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Evolutionary Design of Engineering Constructions 

Abstract 
The basic information required to utilize one of possible computation 
tools/algorithms (mainly the evolution strategy) to solve a wide class of 
real practical engineering optimization problems is presented and 
discussed in the present paper. The effectiveness of the considered method 
is demonstrated by the possibility of the use of different form of objective 
functions, various and numerous nonlinear constraints and different types 
of design variables (continuous, discrete, real, integer). The sensitivity of 
the algorithm to the choice of the evolution strategy parameters is also 
discussed herein. The generality of the evolution strategy is illustrated by 
the analysis of various examples dealing with: the design of helical springs, 
the buckling of cylindrical composite panels and the buckling of pressure 
vessels with domed heads. 
Keywords 
optimal design; evolutionary algorithms, buckling; plated and cylindrical 
composite panels; pressure vessels, helical springs, strength of laminates. 

I. Introduction 

It is well-known that the necessity of optimal design can arise in a natural way in various scientific/research 
fields. The search for better solutions is perhaps as old as mankind itself. Therefore the formulation of an 
optimization problem is well-known and well-defined in mathematical terms. However, there is still an open 
problem dealing with the selection of the most flexible and convenient tool for searching for the optimum which is 
usually called as an optimization algorithm. The algorithms for solving the real engineering problems are very 
complicated and in order to obtain practical solutions a significant computational effort is needed. Therefore, 
complex practical problems cannot be found with the use of classical methods. Over the last thirty years, different 
heuristic methods were formulated. H.Wilf [1] explains the sense of those algorithms in the following way: 
“…methods that seem to work well in practice, for reasons nobody understands…”. 

Optimization algorithms (methods) can be classified in different groups. One of possible classifications is 
given below. It combines both classical and modern approaches, including different types of heuristics. 

Combinatorial methods [2] – all possible solutions (combinations – each variable takes one of a finite set 
value) of the problem are analyzed. 

Deterministic optimization problems [3] (such as e.g. hill climbing and others) are commonly well-defined in 
terms of rigorous mathematical analysis. They are based on a series of axioms dealing with the linearity, 
convexity, unimodality (one optimum), differentiability and connectivity of the problem. Usually, the objective is 
given in an analytical form, and the solution is a unique one. In addition, the design space is a small one. 

Stochastic analysis (e.g. mathematical programming [2,3], ant colony optimization [4-8], immune system 
methods [9], memetic algorithms [10], scatter search & path relinking [11,12], particle swarm [13-16], genetic 
algorithms [17-21], differential algorithms [2,3]) is based on the random search for the optimum. In general, the 
optimum solution can be be determined as the best solution only, and usually not as a global optimum. Therefore, 
optimal solutions are sometimes called as quasi-optimal. 

Mixed algorithms (se for instance Refs [22-30] and especially chaotic neural networks [31-36]) combine the 
best features of the deterministic and stochastic analysis. The optimal solutions are independent on an initial 
information. They are effective in the sense of possibility of finding global unimodal or multi-modal optimal 
solutions for extremely hard, often poorly specified problems. The analytical description of the problem is not 
required in order to find a global optimum – they may work as a black box. On the other hand, the computational 
effort is reduced to the minimum. 
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In the late 60s several researchers focused their attention and invented a new type of optimization methods 
that are called now as evolutionary algorithms (EAs). Now, those techniques are also known under the name 
metaheuristics [37]. 

Therefore, the proposed herein method of the classification is not a unique, and, of course, is one of possible 
proposals. However, it demonstrates evidently the present tendency of the optimization strategy in the sense of 
the search for the convenient mixed algorithms having the highest effectiveness and robustness in the multimodal 
optimization problems with objective functions evaluated in a numerical way. Such a group of algorithms is also 
suitable for solving discrete optimization problems arising with the use of design codes constituting a discrete 
space of design variables. It is well-known that no optimization method is better to any other. A broader 
discussion of those problems is presented e.g. in Ref [38]. However, not trying to propose better methods is an 
erroneous conclusion. 

Taking the above remarks into consideration we intend to build an optimization algorithm that can solve a 
broad class of engineering problems encountered in practice, possessing a large number of design parameters 
(integer, discrete, continuous and integer/discrete-continuous) and a large number of constraints. Genetic 
algorithms (GA) has been highly successful as one of evolutionary computation techniques in searching for a 
broad class of stacking sequence, size, topology optimization problems for composite structures (see Refs [39-
41]). However, the application of that optimization technique is limited to a very few inequality constraints only. 
Now, our attention will be particularly focused on the formulation of the alternative to GA evolutionary 
computation optimization technique. It is based on the idea of the evolution strategy so that the proposed 
algorithm allows us to eliminate the problems associated with taking into account a large number of constraints. 

In details, the main objective of the present considerations will be two-fold: 
1. To present the classification of evolutionary algorithms and the actual terminology dealing with the 

application of evolutionary algorithms in the structural optimization problems in order to emphasize their 
differences and similarities and on the other hand to eliminate ambiguities and misunderstandings arising with 
the use of the improper term “evolutionary optimization” – see e.g. Ref [42]. In fact, the term evolutionary refers 
to one individual part of the optimization process and directly to an optimization algorithm only what is clearly 
underlined in Ref [43] 

2. To illustrate the generality, effectiveness and accuracy of the described herein, completely new evolution 
strategy that is based on the appropriate analysis of constraints (feasible regions). 

II. Evolutionary Computation 

Now, in all branches of sciences an evolutionary computation plays a very special and significant role among 
various optimization algorithms. By many researchers the evolutionary computation area is divided in four 
specific domains: (i) genetic algorithms (GAs), (ii) evolutionary programming (EP), (iii) evolution strategies 
(ESs), (iv) genetic programming (GP). 

In fact, now, hybrid of the above-mentioned four algorithms (metaheuristics) are employed in the analysis. 
Implementing evolutionary algorithms a series of operations should be taken into considerations. They are 
summarized in Table 1. However, it is necessary to point out that all operations that are conducted in four groups 
of evolutionary computations have their own meaning and are different. For instance, it is impossible to give the 
identical meaning of the reproduction or the crossover or the recombination operations. In genetic algorithms 
reproduction means the selection of individuals from the initial populations using only the fitness value. Thus, for 
instance having the size of the initial population equal to 10 and having randomly generated 10 different 
individuals, after reproduction 5 different individuals only may create a population having the same size as 
previously, i.e. equal to 10. Then, the crossover operation may be conducted. As it may be seen those operations 
are not connected with the form of chromosomes. In addition, it is worth to emphasize that according to the 
standard [43] recombination has a different meaning than crossover since crossover is limited to so-called sexual 
recombination only. In general, the use of different terms in the brief presentation of evolutionary algorithms 
should demonstrate different operations and the difference in specific groups of evolutionary computations. 

The foundation of genetic algorithms (in 1950s) is connected with the name of the biologist A.S. Fraser [44]. J. 
H. Holland [45] (1962) with the students (K.A. De Jong, D. E. Goldberg) have had the greatest influence on the 
developments of GAs. 

In 1966 L. J. Fogel et al. [46] presented a new idea called now as evolutionary programming. The lack of a 
crossover operation is a characteristic feature of this method. 

Working on configurations of hinged panels in a aerodynamic tunnel I. Rechenberg [47] and H.P. Schwefel 
[48] invented a new optimization method known now as the evolution strategy. 
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The last major method of EC was founded by R. M. Friedberg [49] (called as genetic programming) and it is 
joined directly and particularly with the work on the length of computer programs. 

 

Table 1. Operations Carried out in EAs 

GA EP ES GP 

begin the analysis 
fitness of 

individuals 
reproduction of 

individuals 
conduct crossover 
carry out mutation 
return to step 2 or 
finish operations 

 

begin the analysis 
fitness of 

individuals 
carry out random 

mutation 
define new 

children 
selection of new 

members 
return to step 2 or 
finish operations 

begin the analysis 
conduct 

operations of 
recombination 

carry out mutation 
define new 

children 
selection of new 

members 
finish operations 

or return to step 2 

begin the analysis 
fitness of 
programs 

reproduction of 
individuals 

conduct crossover 
operations 

finish operations 
or return to step 2 

 
As it may be noticed GA, EP, ES and GP can be characterized by a variety of qualities in common, although 

they also differ in a sequence of operations and the termination of operations. Differences between all four of 
them seem to become more and more indistinct. 

III. Optimization Problem Formulation 

An arbitrary engineering problem dealing with the optimal design has three fundamental common features, 
such as: 1) selection one or more design variables, 2) choosing an objective function, 3) identification a set of 
equality or inequality constraints. In our problem design variables can be described as the vector x


 having I 

components xi (i=1,2,…,I). It is also assumed that each component, dependent on the problem considered, can 
belong to a set of natural, discrete or real numbers. A discrete set of numbers corresponds directly to constraints 
existing in various codes where dimensions of real products are not continuous but discrete real numbers. All 
components of the vector x


 must be positive as variables corresponding to real dimensions of constructions. 

They are constrained by lower and upper limits – Eq. (1), i.e.: 

0 L U
i i ix x x    (1) 

To simplify numerical computations they are normalized in the following manner – Eq. (2): 

   /N L U L
i i i i ix x x x x    (2) 

The constraints are given in the inequality or equality form – Eq. (3): 

( ) 0, 1,2,...,jg x j J 


, ( ) 0, 1,2,...kh x k K 


 (3) 

Now, one objective function is analyzed only and it is always formulated as searching for the maximum of the 
objective function F – Eq. (4), i.e.: 

 ( )Max F x


 (4) 

In a classical manner all Min or MinMax  optimization problems can be transformed to the above. 

IV. Description of the Evolution Strategy 

According to Rechenberg’s [50] conclusions the field of evolution strategies can be characterized as the 
evolution of evolution. Usually, the evolution strategies utilize three types of operations: 1) recombination – Eqs 
(5), (6), 2) mutation – Eq. (7) and 3) selection. 

During the recombination operation (see Fig.1) the child xinew can be obtained by: 
- the discrete recombination: 
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




B
i

A
inew

i
x

x
x  (5) 

- the intermediate recombination 

)migr,vel;xx(Rxx A
i

B
i

A
i

new
i   (6) 

R denotes a function and vel, migr are called as strategy parameters. 
 

2 children
migr=2, vel2
4 children
migr=4, vel1

xB

xA

vel1

vel2
x1

new

x2
new

 
Figure 1. Description of the recombination operations 

 

All new children (particles in Fig.1) should satisfy all equality or inequality constraints (3). In the present 
formulation the restoration method is used – see Fig.2. Other methods are described e.g. in Ref [51]. In general, 
the restoration method is based on returning back new produced children to the boundary by a simple operation 
that can be written in the following way: 

   1 0       0 new new new new
j jif g x x is replaced byx such that g x 

   
 (7) 

 

4 children
migr=4, vel

xB

xA
vel xnew

Boundary
gj(x1

new)=0

 
Figure 2. The restoration method 

 

In the evolutionary computation methods there is a problem with handling of any type of constraints. Some 
of the authors (e.g. Ref [52]) proposed that in the optimal analysis infeasible solutions are not allowed. 
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The optimization process is terminated as for the assumed objective function F the following condition is 
satisfied:  worstbest FF  for all members of the population. 

The broader description of all assumptions and procedures introduced in the proposed version of the 
evolution strategy can be found e.g. in Ref[53]. 

V. Applications of the Proposed Algorithm - Numerical Examples 

In this section we intend to show how the proposed algorithm works in some engineering problems. They 
are limited to the analysis of isotropic and 2D composite structures and mainly devoted to the cost optimization 
problems understood in the sense of the volume optimization (minimization) problems. In general, we intend to 
demonstrate how the algorithm works as the various types of inequality constraints exists. They number is even 
higher than the number of design variables but such a problems are typically encountered in engineering practice. 
It should be mentioned also that the field of possible applications is (and can be) much higher. 

A. Design of Helical Springs 

In various engineering applications helical compression springs constitute an important element. It is well-
known that they not only can exert external compressive force but also provides the structural flexibility and can 
store or absorb energy. In the machine design such elements should satisfy a lot of various mechanical 
requirements. For helical springs the optimization problem can be formulated in the following manner: to 
minimize the total volume (weight) of the spring. The volume of the spring is the sum of the volume of active and 
inactive coils. 

 2 2 / 4Min N Q Dd    (8) 

where the symbols N, Q denotes the number of active coils, and the number of inactive coils, respectively. Q is a 
constant and it is assumed to be equal to 2. D is the mean coil diameter, whereas d is the wire diameter (see Fig. 
3). In order to use the consistent notation three variables (N, D, d) in Eq. (8) will be treated as the design 
variables and are denoted by xi (i=1,2,3), respectively. 

There are seven constraints for this problem – Eqs (9)-(16): 
maximum allowable stresses: 

 3
max max8 /wF DK d    ,    4 1 / 4 4 0.615 /w allow allow allowK C C C    , (9) 

allowable length: 

max
max

105( )

100

F N Q d
l

k


  ,

4

3
 
8

Gd
k

D N
 , (10) 

lower limit on wire diameter: 

mind d , (11) 

maximum allowable outside diameter: 

maxD D , (12) 

allowable spring index: 

3 allowC D d  , (13) 

pocket length: 

 max / 0w pl F F k   , (14) 

clash allowance: 

/ 0,p pmF k l   (15) 
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where Kw is the Wahl correction factor, Fmax=4.45 [kN], τmax=1303 [MPa], lmax=356 [mm], dmin=5.08 [mm], 
Dmax=76.2 [mm], Fp=1.334 [kN], lpm=152.4 [m], maximum spring length at maximum force lw=31.75 [mm], 
Kirchhoff's shear modulus G=79.3 [GPa]. 
 

 
Figure 3. Helical compression spring 

 

The bounds for the analyzed problem have been chosen in the following way: 

     max min min max min max1, ,   3 , ,   , / 3  N l d D d D d d D    (16) 

 

Table 2. Comparison of optimal results – real design variables. 

 Sandgren 
[54] 

Present results 

N 9.1918 7.117651855843154 

D [mm] 30.61208 34.85906690200768 

d [mm] 7.14756 7.390511146897453 

Objective function (8) in 
[mm3] 

43184.8297592 42833.88535256481 
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Figure 4. Convergence of the optimization algorithm – population 20 individuals, vel=0.25, migr=5. 

 

The above optimization problem have been introduced and analyzed by Sandgren [54]. As it may be noticed 
the present results obtained with the use of the introduced evolution strategy is identical to that demonstrated in 
Ref[54]. – see Table 2. However, it should be emphasized that the analysis deals with continuous, real numbers 
(design variables). In fact, in engineering applications the number of active coils is an integer number, whereas 
the wire diameters d are described by a discrete set of real numbers corresponding to those determined by design 
codes. The discrete set of allowable wire diameters is shown below (in inches). 

 
0.009;0.0095;0.0104;0.0118;0.0128;0.0132;0.014;0.015; 0.0162; 
0.0173;0.018;0.02;0.023;0.025;0.028;0.032;0.035;0.041;0.047;0.054; 
0.063;0.072;0.08;0.092;0.105;0.12;0.135;0.148;0.162;0.177;0.192; 
0.207;0.225;0.244;0.263;0.283;0.307;0.331;0.362;0.394;0.4375;0.5 
 
Comparing the above values and the constraint (11) one may notice that 11 values of the wire diameters can 

be considered in the optimization problem. Fig. 4 demonstrates the convergence of the optimization algorithm. 
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Beginning from the 40th generation there are individuals characterizing the optimal solution presented in Table 2. 
However, all individuals have the identical optimal values at 125th generation and the accepted error between 
them (7) is equal to 10-7 – see Fig. 4 d. 

The solution obtained with the use of the presented method for the new set of design variables (N – an 
integer number, D – a real continuous number, d – a real discrete number) is demonstrated in Table 3 and 
compared with the data available in the literature. Similarly as previously the optimization algorithm allows us to 
obtain very good results. However, the accepted error is reached later than previously (Fig.4) after 230th 
generations assuming the identical, as for continuous design variables, values of parameters characterizing the 
evolution strategy. 

 

Table 3. Comparison of optimal results – discrete real and integer design variables. 

 Sandgren 
[54] 

Wu, Chow 
[55] 

Present 
results 

N 10 9 9 

D [mm] 29.9898054 31.1762394 31.06544712
d [mm] 7.1882=0.283[inch] 7.1882 7.1882 

Objective function (8) 
[mm3] 

45547.844388 43722.3254643565.99925
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Figure 5. Convergence of numerical computations – the accepted error equals to 10-7. 

 

Although, as it is proved above, the proposed evolution strategy allows us to obtain very good, even excellent 
numerical results it is necessary to mention about the influence and the role of strategy parameters, i.e. the total 
number of individuals in the population (pop), the velocity of the strategy (vel) and the number of migrations 
(migr). They can affect significantly the convergence as well as the efficiency of the optimization algorithm since 
they have a great influence on the so-called oscillations of solutions – visible also in Fig.5. When vel is very high it 
hits the boundary on nearly every iteration and this ineffective trajectory searches the same points repeatedly. As 
vel is low the particle explores the optimum very slowly – see Fig.4. Reducing the number of migrations one can 
observe the similar effect as previously, i.e. the efficiency of the numerical process decreases. The growth of the 
number of population (pop) also increases the number of iterations required for searching for the optimum with 
the prescribed value of accepted error. However, on the other hand, the increase of the pop parameter is 
necessary in the verification of the location of the global optimum. 

B. Cylindrical Panel with Discrete Fibre Orientations 

Consider a circular cylindrical shell of mean radius R, wall thickness t, and length L subjected to an axial 
compression Px. The critical (in the sense of buckling) value of pressure can be derived from the equation (17): 
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     
 

 

2 2
33 23 11 23 12 13 13 12 23 22 13 11 22 12

2 2 3 2 2 2
11 11 66 12 12 66 13 12 11 12 66 22 22 66

2 3
23 12 66 22 22

/ ,   / , /

,   ( ) , / 2 , ,

2 / ,

xcr m m n

m n m n m m m n n m

m n n n

P K K K K K K K K K K K K K K m L n R

K A A K A A K A R B B B K A A

K B B A R B

   

         

   

         
         

       4 2 2 4 2 2
33 11 12 66 22 22 22 12 2 2 / 2 2 / ,m m n n n mK D D D D A R B B R           

 (17) 

Assuming the mid-plane symmetric case (Bij=0) the critical pressure can be expressed as the sum of two 
terms: 

   2 4 2 2 4
11 12 66 222 2xcr m m m n n rsP D D D D s A         ,  

   
 
2 22

11 22 12 66

2 4 2 2 2 4
11 66 11 22 12 12 66 22 662

mm
rs

m m n n

A A A A
s A

R A A A A A A A A A


   




   
 (18) 

Assuming that the term s in Eq. (18) is identically equal to zero the relation (18) is analogous to the buckling 
relation for rectangular plates if the meridional coordinate is designated x, and the circumferential y, whereas the 

left hand in Eq. (18) can be replaced by the formulae:   222  nymx PP  representing the bi-axial compressive 

forces Px and Py. 
For isotropic cylindrical shells the buckling  load (18) is reduced to the following form – Eq. (19): 

 
 

22 2

2 2

1
,  ,

12 1

m n

xcr
m

REt t
P AS AS

R AS

   
 

     
  

 (19) 

what means that the second term (membrane) in Eq. (3), denoted by the symbol s, plays a significant role. It is 
seen that the critical load is a function of geometrical ratios t/R and L/R. For isotropic shells to find the optimal 
buckling force let us assume that the derivative of Pxcr with respect to L is equal to zero and the corresponding 
minimum buckling load – Eq. (20) is: 

  2/ 3 1xcrP Et R    (20) 

For composites the relation between the bending and membrane states depends not only on the values of the 
geometrical ratios t/R and L/R, but also on the mechanical properties and laminate configurations. Therefore, the 
identical procedure to that mentioned for isotropic structures cannot be conducted. It is seen in Figs 6 a, b. For the 
discrete fibre orientations 00, ±450, 900 in the laminate let us use the design variables in the form of four integers 

{ AA xx 31  , , DD xx 31  , } defined by Muc [56]. 

The optimization problem (Eqs (21), (22)) is defined as follows. 
To find: 

1 3 1 3, , ,A A D D xcr
x x x x
Min P  (21) 

subjected to six constraints: 

1 3 1 3 1 3 1 3, , , 1,  1,  1A A D D A A D Dx x x x x x x x      (22) 

Using such a representation of the design variables it is possible to write the membrane part in Eq. (18) as 

the polynomial function of two variables AA xx 31  , . The contour plots demonstrate that the location of the maximum 

is dependent on the geometrical ratios so that it is impossible to start the optimization procedure from the 
derivation of the optimal shell length. 
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Figure 6. The positions of the optimal buckling loads for three discrete fibre orientations (m=n=1, membrane state 

only – the function s in Eq.(18)) 

 

The bending part of Eq. (18) can be expressed as the linear function of two variables DD xx 31  ,  in the following 

form – Eq. (23): 

 2 2 3
1 2 1 3 3 /12D D

x mP t Z Z x Z x     (23) 

where Z1, Z2 and Z3 are constants in the optimization problem. Since the constants are positive the maxima always 

occurs at the boundaries ( 01 Dx  or 0 3 Dx ). It is worth to emphasize that the contour plot solution gives directly 

the number of plies having orientations 00, ±450, 900 but not their location in the laminate. The location of those 

plies can be found by the analysis of the values DD xx 31  , . However, having an information about the positions of the 

optimal stacking sequences for bending states it is possible to find independently the positions of maximal 
buckling loads (the optimal stacking sequence) for membrane states only, and then to join the results. With the 

use of the decoding procedure is possible to find a series of the corresponding to values AA xx 31  ,  the values DD xx 31  ,  

and to calculate the value of the bending term (23). 

C. Buckling of Cylindrical Shells with Domed Heads 

In engineering constructions composite cylindrical shells are closed by domed heads having various forms as: 
flat plates, ellipsoidal, torispherical, spherical, paraboloidal or even conical. We intend to analyse the influence 
heads on buckling loads and forms. The presented analysis is a parametric study of various geometrical effects 
and it is treated as an introduction to optimal design in the form similar to that studied by Muc [53]. In the 
present optimal design we tend to minimize the geometrical ratio L/D where the value of the buckling external 
pressure (pbuckl) does not exceed the allowable value of the pressure (pallow) – Eq. (24), i.e.: 

buckl allowp p  (24) 

In particular the considerations deal with composite pressure vessels having the domed heads in the form of: 
a) shallow torisphere (R/D=1, r/D=0.1) with a cylindrical part – Figure 7a, b) deep paraboloid (f/D=1.5, i.e. 
z=6r2/D) with a cylindrical part – Figure 7b. It is assumed that the shells are made of carbon/epoxy resin and 
have quasi-isotropic material properties. The numerical investigations are carried out for axi-symmetric 
structures taking into account geometrical pre-buckling nonlinearities. The results of buckling investigations for 
spherical and ellipsoidal domes were studied by Muc [54,55]. 

For identical thicknesses of domed heads and cylindrical parts the buckling loads decrease with the 
increasing length of the cylindrical part – Figure 8. If the thickness of the head is lower than in the cylindrical part 
one can observe the region as buckling pressures arenot sensitive to the change of the geometrical L/D ratio. In 
the latter case the loss of stability in the head preceeds the buckling of the whole structure. The effect of the 
geometry is much more manifestant for deep paraboloidal shells than for shallow torispheres. 
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Figure 7. Forms of the analysed pressure vessels with domed heads 

 

 
Figure 8. The effects of the cylindrical part length on the buckling loads 

 

Figs 9, 10 demonstrate buckling modes for various lengths of the cylindrical part starting from L/D=0. As it 
may be seen the buckling mode (the number m) is also dependent on the L/D ratio. In general, it is reduced with 
the growth of the geometrical L/D ratio. 

The results of buckling investigations for spherical and ellipsoidal domes with and without cylindrical 
portions and the possibility of optimal design were studied in details by Muc [57,58]. 

 
Figure 9 Buckling modes for shallow torispherical heads 
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Figure 10. Buckling modes for deep paraboloidal heads 

D. First-Ply-Failure of Laminated Plates with Holes 

For a infinite laminated plates subjected to axial/biaxial compression/tension or in-plane shear and having a 
circular/ elliptical hole the optimum design of laminate stacking sequence is presented by Sharma et al. [59]. The 
authors of the paper adapted the formulation and the solution given by Lekhnitski [60], Savin [61] for stresses 
around holes in an infinite angle-ply balanced symmetric laminated plates under in-plane loading (Fig.1) – Eq. 
(25): 

4 2
11 12 66 222( ) 0T s T T s T     (25) 

Tij represent the classical terms of the compliance matrix for the plane stress problem. 
 

 
Figure 11 Laminated plate containing an elliptical opening where θ denotes the (ith) ply orientation 

 

The solutions sj of the above characteristic equation are represented by the complex numbers – see e.g. Muc, 
Ulatowska [62] for circular holes, and along the elliptical boundary take the following form – Eq. (26): 
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 (26) 

where α is the angular coordinate measured along the ellipse from the axis 0-x, (σy=σ∞ =N0/t at the direction y – 
Fig.11), and s1, s2 are the complex roots of the equation (25). For orthotropic or cross-ply structures the roots can 
be expressed by the relations (27): 

   2

1,2 4 / 2,  / 2 4s Delt i Delt E Delt E G E        (27) 

where: 

11 6611 12
2

22 11 22 12 22

,  ,  
A AA A

E G
A A A A A

  


 

and Aij denote the in plane stiffness of the laminate. 
In an infinite orthotropic plate the analytical solution for the stress component σy at the edge of a hole and 

α=00 is given by Eq. (28): 

   1 20 0
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i s sN

t ds s
 

        
   

 (28) 

However, the above relations cannot be used in the optimization analysis since for finite width of the plate 
the stress distributions/concentrations around the holes are different than those compared with the results for 
infinite plates. It was demonstrated by Muc, Ulatowska [62] and Xu Xiwu et al. [63]. Tan [64] introduced the 
approximate formulas for the stress concentration factors for the orthotropic laminated plates valid in the range 
0≤b/a≤1 – Eq. (29): 
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 (29) 

where Kt∞ is the stress concentration factor for the infinite plate that can be derived from the following formula 
(30): 

2
11 22 12

11 22 12
66 66
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1

2t

A A A
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d A A
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    

 
 (30) 

and Aij denotes the effective laminate in-plane stiffnesses with 1 and 2 corresponding to parallel and 
perpendicular to the loading directions (Fig.11), i.e. to the y and x directions, respectively. 

The optimization problem is formulated in the following way: to maximize the tensile load – Eq. (31), i.e.: 

0 Max N  (31) 

subjected to the constraints corresponding to each of the individual plies (i) (i=1, 2,…, N – total number of 
plies) in the orthotropic plate – Eqs (32): 
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The constraints represent the First-Ply-Failure (FPF) in the form proposed by Tsai-Wu. The criterion is 
formulated in the local coordinate system (1-2) defined previously. Xt, Xc, Yt, Yc are allowable stresses for tension 
(t), compression (c) in the directions parallel (X) and perpendicular (Y) to fibres, and S denotes the allowable in-
plane shear stresses. For each of the plies the transformation rule between the local (1-2) and the global 
coordinate system is defined by Eq. (33) below. The transformation is valid for the (ith) ply, however the symbol 
(i) is omitted. 
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, (33) 

Similarly as in the previous section for the assumed discrete fibre orientations 00, ±450, 900 in the laminate 

let us use the design variables in the form of two integers  1 3,A Ax x  - the behaviour of the laminate is 

characterized by the in-plane laminate coefficients Aij. In addition, for the comparison of the results, the angle-ply 
(±θ) symmetric laminate stacking sequence is considered. 

In the numerical finite element analysis the following values of the material constants are assumed: 
E1=46.43 [GPa], E2=14.9 [GPa], G12=5.233 [GPa], ν12=0.269, Xt=Xc=1534 [MPa], Yt=Yc=74.5 [MPa], S= 115 [GPa]. 
They corresponds to glass fibre/epoxy composites. 

 

 
Figure 12. Contour distributions of the maximal tensile loadings in the design space. 
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The failure strength for the angle-ply laminate was calculated varying the ply orientations in the interval 
[0,90]. The optimal fibre orientations corresponding to the maximal failure loads are given below: 
− Circular hole – θ=30 
− Vertical elliptical hole - θ=0 
− Horizontal elliptical hole - θ=38 

It was found that the increase of the curvature resulted in the increase of the maximal failure strength, i.e. the 
highest failure strength was observed for the horizontal ellipses and the lowest for the vertical elliptical holes. 
The obtained optimal fibre orientations presented by Sharma et al [59] are different than those presented above 
since the mentioned authors analysed infinite plates only. 

For discrete fibre orientations the distributions of the strength were analysed in the triangular space of 
design variables. The results are plotted in Fig. 12 for circular hole. The maximum of the strength occurred for 
fibres oriented at 0 (8 plies) and 90 (8 plies). The plies oriented at 45 were not present in the optimal stacking 
sequence. The sequence of the plies oriented at 0 and 90 is not important in the analysis since the values of the 
terms Aij do not vary with the change of the stacking sequences. 

For laminated multilayered plates with a cut-out more information about the stress concentration problems 
can be found in Refs [65-67]. 

E. Vibration Frequency of the Cantilever Beam-Mass System 

Let us consider the cantilever beam system shown in Fig.13. The beam cross section is rectangular. The 
objective function is to find the optimal cross-sectional dimensions a and b that minimize the weight of the beam 
(the beam length is constant) while keeping the fundamental vibration frequency larger than 8 rad/sec. Thus, the 
fundamental optimization problem can be represented by Eqs (34)-(38): 

 1 2Min x x  (34) 

subjected to the constraint: 

8 / secek radm    (35) 

where: 

33
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and gravitational constant g=9.81 m/s2, length of the beam L=0.381 [m], weight attached to the spring 
W=267 [N], spring constant k=1750 [kg/s2], modulus of elasticity E=207 [GPa]. 

       1 20.0127,0.0254 , 0.00508,0.0508x m x m   (37) 

L
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Figure 13. The cantilever beam-mass system 

The analytical solution of that problems exists and the optimum can be found at the boundary: 
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Figure 14. Convergence of the numerical algorithm – pop=10, vel=0.3, migr=5 (dimensionless variables) 

 

The use of the proposed optimization algorithm allows us to obtain the identical results as above very 
quickly, after 50 generations with the error ε equals to 10-7. For different number of generations numerical results 
are plotted in Fig.14 – dimensionless design variables. As it may be seen they present an excellent convergence 
and accuracy. 

F. Optimal Proportion of the I-shaped Cross Section 

A lot of modern sheet isotropic or composite constructions require stiffeners that are normally of I-, Z- or C-
shaped cross sections. An I-shaped cross section, shown in Fig. 15, has been selected in our example. Since a large 
number of these stiffeners are employed, it is important to find the optimal proportion of its dimensions x1, x2 and 
x3 being design variables in our problem. A stiffener is treated as an axially loaded column, as shown in Fig. 15. 
The goal is to have a minimal volume of the the column (understood in the sense of the area A since the column 
length L is constant): 

 1 2 3 1 12 ( 2 )MinA Min x x x x x    (39) 

while meeting the following yield stress and buckling conditions: 
yield stress: 

yA/P   (40) 

overall buckling load: 
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web buckling load: 
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, (44) 

applied load P=8.9 [kN], yield stress y =172.4 [MPa], Young's modulus E=69 [GPa], Poisson's ratio ν=0.3, 

length of stiffener L, and: 

     1 2 30.00254,0.0076 2 [ ], 0.00508,0.0762  [ ], 0.01016,0.1016  [ ]x m x m x m    (45) 

L

P

 
Figure 15. The axially loaded column having the I-shaped cross-section 

The problem considered (Eq. (39)) is much more complicated than the previous one since now we have 3 
design variables, 3 bounds on design variables (Eq. (45)) and 4 inequality constraints – Eqs (40)-(44). It cannot 
be solved in an analytical way. Using the proposed optimization algorithm we can find the optimal dimensions of 
the I-shaped cross-section. Their values are presented in Fig.16 and Table 4 as a function of the column length L. 
For short columns the optimum occurs at the bounds of the cross-section thickness and width (compare Table 2 
with Eq. (45)) and the growth of the optimal area is observed with the increase of the column length (Fig.16). 
Further growth of the column length L results in the reduction of the optimal cross section area A (comparing 
with the previous values obtained for the lower values of the column length) and in addition all three variables 
describing the I shaped cross section vary. For all cases considered herein the optimum is observed at the 
boundary characterized by Eq. (41) – the overall buckling. 
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Table 4. Optimal dimensions of the I cross section. 

L [mm] A [mm2] t [mm] b [mm] h [mm] 
254 76.6506 2.54 12.5487 10.16 

508 123.364 2.54 19.9514 13.7456 

1651 278.25 2.54 43.8142 26.9987 

2032 364.659 2.80606 48.6718 38.2228 
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t - thickness [mm]
b - width [mm]
h - height [mm]

 
Figure 16. Variations of the optimal cross-section dimensions (pop=25, vel=0.3, migr=5) 

VI. Concluding Remarks 

The present review of existing works in the open literature demonstrates evidently that the number of 
results rapidly increases without the proper comparison of them. Therefore, it is practically impossible to draw 
more general conclusions even in the specific area of interest. Although, the number of references in each of the 
papers also grows it is very difficult to track and compare the validity of the published results in view of various 
assumptions made in different works. Such a situation may lead to misunderstanding and pitfalls for researchers. 

We do not intend to discuss herein the problem of the choice of the design variables (see Ref[68].). However, 
the investigations are mainly focused on the assumptions that may affect significantly on the results and then on 
the comparison of results. 

The detailed analysis demonstrated evidently that the proposed algorithm works well for different 
optimization problems, various number of design variables and equality or inequality constraints. More 
information about those problems can be also found in Ref [53]. 

For the analyzed optimization problems the effectiveness of the use of the evolution strategy is demonstrated 
since after few iterations particles (individuals) in the population cluster in one (sometimes several) region of the 
search (design) space. These clusters indicate the presence of the optima where idividuals’ relatively good 
performances have caused them to attract their neighbors, who in moving toward the optimal regions improved 
their own performances, attracting their neighbors and so on. The efficiency of the algorithm can be evaluated by 
the mean position of a clustered population and the relative distance from an individual particle position to the 
mean value. As it is demonstrated the use of the proposed algorithm allows us to find the position of global 
optima with the required accuracy for different engineering problems having a lot of nonlinear constraints in the 
equality or inequality form. The generality of engineering problems (understood in the sense of the form of the 
objective function as well as of the form of constraints) that can be solved with the use of the proposed methods 
seems to be their fundamental advantage. According to the authors’ knowledge and experience the algorithm 
works much better than genetic algorithms. In addition the method can be applicable not only for isotropic but 
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also for multilayered composite structures. The effectiveness of the algorithm is strongly dependent on the proper 
choice of the evolution strategy parameters. 
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