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Abstract 
A procedure involving spectral Galerkin and integral transfor-
mation methods has been developed and applied to treat the 
problem of the dynamic deflections of beam structure resting on 
bi-parametric elastic subgrade and subjected to travelling loads.  
The case of the response to moving constant loads of this slender 
member is first investigated and a closed form solution in series 
form describing the motion of the beam while under the actions 
of the travelling load is obtained.  The response under a variable 
magnitude moving load with constant velocity is finally treated 
and the effects of prestressed, foundation stiffness, shear modulus 
and damping coefficients are investigated.  Results in plotted 
curves indicate that these structural parameters produce signifi-
cant effects on the dynamic stability of the load-beam system. 
Conditions under which the beam-load system may experience 
resonance phenomenon are also established some of these findings 
are quite useful in practical applications. 
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1 INTRODUCTION 

Study concerning the subject of moving load systems has become increasingly important owing to 
its range of applications in transportation industries, aerospace engineering and related fields.    
Elastic structures are very useful in many engineering fields, thus their dynamic behaviours when 
under the action of travelling loads of different forms have received extensive attention in the open 
literature [1-8].  When these important engineering structures are resting on an elastic foundation, 
the structure-foundation interaction effects play significant roles in their response behaviour and 
alter the dynamic states of the structures from those vibrating in the absence of foundation [9].  
Hence, the dynamic behaviour of structures on elastic foundation is of great importance in structur-
al, aerospace, civil, mechanical and marine engineering applications.   
 Consequently, it is important to clarify the influence of the foundation on the behaviour of elas-
tic structures in engineering designs.  Furthermore, to accurately assess the dynamic response of 
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any structural member on elastic foundations, a mechanical model is required to predict the inter-
action effects between such structures and foundations.  Beams on elastic foundation and under the 
actions of the moving loads have received a considerable attention in literature; see for example 
references [10-18].  However, most of these works employed the simplest mechanical model which 
was developed by Winkler and generally referred to as a one-parameter model.  The deficiency of 
this model is that it assumes no interaction between the springs, so it does not accurately represent 
the characteristics of many practical foundations [19].  Thus to overcome the deficiencies inherent in 
Winkler formulation, a two-parameter foundation models which takes into account the effect of 
shear interactions between springs has been suggested.  Nonetheless, dynamic analysis of elastic 
structures on a two-parameter foundation model has received little attention in the open literature.  
It is observed that, when the parameters of the foundation mechanical models are constant along 
the span of the structure, the differential equation has constant coefficients, and the solution can be 
given as a linear combination of elementary functions, but if the foundation parameters vary along 
the structures, it is difficult to obtain the exact solutions of these differential equations in most 
cases, and a numerical technique is resorted to.  Nevertheless, an exact analytical procedure is de-
sirable as solution so obtained sheds more light on some vital information about the vibrating sys-
tem.  Thus, in this paper, an analytical approach is developed to assess the dynamic response be-
haviour of elastic beams resting on two-parameter elastic foundation and subjected to travelling 
loads.  To classify the influence of the foundation model and other important structural parameters 
on the dynamic response of the beams to moving loads, several numerical examples will also be 
presented.  Effects of different types of moving loads on the beams will be investigated. 
 
2 THE MATHEMATICAL FORMULATION 

Consider a structurally damped elastic beam resting on a two-parameter elastic subgrade and 
under the actions of concentrated travelling load.  The differential equation governing the motion 
of such beam is given by 
 

     
EI ′′′′Z x,t( )−N ′′Z x,t( ) + µ Z x,t( ) + ε0

Z x,t( ) + F x( )Z x,t( )− ′G x( ) ′Z x,t( )−G x( ) ′′Z x,t( ) = P x,t( )  (1) 
 
where the prime and the over-dot  are the partial derivatives with respect to the spatial coordi-
nate x and the time t respectively, E is the modulus of elasticity, I is the constant moment of 
inertia, ( ),Z x t  is the transverse deflection of the beam, N is the axial force, m is the mass of the 

beam per unit length, 0e  is the damping coefficient, F(x) is the variable elastic foundation, G(x) 
is the non-uniform shear rigidity of the foundation and P(x,t) is the time dependent concentrated 
travelling load. 

The boundary conditions at the end x = 0 and end x = L are given as 
 

( ) ( )0, 0 ,Z t Z L t= = , ( ) ( )2

2

0, ,
0

Z t Z L t

x x

∂ ∂
= =

∂ ∂
 (2) 

 
and the  initial conditions are also given as 
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Z x,0( ) = 0 =

∂Z x,0( )
∂t

 (3) 

 
 Furthermore, the variable elastic foundation F(x) and the non-uniform shear rigidity of the 
foundation are given as 
 

   
F x( ) = F0 4x − 3x 2 + 3x 3( )  (4) 

 
and 
 

   
G x( ) = G0 12−13x + 6x 2 − x 3( )  (5) 

 
where F0 and G0 are the foundation and shear rigidity constants respectively.   
Substituting (4) and (5) into (1) one obtains 
 

    

EI
∂4Z x,t( )
∂x 4

+ µ
∂2Z x,t( )
∂t2

−N
∂2Z(x,t)

∂x 2
+ ε0

∂Z(x,t)
∂t

+ F0 4x − 3x 2 + x 3( )Z x,t( )

−
∂
∂x

G0(12−13x + 6x 2 − x 3) ⋅
∂Z x,t( )
∂x

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

= P x,t( )
 (6) 

 
In what follows, we seek to calculate the dynamic deflection 

   
Z x,t( )of the vibrating system for 

different type of dynamic load
   
P x,t( ) . 

 
3 FORCED VIBRATIONS OF BEAMS SUBJECTED TO CONSTANT MAGNITUDE 
TRAVELLING LOAD 
 
If the travelling concentrated load is assumed to be of the constant magnitude then, the dynamic 
load ( ),P x t  can be written as 

 

    
P x,t( ) = Pδ x − vit( ) (7) 

 
 Thus, in view of (7) equation (6) can be rewritten as 
 

    

EI
∂4ZA x,t( )
∂x 4

+ µ
∂2ZA x,t( )
∂t2

−N
∂2ZA(x,t)

∂x 2
+ ε0

∂ZA(x,t)
∂t

+ F0 4x − 3x 2 + x 3( )ZA x,t( )

−
∂
∂x

G0(12−13x + 6x 2 − x 3) ⋅
∂ZA x,t( )
∂x

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

= Pδ x − vit( )
 (8) 
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 Equation (8) describes the motions of a prestressed homogeneous beam resting on a two-
parameter elastic subgrade and subjected to fast travelling forces.  Closed-form solution to the 
fourth order partial differential equation (8) governing the motion of the elastic thin member 
under the action of concentrated moving forces is now sought. 
 
3.1 Solut ion procedures 

The approximate analytical method due to Galerkin extensively discussed in [4] is employed to 
approximate the solution of the boundary-initial-value problem (1), (2).  According to this tech-
nique, the Mth  term approximate solution  of (2), (8) is sought in the form  
 

   
ZA x,t( ) =

i=1

M

∑ Qi t( )Pi x( )  (9) 

 
where ( )iQ t  are coordinates in modal space and ( )iP x are the normal modes of vibration written 

as 
 

    
Pi x( ) = sinλix + Ai cosλix + Bi sinhλix +Ci coshλix  (10) 

 
 No difficulty arises at all to show that for a beam with simply supported end conditions, tak-
ing into account equation (10), equation (9) can be written as 
 

    
ZA x,t( ) =

i=1

M

∑ Qi t( )sin iπx
L

 (11) 

 
 Substituting equation (11) into the governing equation (8), one obtains 
 

    

EI
∂4

∂x 4
i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−N

∂2

∂x 2
i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
+ µ
∂2

∂t2
i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
+ ε0

∂
∂t i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

+F0 4x − 3x 2 + x 3( )
i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−
∂
∂x

G0 12−13x + 6x 2 − x 3( ) ⋅ ∂
∂x i=1

M

∑ Qi(t)sin
iπx
L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= P ∂ x − vit( )
 (12) 

 
which after some simplifications and rearrangements yields 
 

     

i=1

M

∑ EI
iπ
L

⎛

⎝
⎜⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

4

Qi sin
iπx
L

+ N
iπx
L

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

Qi sin
iπx
L

+ µ Qi t( )sin iπx
L

+ ε0
Qi t( )sin iπx

L
+ F0 4x − 3x 2 + x 3( )Qi t( )sin iπx

L

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

+G0 3x 2 −12x + 13( )Qi t( )cos iπx
L

+G0 12−13x + 6x 2 − x 3( ) iπ
L

⎛

⎝
⎜⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2

Qi t( )sin iπx
L

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
−Pδ x − vit( ) = 0

 (13) 
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 To determine the expression for ( )iQ t , the expression on the LHS of equation (13) is required 

to be orthogonal to the function 
   
sin

jπx
L

.  Thus, multiplying equation (13) by 
   
sin

jπx
L

 and inte-

grating with respect to x from x=0 to x=L, leads to 
 

     i=1

M

∑ φ1
Qi t( ) + φ2

Qi t( ) + φ3 + φ4 + φ5 + φ6 + φ7( )Qi t( ){ } =
0

L

∫ Pδ x − vit( )sin jπx
L

dx  (14) 

 
where  
 

    
φ1 = µ sin

iπx
L

sin
jπx
L

dx
0

L

∫ , 

    
φ2 = ε0 sin

iπx
L

sin
jπx
L

dx
0

L

∫ , 

    
φ3 = EI

iπ
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

4

sin
iπx
L

sin
jπx
L

dx
0

L

∫ , 

    
φ4 = N

iπ
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2

sin
iπx
L

sin
jπx
L

dx
0

L

∫ , 

    
φ5 = F0 4x − 3x 2 + x 3( )sin iπx

L
sin

jπx
L

dx
0

L

∫ , 

    
φ6 =

iπ
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟ G0 3x 2 −12x + 13( )cos iπx

L
sin

jπx
L

dx
0

L

∫ , 

    
φ7 =

iπ
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2

G0 12−13x + 6x 2 + x 3( )sin iπx
L

sin
jπx
L

dx
0

L

∫  

(15) 

 
  Noting the property of the dirac delta function  
 

    
a

b

∫ δ x − k( ) f (x)dx =

0, k < a < b

f (k), a < k < b

0, a < b < k

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 (16) 

 
 and considering only the ith particle of the system, equation (14) can then be written as 
 

    

d2

dt2
Qi t( ) + β1

d
dt

Qi t( ) + β2Qi t( ) = β3 sin
jπvit
L

 (17) 
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where 
 

   
β1 =

φ2

φ1
,  

   
β2 =

φ3 + φ4 + φ5 + φ6 + φ7( )
φ1

 and 
    
β3 =

P
φ1

 (18) 

 
 To obtain the solution of the equation (17), it is subjected to a Laplace transform defined as 
 

    
⋅( ) =

0

∞

∫ ⋅( )e−stdt  (19) 

 
where s is the Laplace parameter.  Applying the initial conditions (3), one obtains the simple 
algebraic equation given as 
 

    
Qi s( ) =

1

s2 + β1s + β2

β3θ

s2 + θ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 (20) 

 

where 
   
θ =

jπvi

L
 

which when simplified further yields 
 

    
Qi s( ) =

β3

α1 − α2( )
1
α1

α1

s − α1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅

θ
s2 + θ2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−

1
α2

α2

s − α2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅

θ
s2 + θ2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (21) 

 
where 
 

   
α1 =

−β1 + β1
2 − 4β2( )

2
 and 

   
α2 =

−β1 − β1
2 − 4β2( )

2
 (22) 

 
 In what follows, we seek to find the Laplace inversion of equation (21).  To this effect, the 
following representations are adopted 
 

    
f1 s( ) =

1
s − α1

,  
    
f2 s( ) =

1
s − α2

 and 
    
g s( ) =

θ
s2 + θ2

 (23) 

 
 So that the Laplace of (21) is the convolution of 

  
fi s( )  and 

  
g s( )  defined as 

 

   
fi s( )∗ g s( ) =

0

t

∫ fi t −u( )g u( )du i = 1,2  (24) 

 
 Thus, the Laplace inversion of (21) is given by 
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Qi t( ) =

β3

α1 − α2( )
eα1t

α1

Ra −
eα2t

α2

Rb

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (25) 

 
where 
 

    
Ra =

0

t

∫ e−α1u sin θudu  and  
    
Rb =

0

t

∫ e−α2u sin θudu  (26) 

 
 Thus, in view of (25), taking into account (26) one obtains 
 

    

Q
i

t( ) =
α

1
β

3

α
1
− α

2( ) α1
2 + θ2( )

θ

α
1

eα1
t − cos θt( )− sin θt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

α
2
β

3

α
1
− α

2( ) α2
2 + θ2( )

θ

α
2

eα2
t − cos θt( )− sin θt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (27) 

 
 Substituting equation (27) into equation (9) leads to 
 

    
Z

A
x, t( ) =

i =1

M

∑
α

1
β

3

α
1
− α

2
( ) α

1

2 + θ2( )
θ

α
1

e
α

1
t
− cos θt( ) − sin θt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

α
2
β

3

α
1
− α

2
( ) α

2

2 + θ2( )
θ

α
2

e
α

2
t
− cos θt( ) − sin θt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sin

iπx

L

 
(28) 

 
 Equation (28) represents the transverse displacement response of the damped beam resting on 
a two-parameter elastic subgrade and under the actions of constant magnitude moving loads. 
 
4 FORCED VIBRATIONS OF BEAMS SUBJECTED TO EXPONENTIALLY VARYING 
MAGNITUDE TRAVELLING LOAD 
 
In this section, the dynamic response of the elastic thin beam resting on a two-parameter elastic 
subgrades to exponentially varying load is scrutinized.  Thus, for the purpose of example in this 
section the dynamic load ( ),P x t  is taken in this section to be of the form 

 

    
P x,t( ) = Pewtδ x − vit( )  (29) 

 
 Substituting equation (29) into equation (6), following the same arguments as in the previous 
section, after some simplification and rearrangements one obtains 
 

     i=1

M

∑ φ1
Qi t( ) + φ2

Qi t( ) + φ3 + φ4 + φ5 + φ6 + φ7( )Qi t( ){ } =
0

L

∫ Pewtδ x − vit( )sin jπx
L

dx  (30) 

 
where all parameters are as previously defined. 
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 Using the property of Dirac delta already alluded to, equation (30) can be rewritten as 
 

    

d2

dt2
Qi t( ) + β1

d
dt

Qi t( ) + β2Qi t( ) = β3e
wt sin

jπvit
L

 (31) 

 
 Solving equation (31) in conjunction with the initial conditions, yields 
 

    

Qi t( ) =
w − α1( )β3

α1 − α2( ) w − α1( )2 + θ2⎡
⎣
⎢

⎤
⎦
⎥

θ
w − α1( )

eα1t −ewt cosθt( ) + ewt sin θt
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

−
w − α2( )β3

α1 − α2( ) w − α2( )2 + θ2⎡
⎣
⎢

⎤
⎦
⎥

θ
w − α2( )

eα2t −ewt cosθt( ) + ewt sin θt
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

 (32) 

 
 Substituting equation (31) into equation (9) one obtains 
 

    

ZB x,t( ) =
i=1

M

∑
w − α1( )β3

α1 − α2( ) w − α1( )2 + θ2⎡
⎣
⎢

⎤
⎦
⎥

θ
w − α1( )

eα1t −ewt cosθt( ) + ewt sin θt
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

−
w − α2( )β3

α1 − α2( ) w − α2( )2 + θ2⎡
⎣
⎢

⎤
⎦
⎥

θ
w − α2( )

eα2t −ewt cosθt( ) + ewt sin θt
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

× sin
iπx
L

 (33) 

 
which represents the transverse displacement response of the damped beam resting on a two-
parameter elastic subgrade and under the actions of exponentially varying magnitude moving 
loads. 
 
5 FORCED VIBRATIONS OF BEAMS SUBJECTED TO HARMONICALLY VARYING 
MAGNITUDE TRAVELLING LOAD 
 
In this section, the dynamic response of the elastic thin beam resting on two-parameter elastic 
subgrades to exponentially varying load is scrutinized.  Thus, for the purpose of example in this 
work the traversing load ( ),P x t  tis taken to be of the form 

 

    
P x,t( ) = P cosωtδ x − vit( )  (34) 

 
 Substituting equation (34) into equation (6), following the same arguments as in the previous 
section, after some simplification and rearrangements one obtains  
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     i=1

M

∑ φ1
Qi t( ) + φ2

Qi t( ) + φ3 + φ4 + φ5 + φ6 + φ7( )Qi t( ){ } =
0

L

∫ P cosωtδ x − vit( )sin jπx
L

dx  (35) 

where all parameters are as previously defined. 
 Again, using the property of dirac delta , quation (35) can be rewritten as 
 

    

d2

dt2
Qi t( ) + β1

d
dt

Qi t( ) + β2Qi t( ) = β3 cosωt sin
jπvit
L

 (36) 

 
 Using trigonometric identity, equation (36) can further be written as 
 

    

d2

dt2
Qi t( ) + β1

d
dt

Qi t( ) + β2Qi t( ) =
β3

2
sin

jπvi

L
+ ω

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+ sin
jπvi

L
− ω

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (37) 

 
 Following the same arguments and procedures listed in section 3.0, one obtains the solution of 
equation (37) as 
 

    

Q
A

t( ) =
Hα1

θ1
2 + α1

2

θ1
α1

e
α1t − cosθ1t( )− sin θ1t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

Hα1

θ2
2 + α1

2

θ2
α1

e
α1t − cosθ2t( )− sin θ2t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
Hα2

θ1
2 + α2

2

θ1
α2

e
α2t − cosθ1t( )− sin θ1t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

Hα2

θ2
2 + α2

2

θ2
α2

e
α2t − cosθ2t( )− sin θ2t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (38) 

 
where 
 

    
H =

β3

2 α1 − α2( )
, 

    
θ1 = ω +

jπvi

L
, 

    
θ2 = ω −

jπvi

L
 (39) 

 
 Equation (38) on inversion leads to 
 

    

Z x.t( ) =
Hα1

θ1
2 + α1

2

θ1
α1

e
α1t − cosθ1t( )− sin θ1t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

Hα1

θ2
2 + α1

2

θ2
α1

e
α1t − cosθ2t( )− sin θ2t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪i=1

M

∑

−
Hα2

θ1
2 + α2

2

θ1
α2

e
α2t − cosθ1t( )− sin θ1t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

Hα2

θ2
2 + α2

2

θ2
α2

e
α2t − cosθ2t( )− sin θ2t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪⎪

⎭⎪⎪
sin

iπx
L

 (40) 

 
which represents the transverse displacement response of the damped beam resting on a two-
parameter elastic subgrade and under the actions of harmonic variable magnitude travelling 
loads. 
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6 DISCUSSION OF ANALYTICAL SOLUTIONS 

This section seeks to examine and establish the conditions under which the vibrating system may 
grow without bound. This phenomenon constitutes great concern in dynamical system problems.  
From equation (28), it is evidently clear that, an axially prestressed damped beam resting on a 
two-parameter elastic subgrade and under the actions of constant magnitude moving load will 
experience a state of resonance whenever 
 

   α1 = α2 ,    α1
2 = −θ2  or    α2

2 = −θ2  (41) 
 
and the velocity, known as critical velocity at which this occur is given as 
 

    
Cv1 =

L 4β2 + 2β1 β1
2 − 4β2( )− 2β1

2( )
2πj

 or  
    
Cv1 =

L 4β2 + 2β1 β1
2 − 4β2( ) + 2β1

2( )
2πj

 (42) 

 
 Similarly, equation (33) depicts that an axially prestressed damped beam resting on a two-
parameter elastic subgrade and under the actions of exponentially varying magnitude travelling 
load will experience a state of resonance whenever 
 

   α1 = α2 ,     w − α1( )2 = θ2 , 
    
w − α2( )2 = θ2 ,     α1 = w or     α2 = w  (43) 

 
and the velocity at which this occur is given as 
 

    
Cv2 =

wL
πj

+
β1 − β1

2 − 4β2( )( )
2πj

  or 
    
Cv2 =

wL
πj

+
β1 + β1

2 − 4β2( )( )
2πj

,    α1 = α2 = 0  (44) 

 
 While, equation (40) depicts that an axially prestressed damped beam resting on a two-
parameter elastic subgrade and under the actions of harmonic variable magnitude travelling load 
will experience resonance phenomenon whenever 
 

   θ1
2 = −α1

2 ,    θ1
2 = −α2

2 ,    θ2
2 = −α1

2 ,    θ2
2 = −α2

2  (45) 
  
and the critical velocity for this system is given by 
 

    
Cv3 =

Lω
jπ
−

L2 4β2 + 2β1 β1
2 − 4β2( )− 2β1

2( )
4j 2π2

 or 

    
Cv3 =

Lω
jπ
−

L2 4β2 + 2β1 β1
2 − 4β2( ) + 2β1

2( )
4j 2π2

 

(46) 
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7 RESULTS AND DISCUSSION 

In this section, the foregoing analysis is illustrated by considering an isotropic beam structure of 
modulus of elasticity E =   2.10924×109 N/m2, the moment of inertia I =  2.87698×10−3 m4, the 
beam span L = 12.192m and the mass per unit length of the beam m=2758.291 Kg/m.   The 
moving loads in both the cases of travelling constant loads and varying magnitude moving load is 
assumed to be    V = 3.128m / s .  The values of foundation moduli is varied between 0 3/N m  and 

400000 3/N m , the values of axial force N is varied between 0 N and    2 ⋅ 0×108N  and the values 

of shear modulus G is varied between 0 3/N m  and 6000000  N / m3 . 
 Figure 1 depicts the dynamic deflections of structurally damped beam resting on elastic foun-
dation and subjected to constant magnitude loads travelling at constant velocity.  It is clearly 
seen that for fixed values of foundation rigidity K, shear stiffness G and damping coefficient e, 
the transverse displacement response of the beam decreases as the values of the prestress function 
N increases.  Similarly, figures 5 and 9 display for fixed values of foundation rigidity K, shear 
stiffness G, damping coefficient e and for various values of prestress function N the transverse 
displacement response of structurally damped beam to variable harmonic magnitude and expo-
nentially varying moving loads respectively.  It is found also that the dynamic deflections of the 
beam increases as the values of axial force N reduces for fixed values  
 
 

 
 
 
 

Figure 1   Transverse displacement of structurally damped beam for various values of axial force N and for fixed value of Foundation 
stiffness K, shear modulus G and damping coefficient e 

 
 
 
 
 
 

Fig 1: Transverse displacement of structurally damped beam for various values of axial force 
N and for fixed value of Foundation stiffness K , shear modulus G and damping coefficient e
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Figure 2   Deflection profile of a structurally damped beam for various values of foundation modulus K and for fixed values of Axial 
force N, shear force G and damping coefficient e 

 
 
 
 

 
 
 

Figure 3   Displacement response of structurally damped beam subjected to constant magnitude moving load for various values of the 
shear modulus G and for fixed values of the Axial force N, Foundation stiffness k and damping coefficient e 

 
 
 
 
 
 
 

Fig 2: Deflection profile of a structurally damped beam for various values of foundation 
modulus K and for fixed values of Axial force N, shear force G and damping coefficient e
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Fig 3: Displacement response of structurally damped beam subjected to constant magnitude 
moving load for various values of the shear modulus G and for fixed values of the Axial force 

N, Foundation stiffness K and damping coefficient e
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Figure 4   Transverse response of structurally damped beam to constant magnitude moving load for various values of the damping 
coefficient e and for fixed values of Axial force N, Foundation stiffness K and Shear modulus G 

 
 

 
 

 
Figure 5   Transverse response of a structurally damped beam to constant magnitude moving load for various values of damping 

coefficient e and for fixed values of Axial force N, Foundation stiffness K and Shear modulus G 

Fig 4: Transverse response of structurally damped beam to constant magnitude moving load 
for various values of the damping coefficient e and for fixed values of Axial force N, 

Foundation stiffness K and Shear modulus G
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Fig 4: Transverse response of a structurally damped beam to constant magnitude moving 
load for various values of damping coeficient e and for fixed values of Axial force N, 

Foundation stiffeness K and Shear modulus G 
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Figure 6   Transverse displacement of structurally damped beam subjected to exponentially varying magnitude load for various values 
of axial force N and for fixed value of Foundation stiffness K, shear modulus G and damping coefficient e 

 
 

 
 

Figure 7   Deflection profile of a structurally damped beam under the actions of exponentially varying loads for various values of 
foundation modulus K and for fixed values of Axial force N, shear modulus G and damping coefficient e 

Fig 5: Transverse displacement of structurally damped beam subjected to exponentially 
varying magnitude load for various values of axial force N and for fixed value of Foundation 

stiffness K , shear modulus G and damping coefficient e
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Fig 6: Deflection profile of a structurally damped beam under the actions of exponentially 
varying loads for various values of foundation modulus K and for fixed values of Axial force 

N, shear modulus G and damping coefficient e
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Figure 8   Displacement response of structurally damped beam to exponentially varying magnitude moving load for various values of 
the shear modulus G and for fixed values of the Axial force N, Foundation stiffness K and damping coefficient e 

 
 

 
 
 

Figure 9   Transverse response of a structurally damped beam to exponentially varying magnitude moving load for various values of 
damping coefficient e and for fixed values of Axial force n, Foundation stiffness K and Shear modulus G 

  
 of other parameters.  In figure 2, the deflection profile of the structurally damped beam for 
various values of the foundation rigidity K and for fixed values of the shear stiffness G, damping 
coefficient e and the prestress function N is displayed.  It is shown that as the values of the foun-
dation rigidity K increases, the dynamic deflection of the beam decreases for fixed values of the 
shear stiffness G, damping coefficient e and the prestress function N.  In figures 6 and 10, for 
various values of foundation rigidity K and for fixed values of the shear stiffness G, damping coef-

Fig 7: Displacement response of structurally damped beam to exponentially varying 
magnitude moving load for various values of the shear modulus G and for fixed values of the 

Axial force N, Foundation stiffness K and damping coefficient e

-0.00004

-0.00002

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Travelling time t(s)

D
yn

am
ic

 D
ef

le
ct

io
n 

(m
)

G=0

G=60000

G=600000

G=6000000

Fig 8: Transverse response of a structurally damped beam to exponentially varying 
magnitude moving load for various values of damping coeficient e and for fixed values of 

Axial force N, Foundation stiffeness K and Shear modulus G 
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ficient e and prestress function N the transverse displacement response of structurally damped 
beam to variable harmonic magnitude and exponentially varying moving loads respectively are 
shown.  Similarities between these figures and figure 2 are clear.  Figures 3, 7 and 11 showcase 
the effects of the shear stiffness on the flexural motions of beam structure resting on two-
parameter elastic foundation and under the action of various laods travelling at constant velocity 
respectively.  It is found from all these figures that for fixed values of foundation rigidity K, 
damping coefficient e , prestress function N and for various values of shear stiffness G, the dy-
namic deflection of  the beam structure decrease as the values of the shear stiffness G increases. 
 Figure 4 illustrates the dynamic behaviour of structurally damped beam resting on elastic 
foundation and subjected to constant magnitude loads travelling at constant velocity.  It is shown 
that for fixed values of foundation rigidity K, shear stiffness G and the prestress function N, the 
transverse displacement response of the beam decreases as the values of the damping coefficient e 
increases.  Similarly, figures 8 and 12 display for fixed values of foundation rigidity K, shear stiff-
ness G, prestress function N and for various damping coefficient e the transverse displacement 
response of structurally damped beam to variable harmonic magnitude and exponentially varying 
moving loads respectively.  It is observed that the dynamic deflections of the beam increases as 
the values of damping coefficient e dereases for fixed values of foundation rigidity K, shear stiff-
ness G and prestress function N. 
 The comparison of the dynamic behaviour of the axially prestressed beam resting on two-
parameter elastic foundation and under the actions of constants and variable magnitude loads is 
shown in figure 13.  From this figure, it is observed that  higher values of the structural parame-
ters namely axial force N, foundation rigidity K, shear stiffness G and damping coefficient e are 
required for a more noticeable effects in the case of the dynamical systems involving variable 
magnitude loads than those involving constant magnitude moving loads. 
 

 
 

Figure 10   Transverse displacement of structurally damped beam subjected to harmonic variable magnitude load for various values of 
axial force N and for fixed value of Foundation stiffness K, shear modulus G and damping coefficient e 

 

Fig 9: Transverse displacement of structurally damped beam subjected to harmonic variable 
magnitude load for various values of axial force N and for fixed value of Foundation stiffness 

K , shear modulus G and damping coefficient e
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Figure 11   Deflection profile of a structurally damped beam under the actions of exponentially varying loads for various values of 
foundation modulus K and for fixed values of Axial force N, shear modulus G and damping coefficient e 

 
 
 

 
 

Travelling time t(s) 
 

Figure 12   Displacement response structurally damped beam to harmonic variable magnitude moving load for various values of the 
shear modulus G and for fixed values of the Axial force N, Foundation stiffness K and damping coefficient e 

Fig 10: Deflection profile of a structurally damped beam under the actions of exponentially 
varying loads for various values of foundation modulus K and for fixed values of Axial force 
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Fig 11: Displacement response of structurally damped beam to harmonic variable magnitude 
moving load for various values of the shear modulus G and for fixed values of the Axial force 

N, Foundation stiffness K and damping coefficient e
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Figure 13   Transverse response of a structurally damped beam to harmonic variable magnitude moving load for various values of 
damping coefficient e and for fixed values of Axial force N, Foundation stiffness K and Shear modulus G 

 

 
 

Figure 14   Comparison of the deflection profile of a structurally damped beam resting on two-parameter elastic foundation and under 
the influence of moving loads for fixed values of Axial force N, Foundation stiffness K, Shear modulus G 

 
8 CONCLUSION 

The dynamic response of a prestressed homogeneous beam system continuously supported by 
elastic foundation to fast travelling loads of different forms was investigated.  The dynamic de-
flections of this slender member when under the actions of moving loads are obtained in closed 
forms. Conditions under which the beam-load system may experience resonance phenomenon are 
established.  The calculated deflections are clearly presented in plotted curves and discussed.  The 
effects of the damping, pretrsssed, and stiffness of the viscoelastic layer on the beam deflections 

Fig 12: Transverse response of a structurally damped beam to harmonic variable magnitude 
moving load for various values of damping coeficient e and for fixed values of Axial force N, 

Foundation stiffeness K and Shear modulus G 
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Fig 13: Comparison of the deflection profile of a structurally damped beam resting on two-
parameter elastic foundation and under the influnce of moving loads for fixed values of Axial 

force N, Foundation stiffness K, Shear modulus G.
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are scrutinized.  Results of analysis show that the dynamic deflections of the beam increases as 
the values of the damping coefficient e increases.  It is also found that increasing the values of the 
foundation rigidity K, shear stiffness G and prestress function N decreases the deflection of the 
beam significantly.  Furthermore, it is observed that higher values of the structural parameters 
namely axial force N, foundation rigidity K, shear stiffness G and damping coefficient e are re-
quired for a more noticeable effect in the case of the dynamical systems involving variable magni-
tude loads than those involving constant magnitude moving loads. 
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