 
into the constitutive relationships of shear stress and shear strains [28]. 

There are several methods to determine the shear correction factors in cross-section composites 
beams [31-36]. In this work, an energy-based method coming from the MLB theory of Barbero et al 
[9] is employed and it is briefly exposed in the next lines. 

Considering small to moderate twist angles, the contribution of the warping shear strain energy to 
the average shear strain energy can be neglected according to [37], leading to the next expression for 
the average shear strain energy per unit length in a cross section of the beam (superscripts and 
subscripts indicating the configuration are suppressed for sake of simplicity): 

 

u!"#$% =
1
2
V!γ!" + V!γ!"  (7) 

 

Following the same procedure used by Barbero et al [9] and dividing the energy contribution in-
to webs energy and flanges energy, the shear strain energy due to the actual shear strain distribu-
tion can be represented by the next equations: 
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u!"#$ =
1
2

V!",!"#$
∗ γ!" ! + V!",!"#$

∗ γ!" ! +M!,!"#$
∗ κ!" ! +R!,!"#$

∗ κ!" ! . ds!
!!,!

!!,!

!

!!!

 (8a) 

u!"#$%&' =
1
2

V!",!"#$%&'
∗ γ!"(!) + V!",!"#$%&'

∗ γ!"(!) +M!,!"#$%&'
∗ κ!"(!)+R!,!"#$%&'

∗ κ!"(!) . ds!
!!,!

!!,!

!

!!!

 (8b) 

 

The expressions for local laminate stress resultants appearing in equation (8) are: 

 

V!",!∗ = A!"ε!!,!
(!) + B!"κ!!,!

(!) + D!"κ!!,!
(!) + A!!γ!",!

(!)+B!!κ!",!
(!) : 

Local laminate load in the contour direction 
(9a) 

  V!",!∗ = A!!γ!",!
(!) +B!!κ!",!

(!) : 

Local laminate load in the normal direction 
(9b) 

M!,!
∗ = B!"ε!!,!

(!) + D!"κ!!,!
(!) + F!"κ!!,!

(!) + B!!γ!",!
(!)+D!!κ!",!

(!)  (9c) 

R!,!∗ = σ!"n. dn
!!!!

!! !

!!"#$%

!!!

= B!!γ!",!
(!) +D!!κ!",!

(!)  (9d) 

 

Where “i” represents both the flanges and the webs. 

Now, considering thin-walled hollow beams, they are neglected the shear deformations in the 
flanges and webs caused by the local laminate load in the normal direction,   V!",!∗ , [9] what is equiva-
lent to say that the shear stresses σ!",! are not considered in this case for the computing of the shear 
correction factor. According to these assumptions, the equilibrium equations for any point in the 
cross section are: 

 
∂σ!!,!
∂s

+
∂σ!",!
∂s

= 0 (10a) 

∂σ!",!
∂z

= 0 (10b) 

 

Applying the constitutive relationships of the CLPT theory to each wall, neglecting the warping 
effects for the shear correction factors calculation, based on the supposition of small to moderate 
twist rotation, and converting the midsurface shell strains and curvatures into global beam strains 
and curvatures [38], the following expression for the local laminate axial load is gotten: 
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N!∗ = A!!ε!! + A!!x s + B!! sin θ s κ! + A!!y s − B!! cos θ s κ!
+   A!" γ!"cos θ(s) +     γ!"sen θ(s) + A!". κ!" 

(11) 

 

The equations (6) and (11) are used to obtain an explicit expression for N!∗ in terms of the re-
sultants N!, M!, M!, M!, V! and V! (bimoment, secondary torsional moment and high order normal 
force are not considered). The shear flow variation in the “i" wall is then obtained by using equation 
(10a) and from the equilibrium equations for a beam subjected to flexion and Saint Venant torsion. 
The final expressions are: 

• For the flanges: 

V!",!,!"#$%&'
∗ = A!",!"#$%&' + B!",!"#$%&'. x(s) V! + A!",!"#$%&' + B!",!"#$%&'. x(s) w! (12a) 

 

• For the webs: 

V!",!,!"#$
∗ = A!",!"#$ + B!",!"#$. y(s) V! + A!",!"#$ + B!",!"#$. y(s) w! (12b) 

 

Where “w!(z)” and “w!(z)” are the distributed loads and “e!” and  “e!” are the eccentricities of 
those loads.   

The explicit expressions for the constants of the equations (12a) and (12b) can be found in Ap-
pendix A, where “α” is the shear-corrected constitutive matrix (See equation 16). 

 The integration of equations (12a) and (12b) to obtain expressions for the shear flow in the 
flanges and webs is done as it is described in [39] for closed sections.  

 According to [28], the shear-extension and bending-twisting coupling can be suppressed for lami-
nates with off-axis plies balanced symmetrically (antisymmetric angle-ply laminate, for example). If 
the laminate is symmetric, not necessarily balanced, the coupling matrix, B, is equal to zero. In this 
work, only the former case will be considered for the shear correction factor calculations; the second 
case will be considered in further works. So, neglecting high order biaxial curvatures and consider-
ing all assumptions mentioned so far, the constitutive relationships of equations (9) are reduced to:  

 

V!",!∗ = B!"κ!!,!
(!) + A!!γ!",!

(!)                                                                     (13a) 

M!,!
∗ = B!"ε!!,!

(!)+D!!κ!",!
(!)                                                                       (13b) 

  

As the layers of the laminate are thin enough, the influence of the coupling term B!" is small 
enough too, and in this case, the biaxial curvature κ!"

(!) = −2 ∂!u ∂s ∂z is neglected for the calcula-
tion of the shear correction factors under the hypothesis of small to moderate twist rotation. So, the 
equations (8) are significantly reduced to: 
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u!"#$ =
!
!

!!",!"#$
∗ !

!!!,!
. ds!

!!,!
!!,!

!
!!!                                                        (14a) 

u!"#$%&' =
!
!

!!",!"#$%&'
∗ !

!!!,!
. ds!

!!,!
!!,!

!
!!!                                                    (14b) 

  

The shear correction factors are introduced into the constitutive relationships for V! and V!, as it 
is indicated in the next equations (sum convention): 

 

V! = K!"E!"ε!                                                                                    (15a) 

V! = K!"E!"ε!                                                                                    (15b) 

  

The last equations lead to a modified constitutive matrix, α, defined as:  

 

α = E!", E!", E!", E!", E!",K!"E!",K!"E!", E!", E!"                           (16) 

  

The final expressions to find the shear correction factors are gotten by equating the average shear 
strain energy to the actual shear strain energy:  

Equation for Ksx: 

!!",!"#$%&'
∗ !

!!!,!
. ds!

!!,!
!!,!

!
!!! =

V!",!"#$%&'
∗ . ds!

!!,!
!!,!

!
!!! α!"!!N! + α!"!!M! + α!"!!M! +

                                                                        α!"!!M!+α!!!! V!",!"#$%&'
∗ . ds!

!!,!
!!,!

!
!!! +α!"!! V!",!"#$

∗ . ds!
!!,!
!!,!

!
!!!                       

(17a) 

  

Equation for Ksy: 

!!",!"#$
∗ !

!!!,!
. ds!

!!,!
!!,!

!
!!! =

V!",!"#$
∗ . ds!

!!,!
!!,!

!
!!! α!"!!N! + α!"!!M! + α!"!!M! +

                                                                        α!"!!M!+α!"!! V!",!"#$%&'
∗ . ds!

!!,!
!!,!

!
!!! +α!!!! V!",!"#$

∗ . ds!
!!,!
!!,!

!
!!!                     

(17b) 
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In linear analysis, the resultants appearing in Equations (17) are known in advance from the equi-
librium equations in each section. In non-linear analysis, they are taking the resultants from the last 
configuration. 

 In the numerical examples presented here, they are reported the averaged values of the shear 
correction factors computed for the cross sections of the beam considered in the finite element anal-
ysis. 

5  FINITE ELEMENT FORMULATION 

This analysis is limited to box beams with equal-thickness flanges and equal-thickness webs, in such 
a way that the pole point coordinate (𝑥!, 𝑦!) is located in the centroid of the beam. The basic steps 
of the continuum mechanics incremental decomposition for UL formulation as stated in [4] are ap-
plied to this analysis and it is obtained the following linearized equation of motion, where the shear 
correction factor as calculated on the Section 4 is introduced into the constitutive relationships of 
the shear stress resultants, 𝑉!and 𝑉!.   

 

ℛ!!!! − 1 2 𝜎!! . 𝛿 𝜀!,!! + 𝜎!"!!!! . 𝛿 𝛾!",!! + 𝜎!"! . 𝛿 𝛾!",!!
!!

𝑑 𝑉!

= 𝐸!!𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
!!

!

+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! . 𝛿 𝑤! !

+ 𝐸!"𝑤! + 𝐸!!𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! . 𝛿 𝜓!!!

+ 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!!𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! . 𝛿 𝜓!!!

+ 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!!𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! . 𝛿 𝜓!!!

+ 𝑲𝒔𝒙 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!! 𝑢! + 𝜓!
+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! 𝛿 𝑢!! + 𝜓!!

+ 𝑲𝒔𝒚 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
+ 𝐸!! 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! 𝛿 𝑣!! + 𝜓!!

+ 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!" 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!
+ 𝐸!" 𝑣! + 𝜓! + 𝐸!! 𝜙! + 𝜓! 𝛿 𝜙!! + 𝜓!!

+ 𝐸!"𝑤! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!"𝜓!! + 𝐸!! 𝜙! − 𝜓! + 𝐸!" 𝑢! + 𝜓!

+ 𝐸!" 𝑣! + 𝜓! + 𝐸!" 𝜙! + 𝜓! 𝛿 𝜙!! − 𝜓!! 𝑑 𝑧!

+ 𝑁!! . 𝑢!! 𝛿 𝑢!! + 𝑣! !𝛿 𝑣!! + 𝑀!
! . 𝑣!! 𝛿 ∅!! + ∅! !𝛿 𝑣!!

!!

!
− 𝑀!

! . 𝑢!! 𝛿 ∅!! + ∅! !𝛿 𝑢!! + 𝑅!! . ∅!! 𝛿 ∅!! 𝑑 𝑧!  

(18) 
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From last equation, explicit expressions for the linear stiffness matrix can be stated. The non-linear 
stiffness matrix components are established in terms of the resultant loads in the current configura-
tion. 

 Considering only the transverse loads and the torsional moments, the vector of external forces 
for an element has the next form: 

 

f = 0; 0; f!; f!; 0; 0; 0  (19) 

                                                                                                                                             

 For the distributed loads, q (distributed transverse load) and t (distributed torsional moment), 
the load assigned to each node, “i", is defined as: f!(i) = q(ξ).φ! ξ . J ξ . dξ

!
!!  and 

f!(i) = t(ξ).φ! ξ . J ξ . dξ
!
!! . 

 For punctual loads, Q (punctual transverse load) and T (punctual torsional load), the load as-
signed to each node, “i", is defined as: f! i = φ! ξ! .Q and f! i = φ! ξ! .T , where ξ! is the point 
of application of the punctual loads, Qand T, in the isoparametric coordinate system. 

The final non-linear finite element formulation is represented by: 

 

R( ∆!!∆! )
!!∆!

= T ∆! . δ∆!                                                                    (20) 

 

Where:  

 

R( ∆!!∆! )
!!∆!

= F!!∆! − K!( ∆!!∆! )
!!∆!

. ∆!!∆! : 

Residual matrix at configuration “t+Δt” (21a) 

T ∆! = K! ∆!
!

+ K!" ∆!
! : 

Tangent stiffness matrix (21b) 

δ∆! :  

Incremental matrix                                                                                                                                               
(21c) 

 

 The Newton-Raphson method is used to solve the equation (20) [41]. In this method, both tan-
gent stiffness matrix, T ∆! , and the residual vector, R( ∆!!∆! )

!!∆! , are updated during each 
iteration.  
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6  RESULTS AND DISCUSSIONS 
6.1  Result comparison with analytical models 
Both Euler-Bernoulli and Timoshenko beam models are used to estimate the vertical displacements 
in several locations of a cantilever composite box beams supporting a central distributed load. The 
whole sides of the box beam have the same laminate, which is done of chopped strand mats of E 
fiberglass with vinylester resin, having the following mechanical properties 
[42]:E! = E! = 14236  MPa, ν!" = 0.3287  and G!" = G!" = G!" = 5357  MPa. Some comparisons be-
tween these analytical models and the present numerical model are shown in Figure 4. As it can be 
appreciated, the present numerical solution is closer to the analytical solution of Timoshenko when 
the beam is shorter, and this matching is improved by the introduction of the shear correction fac-
tor, K!", into the variational formulation. Despite the introduction of a reduced integration scheme 
into some terms of the stiffness matrix, the shear locking is yet appreciated, principally when beam 
is large, where stiffening effects in the results are more notorious. In this particular problem, the 
shear correction factor is K!",!"#$#%& = 0.4712 for L=0.25 m; the difference with the one computed 
by Bank [33] is 12.27 % (K!",!"#$ = 0.4197) and 8.50% is the difference with the factor calculated 
by Cowper [32] (K!",!"#$%& = 0.4355). 

 
 

 
 

Figure 4   Comparison between analytical models and the actual numerical model for different lengths of beam. 

a) Length= 1 meter b) Length= 0.5 
meter 

c) Length= 0.25 meter 
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6.2  Results comparison with other models for nonlinear analysis of composites box beam 

A non-linear problem proposed in [7] and [43] will be considered for comparison purposes. The prob-
lem consists in a cantilever composite box beam with the next data (see Table 1) 

 The updated Lagrangian finite element model exposed in Section 5 is used, but the shear correc-
tion factor calculated as proposed here cannot be used in this example because the off-axis plies in 
the stacking sequence are not balanced. The number of iterations for each load step is determined 
in function of a minimum allowable value of E(δΔ) = 10!!, as it is showed in Figure 5, where the 
error is plotted as function of the iterations to obtain the equilibrium configuration, considering 
θ = 45° in the flanges. It can appreciate that this particular problem is very stable, because the 
increase in the number of iteration leads to a reduction in the error, which is not ever the case. 

 

Table 1   Data of cantilever composite box beam 

DATA OF CANTILEVER COMPOSITE BOX 
BEAM 

Geometrical data 
Width (mm) 99.06 
Height (mm) 48.26 
Length (mm) 2540 

Thickness (mm) 2.56 
Stacking sequence data 

Upper flange [0/θ2/90]s 
Lower flange  [0/-θ2/90]s 

Webs  [(0/ 90)2]s 
Engineering material constants 

E1 (GPa) 146.79 
E2 (GPa) 10.3 

ν12 0.28 
G12, G23 (GPa) 6.2 

G23 (GPa) 4.82 
Load data 

Punctual tip load (N) 1780 
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Figure 5   Change of the error with the number of iterations for a determined load step. 

  

For θ = 45°and θ = 90°, the results obtained from various authors for the vertical displacement, 
“v”, the horizontal displacement, “u”, and the twist angle, "∅", in the tip of the cantilever beam, are 
showed in Table 2. 

 

 

 

 

 

 

Number of 
iterations chosen 

a) From the first iteration b) From the second iteration 

c) From the third iteration 
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Table 2   Vertical displacement for the cantilever composite box beam problem being considered 

Vertical displacement, v. 
Reference θ=45° θ=90° 

Stemple and Lee [44] 48.50 cm 53.40 cm 
Vo and Lee (FSDT) [7] 55.00 cm 56.5 cm 
Vo and Lee (CLPT) [43] 51.3 cm 52.9 cm 

Present 58.8 cm 59.12 cm 
Horizontal displacement, u. 

Reference θ=45° θ=90° 
Stemple and Lee [44] 1.35 cm 0.06 cm 

Vo and Lee (FSDT) [7] 1.20 cm 0.03 cm 
Vo and Lee (CLPT) [43] 1.00 cm 0.01 cm 

Present 0.91 cm 0.03 cm 
Twist angle, ∅. 

Reference θ=45° θ=90° 
Stemple and Lee [44] 0.09 rad’s 0 rad’s 

Vo and Lee (FSDT) [7] 0.072 rad’s 0 rad’s 
Vo and Lee (CLPT) [43] 0.065 rad’s 0 rad’s 

Present 0.045 rad’s 0 rad’s 
 

 

 The Table 2 indicates that the present formulation predicts larger vertical displacements of the 
box beam than other well-known models developed up to now. As in the models developed by Vo 
and Lee [7,43], this UL model predicts very closed values of the vertical displacement of the tip of 
the beam for stacking sequences in the flange with θ = 45°  and θ = 90°, from which it can be in-
ferred a weak influence of the angle θ in the vertical displacement of the beam in this range, what 
can be confirmed in the mentioned works [7, 43]. Contrary to the vertical displacement, the present 
UL model is stiffer than the other ones considered here for the horizontal displacement and the 
twist angle.   

 In Figure 6, it is showed the change of the three degrees of freedom considered in this example 
(v, u,ϕ) in the longitudinal direction of the beam for θ = 45°, solving the problem linearly and non-
linearly using the UL formulation. The differences among the results of these approaches are signifi-
cant, what means that this problem is geometrically nonlinear and cannot be treated as a linear one 
by analytical or numerical methods. 



662     Vanegas J.D. et al / Linear and non-linear finite element analysis of shear-corrected composites box beams    

	
  

Latin American Journal of Solids and Structures 10(2013) 647 – 673 
 

 

 
Figure 6   Differences between linear and UL non-linear solutions for v,u and ∅. 

 

6.3  Result comparison with experimental data 

For verification purposes, a cantilever short composite box beam was subjected to several loads in 
the tip. The whole experimental setup, which allows both applying instantaneous load and measur-
ing directly the respective deflection, is shown in Figure 7.  The setup consists of a 2-ton bridge 
crane, a sample holder, an electrical hoist, a 1-ton capacity load sling and an open drum with lifting 
accessories.  The upper part of setup also includes a DSLR camera at the same level of the compo-
site box beam behind which is installed a measurement pattern to record (by a picture) the deflec-
tion at the moment when each load is applied. 

 The sample was prepared with a piece of steel angle at the tip to avoid load-sling sliding.   In 
the other side a solid aluminum block was tightly inserted into the interior of the box beam. At the 
moment when sample is installed and screwed firmly, this internal insert ensures that fixed end 
condition and original squared geometry remains. The sample before load is shown in Figure 8.  
The camera focuses the measurement tapes, which were located in two directions in the test: the 
horizontal one to check the length where the load was applied and the longitudinal location of 
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measurement stations and the vertical ones installed each 2 inches, to measure the vertical dis-
placement directly when the picture was taken. 

 Several punctual loads were applied at the tip of the box beam with the objective to evaluate 
the vertical displacements at determined locations. The first step was calculating the drum´s tare 
and takes it into account in the mass.  Then, at the floor level without the load sling connected to 
the drum, the recipient was filled until a predetermined level, taking care to measure exactly the 
quantity of liquid added; this mass of water plus the drum’s tare and load sling´s weight are 
summed to calculate the first load that was applied to the tip of the beam.  The mass was elevated 
using the electric hoist, then the load sling was connected to the drum and the load was applied 
obtaining a specific vertical displacement.   

After the vertical displacement is measured digitally in the picture, the box beam is completely 
unloaded using the electric hoist.  More water is added and the load process in the box beam is 
repeated several times, like it was explained above. 

 
Figure 7   Schematic setup configuration 
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Figure 8   Sample installation details. 

  The properties of the material of the box beam were obtained from manufacturer’s information 
and they are exposed in Table 3. 

 
Table 3   Specifications of the composites box beam. 

 
Geometrical specifications 

Width (mm) 50.8 
Height (mm) 50.8 

Thickness (mm) 4.08 
Stacking sequence 

Flanges and webs [0]6 
Material properties 

E1 (GPa) 6.8  
E2 (GPa) 1.61  

G12, G13 (GPa) 2.72  
G23 (GPa) 1.89  

ν12 0.15 
 

 In the Figure 10, they are plotted the vertical displacements of the short beam obtained from 
the present model, considering the not shear and shear corrected (K!" = 0.415) variational formula-
tion. It can be appreciated that the shear-corrected model is less stiff than the other one. In the 
Table 4 and Table 5, these displacements are compared with those obtained from the test described 
above. The relative error between numerical and experimental data can be attributed to the sum of 
three kinds of errors; numerical errors due to shear locking effects, experimental errors coming from 
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the approximation of measurements and the lack of parallelism in the camera (despite special care-
ful was taken in the visual alignment, no parallelism verification devices at milimetric scale were 
employed) and errors in the characterization of the properties of the material coming from the 
manufacturer. The average relative errors point to conclude that the addition of the shear correc-
tion factor into the variational formulation originates numerical solutions better approximate to 
experimental data for the case of linear analysis, which is the one considered in this section. 

 
 

 

 
Figure 10   Vertical displacements of the box beam using the not shear and shear corrected present model. 
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Table 3   Comparison between numerical results an experimental data for the not shear corrected model. 

 
Not Shear-corrected 

 Distance of application of Load = 215 mm 

 
Vertical displacement (mm) 

Distance 
from em-
bedment 

(mm) 

100 150 

Load 
Experimental 

(mm) 

FEM-
Present 
(mm) 

Relative 
error (%) 

Experimental 
(mm)  

FEM-
Present 
(mm) 

Relative 
error (%) [N] 

1389 1,3 1,12 13,85% 1,9 1,79 5,79% 
2234 1,8 1,4 22,22% 3,3 2,46 25,45% 
3761 2,9 2,32 20,00% 5,9 4,78 18,98% 
4911 4,2 3,04 27,62% 7,3 5,91 19,04% 
6170 5,2 3,95 24,04% 10,1 7,35 27,23% 

 
Average relative error 21,55% Average relative error 19,30% 

 
Table 4   Comparison between numerical results an experimental data for the shear corrected model. 

 
Shear-corrected 

 Distance of application of Load = 215 mm 

 
Vertical displacement (mm) 

Distance 
from em-
bedment 

(mm) 

100 150 

Load Experi-
mental 
(mm) 

FEM-
Present 
(mm) 

Relative 
error (%) 

Experi-
mental 
(mm)  

FEM-
Present 
(mm) 

Relative 
error (%) [N] 

1389 1,3 1,15 11,54% 1,9 1,82 4,21% 
2234 1,8 1,53 15,00% 3,3 2,82 14,55% 
3761 2,9 2,61 10,00% 5,9 5,02 14,92% 
4911 4,2 3,42 18,57% 7,3 6,24 14,52% 
6170 5,2 4,4 15,38% 10,1 8,03 20,50% 

 
Average relative error 14,10 % Average relative error 13,74% 

 

6.4  Case study 

The geometry, boundary conditions and lamina material of the composite box beam employed in 
Section 5.2 will be used in this case study and they are taken into account the following stacking 
sequences for both flanges and webs: [(θ/-θ)2]s (balanced and symmetrical), [(θ/-θ)4] (balanced and 
non-symmetrical) and [0/θ2/0]s (unbalanced and symmetrical). The torsion and warping rotations 
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are analyzed as function of the orientation of the fibers and it is also examine the influence of the 
shear correction factor in the angle of twist. 

 In Figure 11, it is showed the variation of the twist angle for several values of the angle θ, con-
sidering a distributed load of q = −1000  N/m. As it can be seen, for most of fiber orientations, θ, a 
torsional coupling appears for the balanced and symmetrical laminate and the angles of twist pre-
dicted can be initially attributed to geometric nonlinearities and to the twisting-flexural coupling, 
D!". In the case of the angle-ply antisymmetrical laminate, the results obtained are only slightly 
larger than the ones of the balanced and symmetrical plating. This means that in this particular 
case study, the material coupling terms D16 (present in the balanced and symmetrical laminate) 
and B16 (present in the angle-ply antisymmetrical laminate), have not a strong influence at induc-
ing twist angles; therefore, in the first two stacking sequence analyzed, [(θ/-θ)2]sand [(θ/-θ)4], these 
twist angles can be essentially attributed to a bending-twisting coupling coming from the high order 
coupling terms, F!", originated from geometric nonlinearities [8,29]. The most important coupling 
torsion effects can be seen when plies are oriented in the ±15° directions, which is consistent with 
results of [7]. For the symmetrical non-balanced stacking sequence considered in this case study, a 
stronger twisting- flexural and shear-extensional coupling can be observed, if the results are com-
pared with the former two cases mentioned, being the maximum values of twist angles reached 
again in the ±15° directions, corroborating again the results of [7]. In this case, all terms of coupling 
matrix, B, are zero, but the shear-extensional (A16) and twisting-flexural (D!") coupling terms still 
remains, and when compare Figure 11c with Figures 11a and 11b, it can be appreciated that the 
non-balancing of off-axis plies in the laminate brings to a significant influence of those material 
coupling terms in the twist angle.  

 In Figure 11, it can be observed that the change of the angle of twist is not constant for some 
fiber θ orientations. It is an indication of the presence of variable warping effects, and this can be 
confirmed in the Figure 12, where the variation of the angle of warping in the longitudinal direction 
of the beam is plotted, for the unbalanced symmetrical plating [0/θ2/0]s. For θ = 0°and θ = 90°, 
no significant warping angles are predicted by the model, what is consistent with the small values of 
the twist angles predicted in those fiber orientations. However, for other fiber orientations, warping 
angles are important. The longitudinal location of the point supporting the maximum warping ef-
fects is variable with the angle of orientation of fibers and the most relevant warping effects are 
presented when fibers are oriented at θ = 15°. From the point of view of the induced warping ef-
fects, the behavior of the plot indicates that the most critical section for the cantilever beam is 
among the fixed support, where warping moment is the maximum, and approximately 0.55 meters 
from that support, where warping deformation is the highest. 

In order to examine the influence of the shear correction factor, K!", into the results of the pre-
sent UL formulation, the twist angles computed for the beam not shear and shear-corrected are 
plotted in Figure 13 for the balanced non-symmetrical stacking sequences considered in this case 
study, [(θ/-θ)4]. In this figure, it is clearly appreciated that the introduction of K!" into the varia-
tional formulation leads to a very unstable solution for the twist angles; this solution also overpre-
dicts these twist angles. It can be concluded that the introduction of the shear correction factor as 
proposed here does not give reliable solutions for the induced-torsion phenomenon in this UL non-
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linear analysis. This can be explained studying the assumptions implicit in the shear correction 
factors calculations. The material decoupling assumptions are related to the off-axis balanced sym-
metrically stacking sequence and to the small thickness of each lamina of the laminate, what is 
complied in this particular case. Another important assumption is the non-consideration of the 
shear stresses in the normal direction of the local plate coordinate system; this assumption is valid 
for walls with small thickness, what is complied in this case too. The other important assumption is 
to neglect the warping and high order shear strain energies; the small contributions of these energies 
to the total shear strain energy cannot be guaranteed in this case and the error associated to that 
assumption is probably the main cause of the instability of the shear-corrected solution for the twist 
angles, what suggests that those shear strain energies shall be considered in the shear correction 
factor computation for this kind of non-linear problems. 

 
 

 

 
 

 

Figure 11   Variation of angle of twist in the longitudinal direction for several stacking sequences. 

a) Balanced and symmetrical, [(θ/-θ)2]s b)  Balanced and non-symmetrical, [(θ/-θ)4] 
 

c) Unbalanced and symmetrical, [0/θ2/0]s 
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Figure 12   Angles of warping for several longitudinal location of the box beam 

 

 
Figure 13   Influence of the shear correction factor, Ksy, in the twist angle predictions by the UL model for non-linear analysis. 

 

7  CONCLUDING REMARKS AND FUTURE WORKS 

Linear and UL non-linear analysis of thin-walled composites box beams were carried out in the pre-
sent work. A simple method for computing the shear correction factors of this kind of beams based 
on the MLB theory was proposed too. In the case of linear problems, the introduction of a shear 
correction factor into the variational formulation leads to more accurate results when compared 
them with analytical and experimental ones, essentially for short beams. In the case of non-linear 
analysis, the UL formulation developed shows to be in agreement with other well-known numerical 
models; however, it is important to mention that the present formulation is less stiff than those 
models for the vertical displacements, on the contrary to what happen with the horizontal dis-
placements and the angle of twist. The introduction of the shear correction factor into the linear 
terms of the UL non-linear variational formulation brings to unstable solutions for the angle of 
twist, what can be attributed to the errors caused by the non-consideration of warping and high 
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order shear strain energies into the calculation of the shear correction factors; these strain energies 
can have an important contribution in some problems of composites box beams undergoing large 
displacements according to the results obtained in the present work. 

 Future works will be focused on the development of shear-corrected UL finite element models to 
predict large twist rotations, where the model for the calculation of the shear correction factors 
incorporated into the variational formulation, accounts for the warping and high order shear strain 
energies. 
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Appendix  

Explicit expressions for the constants for shear flow calculation in webs and flanges. 

Constants for flanges. 

A!",!"#$%&' = −A!! α!"!! +
c!
2
α!!!! − A!" α!"!! + α!"!! + B!!α!!!! 

B!",!"#$%&' = −A!!α!"!! 

A!",!"#$%&' = A!! α!"!!e! + α!"!! +
c!
2 α!"

!!e! +
c!
2 α!"

!! + A!" α!"!!e! + α!!!! + α!!!!e! + α!"!!                     
− B!! α!"!!e! + α!"!!  

B!",!"#$%&' = A!! α!"!!e! + α!"!!  

 

Constants for webs. 

A!",!"#$ = −A!! α!"!! +
c!
2
α!!!! − A!" α!"!! + α!"!! + B!!α!!!! 

B!",!"#$ = −A!!α!"!! 

A!",!"#$ = A!! α!"!!e! + α!"!! +
c!
2 α!"

!!e! +
c!
2 α!"

!! + A!" α!"!!e! + α!!!! + α!!!!e! + α!"!!

− B!! α!"!!e! + α!"!!  

B!",!"#$%&' = −A!! α!"!!e! + α!"!!  




	Blank Page

