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Statistics of the Pareto front in Multi-objective Optimization under 
Uncertainties 

Abstract 
In this paper we address an innovative approach to determine the mean and 
a confidence interval for a set of objects analogous to curves and surfaces. 
The approach is based on the determination of the most representative 
member of the family by minimizing a Hausdorff distance. This method is 
applied to the analysis of uncertain Pareto frontiers in multi-objective opti-
mization ሺMOOሻ. The determination of the Pareto front of deterministic 
MOO is carried by minimizing the hypervolume contained between the front 
and the utopia point. We give some examples and we apply the approach to 
a truss-like structure for which conflicting objective functions such as the 
structure mass and the maximum displacement are both to be minimized. 
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1 INTRODUCTION 

In real-life situations, it is frequent to consider contradictory objectives to be satisfied simultaneously in order 
to furnish an acceptable solution belonging to a set of possible choices. For instance, in Engineering, it is usual to 
look for solutions that maximize the performance while minimizing the cost – what is generally contradictory. A 
consumer chooses the best bundle of goods that he can afford but looks for the minimal expenses, while a producer 
maximizes his income and minimizes both production time and total cost ሺVarian 2006, Varian 2009 and Mankiw 
2011ሻ. Traders seek for investments making the expected portfolio returns as high as possible with the lowest risk 
possible ሺHurson and Zopounidis 1997, Zopounidis 1999, Pätäri et al. 2018 and Craven and Islam 2005ሻ. In such a 
situation, compromises must be determined between the objectives – it is usual to look for the Pareto frontier as-
sociated to the multi-objective problem, which synthetizes the possible compromises and trade-offs between the 
objectives. 

Multi-objective optimization ሺMOOሻ is deeply applied to furnish more realistic solutions to improve economic 
activity or industrial process ሺAmodeo et al. 2007 and Ivanov and Ray 2014ሻ. In addition, real problems are also 
characterized by uncertainty: in practice, parameters defining objectives and constraints may be subjected to vari-
ability or simply badly known. Thus, considering uncertainty becomes essential and we may find in the literature 
many works devoted to uncertainties in multi-objective optimization. For instance, in the field of economics, sto-
chastic dominance has been introduced ሺHadar and Russell 1969, Bawa 1975, Bawa and Goroff 1983ሻ and is widely 
exploited in Economics, Finance and Social Sciences ሺsee, for instance, a few among many works: Ji and Lejeune 
2018, Light 2018, Yager 2018ሻ. Another approach often found in the literature concerns the determination of robust 
solutions, id est, solutions remaining stable for a given range or known scenarios of perturbation ሺsee, for instance, 
a few among many works: Navabi and Mirzaei  2017, Bachur et al. 2017, Xidonas et al. 2017, Moreira et al. 2016ሻ. 

The efforts to consider uncertainty in optimization have a long history ሺSahinidis 2004ሻ, but it is rare to find 
works concerning statistics of the Pareto frontier, such as its mean, its variance or the determination of a confidence 
interval. Indeed, under uncertainty, Pareto frontier becomes uncertain and, when the uncertainties are modeled as 
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random variables, Pareto frontier becomes stochastic, so that we may look for its mean, variance and a confidence 
interval. Although natural, such an analysis appears as difficulty, since a Pareto frontier is an object belonging to an 
infinite dimensional vector space: for instance, when considering a bi-objective problem, the Pareto frontier is, in 
general, a curve in ℝଶ, which must be described by a vector map or an algebraic equation, id est, a vector function 
associating an interval I ⊂ ℝ to a set of points in ℝଶ ሺI ∋ 𝑡 → 𝑥ሺ𝑡ሻ ∈ ℝଶሻ on an algebraic equation 𝜙ሺ𝑥ሻ ൌ 0 , 𝑥 ∈ S . 
A first approximation may consider the Pareto frontier as a cloud of points, but even in this case, difficulties arise, 
since each point is a variate from a distribution dependent on a parameter 𝑡 ∈ ሾ0,1ሿ and the value of 𝑡 associated to 
each point is unknown – thus, the evaluation of statistics of the points request a previous procedure for the index-
ation of the points by 𝑡, what remains arbitrary. In this paper, we address this difficulty by an alternative approach, 
by considering that the median object is the most representative one in the family. This approach allows consider-
ing random objects that can be modeled by continuous geometric forms instead of a cloud of a data points. The 
approach is applied to Pareto frontiers, which are determined by the variational approach introduced in ሺZidani et 
al. 2013, Souza de Cursi 2015ሻ to solve deterministic MOO problems and that leads to the determination of Pareto 
frontier by minimizing a hypervolume, but other methods of determination may be used instead. 

In section 2, we illustrate the difficulty about the determination of statistics of families of curves and the pro-
posed approach. The rest of the paper is organized as follows. In section 3, the mathematical model of deterministic 
multi-objective optimization problems is presented, and then uncertainties are introduced in section 4 for the MOO 
problems with constraints. In section 5 we explain the process we follow to quantify the uncertainties, and how the 
link is established between Statistics and Geometry. Three academic problems are solved in section 6 in both de-
terministic and uncertain cases before to study a 5-bar truss structure problem in section 7. In these one two exog-
enous variables are made random. At last, a summary concludes this paper in section 8. 

2 STATISTICS OF CURVES 

In this section we illustrate the difficulties in the determination of statistics of families of curves and the pro-
posed approach. Analogous difficulties arise in higher dimensional situations. 

As previously observed, a curve in the plane is a set of points which may be described by an algebraic equation 
𝜙ሺ𝒙ሻ ൌ 0, 𝒙 ∈ 𝑆 or a map 𝒙: 𝐼 → ℝଶ, where 𝐼 ൌ ሺ𝑎, 𝑏ሻ ⊂ ℝ. We are interested in the situation where the curve de-
pends upon a random variable 𝒀 ∈ ℝ௠: the equation becomes 𝜙ሺ𝒙|𝒀 ൌ 𝒚ሻ ൌ 0 , 𝒙 ∈ 𝑆ሺ𝒚ሻ and the map reads 
as 𝒙ሺ𝑡|𝒚ሻ: 𝐼ሺ𝒚ሻ →  ℝ𝟐. For instance, let us consider the family defined by: 

𝜙ሺ𝒙|𝑦ሻ ൌ 𝑥ଶ െ 𝑦 ൌ 0, 𝑆ሺ𝑦ሻ ൌ ሼ𝑥: |𝑥ଵ| ൑ 𝑦ሽ ሺ1ሻ 

We have: 

𝒙ሺ𝑡|𝑦ሻ ൌ ሺ𝑡, 𝑦ሻ , 𝑡 ∈ ሾെ𝑦, 𝑦ሿ. ሺ2ሻ 

Assume that 𝑦 ∈ ሾ0,1ሿ is uniformly distributed. The mean value of the parameter is 𝐸ሺ𝑦ሻ ൌ 1/2 and, for a given 
𝑡, the mean value of 𝒙ሺ𝑡|𝑦ሻ is 𝐸൫𝒙ሺ𝑡|𝑦ሻ൯ ൌ ሺ𝑡, ሺ1 ൅ |𝑡|ሻ/2ሻ ሺNotice that 𝑥ଶ ∈ ሺ|𝑡|, 1ሻ. As shown in Figure 1, the means 
evaluated by this way do not correspond to the family: in fact, they generate a curve similar to the envelope of the 
family. 

 
aሻ A family of curves bሻ The mean curve determined by examining the points 

Figure 1: An example where the mean generated by the points is not a member of the family 
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As an alternative, we may adopt the standpoint presented in Croquet and Souza de Cursi ሺ2010ሻ: let us intro-
duce a fixed interval 𝐽 ൌ ሾ𝛼, 𝛽ሿ and take 𝑠 ∈ 𝐽 to describe all the curves of the family by using this variable. Here, 
𝒙ሺ𝑠|𝑦ሻ ൌ ൫ሺ2ሺ𝑠 െ 𝛼ሻ െ ሺ𝛽 െ 𝛼ሻሻ𝑦/ሺ𝛽 െ 𝛼ሻ, 𝑦൯ , 𝑠 ∈ ሾ𝛼, 𝛽ሿ. Then, assuming regularity, we determine the expansion 
of 𝒙ሺ𝑠|𝑦ሻ in a convenient Hilbert basis and the mean of the coefficients: 

𝒙ሺ𝑠|𝑦ሻ ൌ ∑ 𝒙௜ሺ𝑦ሻ𝜑௜ሺ𝑠ሻା ஶ
௜ୀଵ  ⇒  𝐸൫𝒙ሺ𝑠|𝑦ሻ൯ ൌ ∑ 𝐸൫𝒙௜ሺ𝑦ሻ൯𝜑௜ሺ𝑠ሻା ஶ

௜ୀଵ  . ሺ3ሻ 

In this simple example, we may use a polynomial basis and we obtain: 

𝐸൫𝒙ሺ𝑠|𝑦ሻ൯ ൌ ൫ሺ2ሺ𝑠 െ 𝛼ሻ െ ሺ𝛽 െ 𝛼ሻሻ/ሺ2ሺ𝛽 െ 𝛼ሻሻ, 1/2൯ , 𝑠 ∈ ሾ𝛼, 𝛽ሿ ሺ4ሻ 

so that the mean is a member of the family. Nevertheless, the approach introduced by Croquet and Souza de 
Cursi ሺ2010ሻ requests that the family is composed of parameterized curves. If the parameterization is missing, this 
method cannot be applied – it is necessary to determine a parameterization previously. In this work, we examine 
an alternative approach which may be applied without parameterization: we look for one of the elements of the 
family having a median position, id est, for a member of the family which occupies a central position and may be 
considered as a good representative of the family. In such a case, we look for the element of the family which is the 
nearest one for all the others. This is performed by minimizing the distance between nonparameterized curves – 
we use the Hausdorff distance ሺHDሻ defined in equation ሺ17ሻ. Figure 2 shows the obtained result when this method 
is applied to the previous example. 

 
Figure 2: The median curve ሺredሻ and the curves defining the “confidence interval” ሺcyanሻ are members of the family 

Once the median curve is determined, we may look for a “confidence interval” by finding a region including the 
mean curve and containing a given percentage of the family: usually, confidence intervals use a parameter 𝜶 – the 
risk – and a confidence level 𝟏 െ 𝜶. For instance, we may look for a “confidence interval” having a level 𝟗𝟎 % ሺthus, 
𝜶 ൌ 𝟏𝟎 %ሻ by finding a region containing the 90% members of the family which are closer to the median curve, as 
shown in Figure 2. More generally, the difficulty exposed concerns the determination of the mean or the median of 
families of curves. Let us illustrate the situation by considering different families of random curves. 

2.1 A family of random circles 

Let us consider a family of circles having a random radius and a random initial phase: 

൜
𝑥ሺ𝑡ሻ ൌ 𝑟 ∗ cosሺ𝑡 ൅ 𝛼ሻ
𝑦ሺ𝑡ሻ ൌ 𝑟 ∗ sinሺ𝑡 ൅ 𝛼ሻ ሺ5ሻ 

with 𝑡 ∈ ሾ0,2𝜋ሿ, 𝑟 is uniformly distributed on ሾ1,3ሿ and 𝛼 is uniformly distributed on ሾ0,2𝜋ሿ. If the pointwise mean 
is considered, we have 𝐸൫𝑥ሺ𝑡ሻ൯ ൌ 𝐸൫𝑦ሺ𝑡ሻ൯ ൌ 0, so that the mean is a point: the origin ሺ0,0ሻ. However, the expected 
mean is a circle of radius 𝑟 ൌ 2. In practical situations, we have a finite sample of the family: for instance, let us 
consider a sample of 𝑛𝑠 circles from this family, shown in Figure 3. We represent the empirical pointwise mean of 
the sample in black and the median curve in red, for samples of 𝑛𝑠 ൌ 100 ሺat leftሻ and 𝑛𝑠 ൌ 1000 ሺat rightሻ. Green 
circles correspond to the confidence interval with a risk 𝛼 ൌ 10%. Blue circles lay outside the confidence interval – 
as expected these are the outermost ones, symmetrically distributed on the interior and exterior boundaries of the 
family – the blue circles represent 10% of the sample. Analogously, the pointwise mean furnishes a small circle near 
the origin, with a radius that goes to zero when the size of the sample increases. 
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Figure 3: The pointwise mean circle ሺin blackሻ in near the origin, the median generated by examining the Hausdorff dis-

tances ሺin redሻ is central. green circles correspond to the confidence interval 

 

2.2 A family of random arcs of circles 

Let us consider a family of random arcs of circles generated as follows: 

൜
𝑥ሺ𝑡ሻ ൌ 𝑎 ൅ cosሺ𝑡 ൅ 𝛼ሻ
𝑦ሺ𝑡ሻ ൌ 𝑏 ൅ sinሺ𝑡 ൅ 𝛼ሻ ሺ6ሻ 

where 𝑡 ∈ ሾ0 , 𝜋/4 ሿ, 𝛼 is uniformly distributed on ሾ0,2𝜋ሿ, 𝑎 and 𝑏 are uniformly distributed on ሾെ1,1ሿ. For 
independent variables, 𝐸൫𝑥ሺ𝑡ሻ൯ ൌ 𝐸൫𝑦ሺ𝑡ሻ൯ ൌ 0. 

As previously done with circles, we consider samples of 𝑛𝑠 ൌ 100 ሺat left in Figure 4ሻ and 𝑛𝑠 ൌ 1000 ሺat right 
in Figure 4ሻ. Green arcs lay in the confidence interval with a risk 𝛼 ൌ 10%. Blue segments are outside this confi-
dence interval – as expected these are the outermost ones. As in the preceding example, the blue curves represent 
10% of the sample and the pointwise mean furnishes a small curve near the origin, that goes to zero when the size 
of the sample increases. 

 
Figure 4: The pointwise mean arc of circle ሺin blackሻ reduces to a point, the median one generated by examining the 

Hausdorff distances ሺin redሻ, and the confidence interval ሺgreen arcs of circleሻ 

 

2.3 A Van der Pol oscillator with a random initial position 

As a third example, we consider a Van der Pol oscillator 

𝑥ሷ ൌ  െ𝑥 ൅ ሺ𝑎 െ 𝑥ଶሻ𝑥ሶ  , 𝑥ሺ0ሻ ൌ 𝑥଴ ; 𝑥ሶሺ0ሻ ൌ 0 . ሺ7ሻ 

We consider 𝑎 ൌ 0.5 and 𝑎 ൌ 1, 𝑥଴ is uniformly distributed on ሾ0,1ሿ. A sample of 𝑛𝑠 ൌ 100 curves in the phase 
space ሺ𝑥, 𝑥ሶ ሻ is generated by simulating the motion on the time interval ሺ0, 10ሻ. As in the previous examples, we 
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exhibit the statistical characteristics of interest from this family. In this case again, the mean curve is not a trajectory 
of the system, while the median is a member of the family. The results are displayed in Figure 5 considering the 
confidence interval at the same level used before. It is interesting to notice that, in this case, the confidence interval 
may be considered as unilateral. 

 
Figure 5: The results for the Van der Pol oscillator with random initial position: pointwise mean ሺblack curveሻ is not a 
trajectory, while the median ሺred curveሻ is a feasible trajectory. Green curves correspond to the confidence interval. 

 

2.4 A Duffing oscillator with random parameters 

A last example is given by the Duffing oscillator: 

𝑥ሷ ൌ  െ𝑎𝑥 െ 𝑏𝑥ଷ , 𝑥ሺ0ሻ ൌ 𝑥଴ ; 𝑥ሶሺ0ሻ ൌ 1 . ሺ8ሻ 

We consider 𝑎 is uniformly distributed on ሾ0.5, 1.5ሿ, and 𝑏 uniformly distributed on ሾ0.1, 0.2ሿ. The results are 
exhibited in Figure 6. We observe that the pointwise mean does not correspond to a trajectory in the phase space, 
while the median is a feasible trajectory. 

 
Figure 6: Results for the Duffing oscillator with random parameters: pointwise mean ሺblack curveሻ is not a trajectory, 

while the median ሺred curveሻ is a feasible trajectory. Green curves correspond to the confidence interval. 

 

As established in the preceding examples, this approach is effective to furnish the median and, then, to generate 
a confidence interval of a family of curves, so that we may consider its application to the determination of the mean 
and a confidence interval of Pareto’s fronts. In the sequel, this method is used in order to quantify uncertainties in 
MOO problems. Initially ሺsection 6ሻ, it is applied to three classical test problems and then ሺsection 7ሻ, to the analysis 
of a 5 bar truss structure MOO problem. 

3 DETERMINISTIC MULTIOBJECTIVE OPTIMIZATION 

As usual, a standard MOO problem is modeled with a system of equalities and inequalities equations as follows: 
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⎩
⎪
⎨

⎪
⎧

Minimize
𝒙∈ℝ೏

 𝒇ሺ𝒙|𝒚ሻ ൌ ሺ𝑓ଵሺ𝒙|𝒚ሻ, 𝑓ଶሺ𝒙|𝒚ሻ, … , 𝑓௡ሺ𝒙|𝒚ሻሻ

Subject to ቮ
𝒈ሺ𝒙|𝒚ሻ ൌ ሺ𝑔ଵሺ𝒙|𝒚ሻ, … , 𝑔௣ሺ𝒙|𝒚ሻሻ ൑ 𝟎

𝒉ሺ𝒙|𝒚ሻ ൌ ൫ℎଵሺ𝒙|𝒚ሻ, … , ℎ௞ሺ𝒙|𝒚ሻ൯ ൌ 𝟎
𝒙௟ ൑ 𝒙 ൑ 𝒙௨

, ሺ𝒙௟, 𝒙௨ሻ ∈ ℝௗ ൈ ℝௗ  ሺ9ሻ 

or more simply: 

ቐ

Minimize
𝒙∈ℝ೏

 𝒇ሺ𝒙|𝒚ሻ ൌ ሺ𝑓ଵሺ𝒙|𝒚ሻ, 𝑓ଶሺ𝒙|𝒚ሻ, … , 𝑓௡ሺ𝒙|𝒚ሻሻ

Subject to ฬ
𝒙 ∈ 𝑆ௗ

 𝑆ௗ ⊂ ℝௗ

  ሺ10ሻ 

In these two systems: 
• 𝑓1, 𝑓2, … , 𝑓𝑛 are the objective functions 

• 𝑔1, 𝑔2 … , 𝑔𝑝 are the inequality constraints 

• ℎ1, ℎ2 … , ℎ𝑘 are the equality constraints 
• 𝒙 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ௗሻ୲ ∈ ℝௗ is the decision variables vector 
• 𝒙𝒍 (resp. 𝒙𝒖) is the lower boundary (resp. upper boundary) 
• 𝒚 ൌ ሺ𝑦ଵ, 𝑦ଶ, … , 𝑦௠ሻ୲ ∈ ℝ௠ represents the values of the exogenous parameters 
• 𝑆𝑛 is the feasible space including all the constraints and boundaries above 

Numerous methods can be used to solve deterministic MOO problems, such as the weighting method ሺGass 
and Saaty 1955 and Zadeh 1963ሻ, the å-constraint method ሺHaimes et al. 1971ሻ, Geoffrion-Dyer-Feinberg Method 
ሺGeoffrion et al. 1972ሻ, the Keeney-Raiffa method ሺKeeney and Raiffa 1994ሻ and more ሺsee for instance: Miettinen 
1999 and Collette and Siarry 2002ሻ and in this work we use a variational method called here the Zidani-Souza’s 
method that has been proposed by Zidani et al. ሺ2013ሻ and which is presented in the appendix A. It consists in 
minimizing the hypervolume between the Pareto front and the utopia point. In this method, the decision variables 
are developed in polynomials, what allows to get a piecewise continuous Pareto front. 

4 MULTIOBJECTIVE OPTIMIZATION UNDER UNCERTAINTIES 

To take the uncertainties into account, we introduce the random vector 𝒀 of exogenous variables, in replace-
ment of the deterministic vector 𝒚. As a consequence, both objective functions and constraints become random. In 
this case, equality and inequality constraints become probabilistic and the standard MOO problem becomes: 

⎩
⎪
⎨

⎪
⎧

Minimize
𝒙∈ℝ೏

𝑭ሺ𝒙|𝒀ሻ ൌ ሺ𝐹ଵሺ𝒙|𝒀ሻ, 𝐹ଶሺ𝒙|𝒀ሻ, … , 𝐹௡ሺ𝒙|𝒀ሻሻ

Subject to ተ
Prob ቀ𝑮ሺ𝒙|𝒀ሻ ൌ ቀ𝐺ଵሺ𝒙|𝒀ሻ, … , 𝐺௣ሺ𝒙|𝒀ሻቁ ൑ 𝟎ቁ ൒ 𝛼

Prob൫𝑯ሺ𝒙|𝒀ሻ ൌ ൫𝐻ଵሺ𝒙|𝒀ሻ, … , 𝐻௞ሺ𝒙|𝒀ሻ൯ ൌ 𝟎൯ ൒ 𝛽
𝒙௟ ൑ 𝒙 ൑ 𝒙௨

, ሺ𝒙௟, 𝒙௨ሻ ∈ ℝௗ ൈ ℝௗ  ሺ11ሻ 

where Prob is the probability operator, 𝒀 has a given joint probability distribution, and 𝛼 and 𝛽 are the reliability 

probabilities that are imposed by the decision maker. Then, each realization 𝒚௜ ൌ ൫𝑦ଵ,௜, 𝑦ଶ,௜, … , 𝑦௠,௜൯
୲
 of 𝒀 leads to a 

unique deterministic MOO problem that generates a piecewise continuous Pareto front, and a sample 
ሼ𝒚ଵ, 𝒚ଶ, … , 𝒚௡௦ሽ of 𝒀 leads to 𝑛𝑠 distinct MOO problems and a set of 𝑛𝑠 different curves ሺor hypersurfacesሻ. 

As previously mentioned, the main goal of this work is to focus on uncertainties in MOO; more precisely, a link 
is established between Geometry and Statistics when the randomness of an exogenous variable lead to a set of 
Pareto fronts instead of one front. In fact, our objective is to evaluate statistical quantities, namely confidence in-
tervals of a set from the single data furnished by the set itself, without the use of an external probability – they are 
generated by using “means” ሺor “medians”ሻ. Then, considering randomness on a MOO problem inputs, we explore 
the outputs, namely the trade-offs, and extract from the family its “median” and other “quantile curves”, more gen-
erally the hypersurfaces that belong also to the same set. In other words, we search for a mean of a set of subjects 
that is one of its members. 

5 IMPLEMENTATION 

In practice, the approach under consideration is implemented as follows: 
• A sample ൛𝒚1, 𝒚2, … , 𝒚𝑛𝑠ൟ of the random vector 𝒀 is generated 
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• By using a Monte Carlo simulation, we get for each m-tuple 𝒚𝑖 ൌ ൫𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝑚൯
t
such as 1 ൑ 𝑖 ൑ 𝑛𝑠 a new MOO problem. In this 

work we focus on the bi-objective optimization problems with inequality constraints, then, theoretically, each value of the sample, 
leads to a new problem defined as follows: 

⎩
⎨

⎧ Minimize
𝒙∈ℝ೏

𝒇௜ሺ𝒙|𝒚௜ሻ ൌ ቀ𝑓ଵ,௜ሺ𝒙|𝒚௜ሻ, 𝑓ଶ,௜ሺ𝒙|𝒚௜ሻቁ , 𝑖 ∈ ሼ1,2, … , 𝑛𝑠ሽ

Subject to ቤProb ቀ𝑔ሺ𝒙|𝒚௜ሻ ൌ ቀ𝑔ଵሺ𝒙|𝒚௜ሻ, … , 𝑔௣ሺ𝒙|𝒚௜ሻቁ ൑ 0ቁ ൒ 𝛼

𝒙௟ ൑ 𝒙 ൑ 𝒙௨

, ሺ𝒙௟, 𝒙௨ሻ ∈ ℝௗ ൈ ℝௗ  ሺ12ሻ 

• Each problem is solved by using the Zidani-Souza’s method and 𝑛𝑠 Pareto fronts denoted 𝑆𝑖
∗ are obtained. 

• We compute the sum of the distances between each Pareto front and all the other ones: 

𝐷௜ ൌ ∑ 𝑑ሺ𝑆௜
∗, 𝑆௝

∗ሻ௡௦
௝ୀଵ  ሺ13ሻ 

where 𝑑൫𝑆௜
∗, 𝑆௝

∗൯ is a well-chosen distance. 
• The mean Pareto front is defined as: 

𝑆̅ ൌ 𝑆௞
∗ such as ൜

𝑆௞
∗ ∈ ሼ𝑆ଵ

∗, 𝑆ଶ
∗, … , 𝑆௡௦

∗ ሽ
𝐷௞ ൌ min  ሼ𝐷௜| 𝑖 ∈ ⟦1, 𝑛𝑠⟧ሽ

 ሺ14ሻ 

• The x%-quantile-hypersurfaces: 

𝑆௫% ൌ 𝑆௞
∗ such as ൜

𝑆௞ ∈ 𝑆
Probሺ𝐷 ൑ 𝑑௞ሻ ൌ 𝑥

 ሺ15ሻ 

where 𝐷 is a random variable taking values in the resulting set ሼ𝐷ଵ, 𝐷ଶ, … , 𝐷௡௦ሽ. 
In this work, we consider two distances: 

1) The L2 distance given by: 

𝑑൫𝑆௜
∗, 𝑆௝

∗൯ ൌ ฮ𝐹௜ െ 𝐹௝ฮ
ଶ

 

ൌ ට׬ ቀ𝑓ଵ,௜ሺ𝒙|𝒚௜ሻ െ 𝑓ଵ,௝൫𝒙|𝒚௝൯ቁ
ଶ

൅ ቀ𝑓ଶ,௜ሺ𝒙|𝒚௜ሻ െ 𝑓ଶ,௝൫𝒙|𝒚௝൯ቁ
ଶ

௫  ;  ሺ𝑖, 𝑗ሻ ∈ ⟦1, 𝑛𝑠⟧ଶ ሺ16ሻ 

2) The Hausdorff distance given by: 

𝑑ு൫𝑆௜
∗, 𝑆௝

∗൯ ൌ max ቊsup
௫∈ௌ೔

∗
𝛿൫𝑥, 𝑆௝

∗൯ , sup
௬∈ௌೕ

∗
𝛿ሺ𝑦, 𝑆௜

∗ሻቋ ;  ሺ𝑖, 𝑗ሻ ∈ ⟦1, 𝑛𝑠⟧ଶ  ሺ17ሻ 

where 𝑆௜
∗ and 𝑆௝

∗ are closed bounded non-empty subsets of the metric space ሺℝௗ, 𝛿ሻ. 
In a first step, we considered both the distances: tests running with each one provided results that were com-

pared and showed to be almost identical. Then, in a second step, we considered the single Hausdorff distance and 
a larger sample ሺ𝑛𝑠 ൌ 200ሻ to determine the quantities of interest. 

6 TEST FUNCTIONS 

In this section, three academic test functions are considered. All are solved as deterministic problems before 
uncertainties are considered. All the problems are bi-objective, involving constraints, as previously mentioned. 

6.1 Binh and Korn function 

The original problem is reported in Binh and Korn ሺ1997ሻ and is as follows: 

Minimize
𝒙∈ℝమ

൜
𝑓ଵሺ𝒙ሻ ൌ 𝑓ଵሺ𝑥ଵ, 𝑥ଶሻ ൌ 4𝑥ଵ

ଶ ൅ 4𝑥ଶ
ଶ 

 𝑓ଶሺ𝒙ሻ ൌ 𝑓ଶሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ𝑥ଵ െ 5ሻଶ ൅ ሺ𝑥ଶ െ 5ሻଶ 

Such that ቐ
ሺ𝑥ଵ െ 5ሻଶ ൅ 𝑥ଶ

ଶ ൑ 25
 ሺ𝑥ଵ െ 8ሻଶ ൅ ሺ𝑥ଶ ൅ 3ሻଶ ൒ 7.7
 0 ൑ 𝑥ଵ ൑ 5 , 0 ൑ 𝑥ଶ ൑ 3

 ሺ18ሻ 
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By applying Zidani-Souza’s method of the appendix A, this problem is efficiently solved by expanding 𝑥ଵ and 
𝑥ଶ as polynomials of degree 6, having their coefficients in ሾെ𝑐௠௔௫, 𝑐௠௔௫ሿ ൌ ሾെ10,10ሿ. The numerical results are as 
following: 

𝒙ଵ
∗ ൌ argmin

𝒙 ∈ ௌ೏

𝑓ଵሺ𝒙ሻ ൌ ሺ0,0ሻ୲ 

𝒙ଶ
∗ ൌ argmin

𝒙 ∈ ௌ೏

𝑓ଶሺ𝒙ሻ ൌ ሺ5,3ሻ୲ 

𝒇௨௧௢௣௜௔ ൌ ൫𝑓ଵሺ𝒙ଵ
∗ሻ, 𝑓ଶሺ𝒙ଶ

∗ ሻ൯
୲

ൌ ሺ0,4ሻ୲ 

𝐴௦௢௟ ൌ න ൻrot൫𝒑∗ሺ𝑡ሻ൯ห∇𝒑∗ሺ𝑡ሻൿd𝑡
௧∈ሾ଴,ଵሿ

ൌ 1431 

⟨ . | . ⟩ being the scalar product, rot൫𝒑∗ሺ . ሻ൯ the rotational of 𝒑∗and 𝐴௦௢௟ is the area ሺor hypervolumeሻ that was 
minimized and that is bounded by the utopia point and the Pareto front given by 𝒑∗ ൌ ሺ𝑓ଵ

∗, 𝑓ଶ
∗ሻ. 

The corresponding Pareto front is presented in Figure 7. 

 
Figure 7: Pareto front of the Binh and Korn test function 

 

To make the problem uncertain, we introduce randomness in the 2nd objective function by using two uncorre-
lated random variables 𝜉ଵ and 𝜉ଶ that are uniformly distributed on ሾ0,1ሿ: 

Minimize
𝒙∈ℝమ

൜
𝑓ଵሺ𝒙ሻ ൌ 4ሺ𝑥ଵ ൅ 𝜉ଵሻଶ ൅ 4ሺ𝑥ଶ ൅ 𝜉ଶሻଶ 

𝑓ଶሺ𝒙ሻ ൌ ሺ𝑥ଵ െ 0.2𝜉ଵ െ 5ሻଶ ൅ ሺ𝑥ଶ െ 0.2𝜉ଶ െ 5ሻଶ 

Such that ቐ
ሺ𝑥ଵ െ 5ሻଶ ൅ 𝑥ଶ

ଶ ൑ 25
 ሺ𝑥ଵ െ 8ሻଶ ൅ ሺ𝑥ଶ ൅ 3ሻଶ ൒ 7.7
 0 ൑ 𝑥ଵ ൑ 5 , 0 ൑ 𝑥ଶ ൑ 3

 ሺ19ሻ 
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Figure 8: Binh and Korn function under uncertainties for nsൌ200 sample size: the median Pareto front appears in red, 

the confidence interval in green and the Pareto fronts beyond the 90%-quantile in blue 

 

Since there are no uncertainties in constraints, they must be satisfied at a 100% level of probability for the 
problem solution. Figure 8 shows the 200 Pareto fronts obtained, with the mean front in red, the 180 nearest fronts 
to the mean in green and the 20 farthest ones - in the sense of Hausdorff’s distance - in blue. Thus, the green curves 
correspond to the 90% closer to the median in the sense of Hausdorff’s distance and may be considered as belong-
ing to a confidence interval with risk į ൌ 10%. We observe that, as expected, the median is a central curve and the 
curves laying outside the confidence interval are the outermost ones. 

6.2 Fonseca and Fleming function 

The Fonseca and Fleming problem ሺFonseca and Fleming 1995ሻ is: 

Minimize
𝒙∈ℝయ

 ൞
𝑓ଵሺ𝒙ሻ ൌ 1 െ exp ൤െ ∑ ቀ𝑥௜ െ

ଵ

√ଷ
ቁ

ଶ
ଷ
௜ୀଵ ൨

𝑓ଶሺ𝒙ሻ ൌ 1 െ exp ൤െ ∑ ቀ𝑥௜ ൅
ଵ

√ଷ
ቁ

ଶ
ଷ
௜ୀଵ ൨

 ሺ20ሻ 

such that ∶  െ4 ൑ 𝑥௜ ൑ 4 ;  𝑖 ∈ ሼ1,2,3ሽ 

Here yet, polynomials of the 6th. degree with coefficients on ሾെc୫ୟ୶, c୫ୟ୶ሿ ൌ ሾെ10,10ሿ are considered. The nu-
merical results are the following, and the Pareto front is shown in Figure 9: 

𝒙ଵ
∗ ൌ argmin

𝒙 ∈ ௌ೏

𝑓ଵሺ𝒙ሻ ൌ ൬
1

√3
,

1

√3
,

1

√3
൰

୲

 

𝒙ଶ
∗ ൌ argmin

𝒙 ∈ ௌ೏

𝑓ଶሺ𝒙ሻ ൌ െ ൬
1

√3
,

1

√3
,

1

√3
൰

୲

 

𝒇௨௧௢௣௜௔ ൌ ൫𝑓ଵሺ𝒙ଵ
∗ሻ, 𝑓ଶሺ𝒙ଶ

∗ ሻ൯
୲

ൌ ሺ0,0ሻ୲ 

𝐴௦௢௟ ൌ න ⟨rotሺ𝒑∗ሺ𝑡ሻ|∇𝒑∗ሺ𝑡ሻ⟩d𝑡
௧∈ሾ଴,ଵሿ

ൌ 0.6579 
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Three uncorrelated random variables 𝜉ଵ, 𝜉ଶ and 𝜉ଷ that are all uniformly distributed on ሾ0,0.1ሿ are added to 
this system in order to make it uncertain, then 𝑛𝑠 ൌ 200 deterministic problems derived from the initial one are 
obtained as follows: 

Minimize
𝒙∈ℝయ

 ൞
𝑓ଵሺ𝒙ሻ ൌ 1 െ exp ൤െ ∑ ቀ𝑥௜ െ

ଵ

√ଷ
൅ 𝜉௜ቁ

ଶ
ଷ
௜ୀଵ ൨

𝑓ଶሺ𝒙ሻ ൌ 1 െ exp ൤െ ∑ ቀ𝑥௜ ൅
ଵ

√ଷ
െ 𝜉௜ቁ

ଶ
ଷ
௜ୀଵ ൨

 ሺ21ሻ 

such that ∶  െ4 ൑ 𝑥௜ ൑ 4 ;  𝑖 ∈ ሼ1,2,3ሽ 

 
Figure 9: Pareto front of the Fonseca and Fleming test function 

 

Figure 10 shows the 200 curves we get and the mean that minimizes both of the distances that we used is in 
the middle of the curves set as expected. 

 
Figure 10: Fonseca and Fleming under uncertainties for 𝑛𝑠 ൌ 200: the median Pareto front appears in red, the confi-

dence interval in green and the Pareto fronts beyond the 90%-quantile in blue 
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In this case 𝑓ଶ൫𝑓ଵሺ𝒙ሻ൯ is a concave function, furthermore, all of the Pareto fronts ends are located together is a 
small region of space. In this case, the Hausdorff distance exhibits a larger variation in the middle of the family of 
curves, so that the curves beyond the 90%-quantile ሺin blueሻ appear more clearly when compared to the preceding 
situation. Notice that the median appears as a mean curve, in the center of the family. 

6.3 Zitzler-Deb-Thiele's function 3 ሺZDT3ሻ 

Let us consider the function 𝑔 of 𝒙 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ defined such as: 

𝑔ሺ𝒙ሻ ൌ 1 ൅
ଽ

௡ିଵ
∑ 𝑥௜

௡
௜ୀଶ  ሺ22ሻ 

Then, the ZDT3 Problem, which is reported in Zitzler et al. ሺ2000ሻ reads as follows: 

Minimize
𝒙∈ℝ೙

⎩
⎨

⎧
𝑓ଵሺ𝒙ሻ ൌ 𝑥ଵ

𝑓ଶሺ𝒙ሻ ൌ 1 െ ට
௙భሺ𝒙ሻ

௚ሺ𝒙ሻ
െ ቀ

௙భሺ𝒙ሻ

௚ሺ𝒙ሻ
ቁ sin൫10𝜋𝑓ଵሺ𝒙ሻ൯

0 ൑ 𝑥௜ ൑ 1 𝑖 ∈ ሼ1,2, … , 𝑛ሽ

 ሺ23ሻ 

Here we consider the case 𝑛 ൌ 2. The Pareto front of this problem is given in Figure 11. 

 
Figure 11: Pareto front of the ZDT3 test function 

 

In order to make the problem uncertain, we introduce two uncorrelated random variables 𝜉ଵ and 𝜉ଶ that are 
uniformly distributed on ሾ0,1ሿ and on ሾെ0.15,0.15ሿ, respectively. Then, we consider 

ቐ
𝑓ଵሺ𝒙ሻ ൌ 𝑥ଵ ൅ 𝜉ଵ

𝑓ଶሺ𝒙ሻ ൌ 1 ൅ 𝜉ଶ െ ට
௙భሺ𝒙ሻ

௚ሺ𝒙ሻ
െ ቀ

௙భሺ𝒙ሻ

௚ሺ𝒙ሻ
ቁ sin൫10𝜋𝑓ଵሺ𝒙ሻ൯

 ሺ24ሻ 

In Figure 12, we exhibit the results obtained from a sample of ns ൌ 200. 
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Figure 12: Pareto fronts of the ZDT3 test function involving uncertainties: for 𝑛𝑠 ൌ 200: the median Pareto front appears 

in red, the confidence interval in green and the Pareto fronts beyond the 90%-quantile in blue 

In this case, the Pareto’s front is discontinuous. This fact makes that Hausdorff’s distances between curves that 
seem close to the eye are, in fact, large in the sense of Hausdorff’s distance. This fact is due to the fact that some 
parts of a curve may be isolated from the other curve, so that the distance of these points to the other one is large. 
For instance, let us consider the fronts shown in Fig. 13: the blue front may appear to the eye as being closer to the 
red one than the green front, but the respective Hausdorff’s distances are 0.4132 and 0.1975, so that the green front 
is closer to the red one in the Hausdorff’s sense. Observe that the red front has points which are far from the blue 
one. 

 
Figure 13: The blue front may appear as closer to the median ሺin redሻ than the green one, but its Hausdorff’s distance is 

the greatest one. 

 

An alternative consists in evaluating the distances only on the first 5 parts of the front ሺthus, in neglecting the 
last oneሻ. In this case, we obtain the result shown in Figure 14: in this case, the results better fit the eye’s expecta-
tions, but the confidence interval appears as unilateral. 
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Figure 14: ZDT3 median Pareto front ሺredሻ and confidence interval ሺgreenሻ when the last arc is ignored. 

7 APPLICATION ON A 5-BAR TRUSS STRUCTURE 

In this section we study  the five-bar truss structure sketched in Figure 15, where we minimize its total mass 
denoted 𝑤, simultaneously with its maximum displacement denoted 𝑢 ሺEllaia et al. 2013ሻ. Then we introduce un-
certainties on some parameters to see how the solution set behaves when the system values change. 

It is assumed that the structure will be modeled by linear, two nodes, bar elements in linear elasticity, subjected 
only to axial forces and free from imperfections. The geometric and material parameters used are length 𝑙 ൌ
9.3144 m, area 𝑎 ൌ 0.01419352 mଶ, load 𝑝 ൌ 448.2 kN, Young′s modulus 

𝑒 ൌ 68.95 GPa, density 𝜌 ൌ 2,768 kg mଷ⁄ and yield stress 𝜎 ഥ ൌ  172.4 MPa. 

 
Figure 15: 5 bar truss structure schema 

Denoting 𝒙 ∈ ℝହ the vector of the topological and sizing optimization parameters, such that 0 ൑ 𝑥௜ ൑ 1 for 𝑖 ∈
ሼ1, 2, … , 𝑛ሽ where 𝑛 ൌ 5 is the number of elements, the problem to solve is: 

Minimize
𝒙∈ℝఱ

ቐ
 𝑓ଵሺ𝒙ሻ ൌ 𝑤 ൌ ∑ 𝜌ହ

௜ୀଵ 𝑎𝑙௜𝑥௜ 

𝑓ଶሺ𝒙ሻ ൌ 𝑢 ൌ max ൬𝒖∗ ൌ argmin ቀ
ଵ

ଶ
𝒖௧𝒌ሺ𝒙ሻ𝒖 െ 𝒖௧𝒇ቁ൰

 ሺ25ሻ 

Such that ∶ 𝜎௜ ൑ 𝜎ത , 1 ൑ 𝑖 ൑ 𝑛 

where 𝒌 is the stiffness matrix and 𝒇 the vector of loads of the finite element ሺFEሻ model and 𝜎௜ is the stress of the 
𝑖௧௛ bar. 
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With a 6 degree polynomial 𝝋 and 𝑐௠௔௫ ൌ 10, we get the Pareto front in Figure 16. 

 
Figure 16: Pareto front of the 5 bar truss structure 

 

In the next step we consider: 
• the force 𝑝 that becomes uncertain (denoted 𝑃) following a normal distribution with 10% for the coefficient of variation. 
• the Young modulus 𝑒 that becomes uncertain too (denoted 𝐸) following a truncated normal distribution defined on ሾ60.68 , 77.22ሿGPa with 

3% for the coefficient of variation. 
As done with the test functions, ns ൌ 200 problems are generated with a MCS and the result we obtained is 

shown in Figure 17: 

 
Figure 17: Pareto fronts of the 5 bar truss structure with uncertainties: the median Pareto front appears in red, the con-

fidence interval in green and the Pareto fronts beyond the 90%-quantile in blue 
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In Figure 17, results are “as expected”: the mean is in the middle of the curves set, while curves beyond the 
90%-quantile ሺin blueሻ are located at the exterior of the curves set. 

8 Summary 

In this work, the MOO problems with constraints and uncertainties are addressed. Instead of analyzing a cloud 
of data points, the adopted point of view consists of analyzing the randomness of objects that can be modeled by 
continuous geometric forms, thanks to the Zidani and Souza de Cursi's method which leads to a piecewise continu-
ous Pareto front for the MOO problems, and curves distances measures. Hence, by using a Monte Carlo simulation, 
a sample of Pareto fronts is generated and the Hausdorff’s distance leads to a Pareto front quantile analysis, from 
the link that we made between Statistics and Geometry. Three academic problems are first modified to handle un-
certainties and then solved. Next, an application to a 5-bar truss structure with two exogenous random variables is 
considered to demonstrate the applicability of the proposed method with a more difficult problem. All results ob-
tained appear satisfactory when observing the location of the median curve and quantiles. 

A possible perspective of this work is to apply the approach presented in this paper to a MOO problem under 
uncertainties where objective functions and constraints are expended with Generalized Fourier Series ሺBassi et al. 
2016ሻ. The use of approximated functions instead of the initial ones aims to reduce the algorithms running time. 

Example 6.3 shows that Hausdorff’s distance may lead to results that may be considered as unexpected from 
the eye’s point of view. We may find in the literature modifications of Hausdorff’s distance ሺsee, for instance, Dubu-
isson and Jain, 1994ሻ - different distances may be used with the procedure exposed in this work. The comparison 
between the existing distances and the definition of criteria for the selection of the adequate one will be matter of 
further work. 
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Appendix A 

THE VARIATIONAL APPROACH FOR THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

In this appendix, we explain the variational approach that leads to the Zidani-Souza’s method used in this work, 
originally proposed in Zidani et al. ሺ2013ሻ and in Souza de Cursi ሺ2015ሻ. 

Let us consider two objective functions 𝑓ଵ and 𝑓ଶ having as individual minima: 

ቐ
𝒙𝟏

∗ ൌ argmin
𝒙∈ௌ೏

𝑓ଵሺ𝒙ሻ

𝒙𝟐
∗ ൌ argmin

𝒙∈ௌ೏

𝑓ଶሺ𝒙ሻ
  ሺ26ሻ 

We look for a curve connecting these two points, defined by an unknown vector of parameters 𝒄: 

𝒙ሺ𝒄, 𝑡ሻ ൌ ሺ𝑥ଵሺ𝒄, 𝑡ሻ, 𝑥ଶሺ𝒄, 𝑡ሻ, … , 𝑥ௗሺ𝒄, 𝑡ሻሻ୲ ൌ ሺ𝒙𝟐
∗ െ 𝒙𝟏

∗ ሻ. 𝑡 ൅ 𝒙𝟏
∗ ൅ 𝝋ሺ𝒄, 𝑡ሻ ሺ27ሻ 

The variable 𝑡 is assumed to belong to ሾ0,1ሿ. Since 𝒙𝟏
∗  and 𝒙𝟐

∗  belong to the curve, we have: 

∀𝒄 ∶ 𝝋ሺ𝒄, 0ሻ ൌ 𝝋ሺ𝒄, 1ሻ ൌ 𝟎 ሺ28ሻ 

A simple choice consists in using polynomials, such as, for instance 

𝝋ሺ𝑡ሻ ൌ ∑ 𝒄.𝒊
௡ିଵ
௜ୀଵ ൫𝑡௜ െ 1൯ െ 𝒄.𝒏ሺ𝑡௡ െ 1ሻ with 𝒄.𝒏 ൌ ∑ 𝒄.𝒊

௡ିଵ
௜ୀଵ  , 𝒄.𝒊 ∈ ℝௗ ሺ29ሻ 

where 𝒄.𝒊 stands for the ith column of the coefficient matrix 𝒄. 
Taking the last condition into account, we may look for 

𝝋ሺ𝑡ሻ ൌ ∑ 𝒄.𝒊
௡ିଵ
௜ୀଵ ൫𝑡௜ାଵ െ 𝑡௜൯ , 𝒄.𝒊 ∈ ℝௗ ሺ30ሻ 

In order to solve a given MOO problem, let 𝒄.𝟏, 𝒄.𝟐, … , 𝒄.𝒏 be varying into a set C that we choose in compliance 
with the situation under consideration. The Pareto front is obtained by minimizing the hypervolume between the 
curve ൛𝒑ሺ𝑐, 𝑡ሻ ൌ ൫𝑓ଵሺ𝒙ሺ𝒄, 𝑡ሻሻ, 𝑓ଶሺ𝒙ሺ𝒄, 𝑡ሻሻ൯ , 𝑡 ∈ ሾ0,1ሿൟ and the utopia point, or by maximizing the hypervolume be-
tween this curve and the anti-utopia point ሺFigure 18ሻ. In this work, we apply the first method by using the Stokes 
formula that allows the use of the integration on a curve instead of the integration on a surface: 

𝐴ሺ𝒄ሻ ൌ ׬ ൻrot൫𝒑ሺ𝒄, 𝑡ሻ൯ห𝛻𝒑ሺ𝒄, 𝑡ሻൿ𝑑𝑡௧∈ሾ଴,ଵሿ  ሺ31ሻ 

where rotሺ𝒑ሻ stands for the rotational of 𝒑. Once we solve the problem: 

𝒄𝒔𝒐𝒍 ൌ argmin
஼

𝐴ሺ𝒄ሻ ሺ32ሻ 

we get the Pareto front 𝑆௦௢௟ of ℝଶ as: 

𝑆௦௢௟ ൌ ൛𝒑∗ሺ𝑐, 𝑡ሻ ൌ ൫𝑓ଵሺ𝒙ሺ𝒄𝒔𝒐𝒍, 𝑡ሻሻ, 𝑓ଶሺ𝒙ሺ𝒄𝒔𝒐𝒍, 𝑡ሻሻ൯ , 𝑡 ∈ ሾ0,1ሿൟ ሺ33ሻ 

 
Figure 18: Pareto front using Zidani-Souza’s method  


