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Abstract 
In this paper, acoustic power radiation of a submerged finite length ribbed cylinder subject to a harmonic 
point load is minimized by a new fast scheme. For this purpose, two arrangements of non-uniformly 
distributed sequential point masses and mass springs attached on stiffening ribs of the cylinder are used to 
optimally reduce the acoustic power radiation. A fully coupled analysis is here carried out based on 
Finite/Boundary element (FEM/BEM) model. Instead of direct BEM formulation, two beneficial procedures 
have been proposed for computing BEM matrices in each frequency line. In order to fast solving of 
equations, the Krylov vectors (produced via Ritz or Arnoldi iterative procedures) and structural mode shapes 
(modal truncation approach) have been used and validated before performing optimization. As a result, the 
best strategy for evaluation of response and cost function is using Taylor series expansion for computing 
BEM matrices and applying Krylov vectors for order reduction. The results show good agreement with 
previous studies and experiments. The optimization results show noticeable reductions in the acoustic 
power radiation. In point mass optimization, the most of additional masses has been placed in regions which 
are near to the excitation point whereas for the absorber design, they are put in the places in opposite side 
of the excitation point. 
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1 INTRODUCTION 

Nowadays, optimization of acoustic power radiated from submerged structures is important in many applications. 
Analytical modeling methods are applicable to few actual systems so, numerical methods is an essential part of 
simulations especially in optimization processes. In low frequency range, three numerical methods dominate for 
acoustic part simulation: Finite element Method (FEM/IEM), Boundary Element Method (BEM) and Rayleigh integral 
method. 

In vibro-acoustic optimization context, initial studies were accomplished by Olhoff (1974) in 1974. In his work, the 
thickness function of a simply supported rectangular plate was determined such that the fundamental natural 
frequency of transverse vibrations attains an optimum value. 

Knowing the potentials of elastic and inertial modifications on structural noise reduction, several researches have 
been made for vibro-acoustic simulation and optimization of structures by use of mass/springs. Nagaya and Li (1997) 
have optimized structural noise radiation from a rectangular plate by appropriate placement of dynamic absorbers. 
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Constans et al. (1998) have shown that significant sound power reduction can be ensued by optimal placement and 
sizing of small point masses in the semi-cylindrical shell structure using Simulated Annealing Algorithm. They deduced 
that the optimal small point masses can alter the critical mode shapes to quieter modes of vibration and causes to 
sound power reduction. Similar work had been also done by Cheng and Wang for a fluid-loaded beam (Cheng & Wang 
(1998)). 

Ratle and Berry (1998), used a Genetic Algorithm for minimizing emitted sound pressure level of vibrating plate 
carrying point masses. It has been shown that the use of Genetic Algorithm can help finding original solutions that 
would not have been found by any intuitive means; because no a priori bracketing of the optimal solution is needed. 
Also they pointed that choice of cost function and frequency band are important for fast and effective optimization. 
Qiqiang and Zhijian (2012) have optimized a stiffened cylindrical shell with FEM and BEM in 2012. They minimized the 
structural response with employment of power and modal radiation efficiency as objective functions. Point mass 
placement on rings, has been led to a predictable conclusion that embedding point mass on regions close to excitation 
is more efficient for structural response reduction. 

In 2016, Kumar et al. (2016) studied the effect of attached discrete patches/point masses on sound radiation of a 
plate by means of FEM for structural part and Rayleigh integral for acoustic part. They have investigated the effect of 
position of discrete mass and thickness distribution of discrete patches. They deduced that both of them have 
significant effect on sound radiation of plate but under the constraint of fixed additional mass, point masses can alter 
natural frequencies more effectively by adjusting their positions. Michielsen et al. (2016) formulated a linear quadratic 
regulator based optimization problem in order to minimize the broad-band low-frequency domain vibration and 
acoustic response of a baffled simply supported plate by means of multiple optimally tuned mass–spring–damper 
(TMD) system. Their results indicate that TMD have great potential to reduce the broadband low frequency response of 
vibro-acoustic systems. Also it can be concluded that there are fundamental differences between the optimal TMD if 
one minimizes the kinetic energy or the far-field radiated sound power. 

A survey of methods, applications and various features of structural acoustic optimization for passive noise control 
can be found in a review paper (Ranjbar et al. (2010)).Various gradient based optimization methods have been used in 
vibroacoustic context especially in narrow frequency bands and single mode optimizations. Sequential Linear 
Programming (SLP), the method of moving asymptotes (Tinnsten et al. (2002)), the method of feasible directions, 
Sequential Quadratic Programming which is found to be robust and suitable for finding local minima in several 
vibroacoustic cases, Zheng et al. (2006), level-set (Isakari et al. (2017)), Pattern (Direct) search (Lang et al. (1975)) and 
other gradient-based methods were successfully applied in the field of vibroacoustic. Most of gradient based methods 
are categorized as local search methods because they converge to the nearest local minima. Among stochastic search 
methods, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Simulated Annealing (SA) have the most 
applications in vibro-acoustic optimization (Marburg, (2002)). 

Another important issue is high computational cost of vibro-acoustic evaluation and optimization of coupled 
systems especially for large scale problems. That is why a few works have been reported in optimization of coupled 
systems. Christensen and Olhoff (1998) considered a desired directional pattern for noise emitting loudspeaker 
diaphragm and minimized summation of square of deviations (errors) in arbitrary positions by changing the diaphragm 
structural parameters. Minimization has been carried out in three distinct frequencies. Very thin structure imposes the 
consideration of two-way coupling in their formulation. A multi-criteria optimization approach has been used by Akl et 
al. (2002) to find optimal design of underwater shell structures. They minimized shell vibration, sound radiation, weight 
of the stiffening rings and the cost of the stiffened shell simultaneously. A structural-acoustic optimization approach 
has been presented by Shepherd and Hambric (2014) for minimizing the radiated power of structures with heavy fluid 
loading excited by complex forcing functions. The procedure has been demonstrated on a curved underwater panel 
excited by a point drive and by turbulent boundary layer flow. The objective function was a weighted sum of total 
sound power and panel mass. 

From mathematical viewpoint, the expansion of structural response in terms of eigenvectors is the best way to 
compute the structural response. Computational efficiency can be increased if some assumptions apply. For 
frequencies less than the first eigenfrequency of the system and for light fluid, structural response can be calculated by 
expansion of static Ritz vectors (2002). Puri (2011) introduced dimension reduction techniques for fully coupled, 
interior structural-acoustic systems based on Krylov Subspaces. For the test cases investigated in his research, it is 
shown that using the reduced order modeling technique causes very significant reduction in simulation time, while 
maintaining the desired accuracy of the state variables, i.e. displacements and pressures (2011). 

In contrast with internal acoustics and FEM/FEM models, a little work has been carried out for efficiently solving 
vibro-acoustic problems that involve exterior unbounded domains via FEM/BEM models. The most challenging 
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problems are non-symmetric (and hence non-orthogonal eigenvectors), frequency dependent and huge matrices to be 
solved. Eigenvalue extraction at each frequency which is a time consuming procedure, makes it impossible in the case 
of frequency dependent mass matrix. 

To the authors’ best knowledge, the problem of “fully coupled vibroacoustic (e.g. acoustic power radiation) 
optimization of finite length submerged ribbed cylinders” has not been addressed in the literature yet. A submerged 
ribbed cylinder has been considered as a numerical test case (the model described by Zhou & Joseph (2005)) for 
coupled vibroacoustic FEM/BEM modeling. At first, two procedures have been proposed for computing BEM matrices 
in each frequency line. In order to solve governing equations, dimension reduction is inevitable, so the Krylov vectors 
(produced via Ritz or Arnoldi iterative procedures) and structural mode shapes (modal truncation approach) have been 
used and compared before performing optimization. The results showed good agreement with previous studies and 
experiments. Although Krylov reduction concept has been developed for simulating interior acoustic problems (cabin 
noise, etc.), using these basis vectors along optimization process of exterior vibroacoustic problems has not been 
reported in the literature. Finally, the optimum concentrated (point) mass and the dynamic absorber (TMD) 
arrangements were considered for the reduction of average radiated power using Genetic Algorithm. As expected, the 
majority of total point masses have been proposed by GA for the nearest regions to the excitation point but, this is not 
true for the case of dynamic absorbers (TMD). A noticeable point in the design of silent submerged vessels is that the 
most changes in this case proposed on the opposite side of the excitation point. 

2 THEORY 

2.1 Coupled vibroacoustic equations 

Dynamics of cylinder structure is modeled via FEM with reasonable accuracy due to diversity of complex geometry 
and boundary conditions. Dynamic equation of motion for a submerged structure in FEM has the following form in 
harmonic excitation (Rao, 2004): 

[Kst(1 + jη) − Mstω
2]Xs = fext − AP (1) 

Where Mst and Kst are assembled mass and stiffness (of cylinder wall, caps and its stiffeners) matrices of whole 
structure respectively, η is structural (Hysteretic) damping coefficient, fext is exciting vector including force and 
moment contributions and Xs is global coordinate vector for whole structure including translational and rotational 
global DOF's in each node. P is elemental/nodal acoustic (dynamic) pressure vector of wetted area nodes and A is 

distribution matrix. Aik is force/moment excitation correspond to ith DOF due to unit pressure at kth element. 
Although FEM results are used for comparison, BEM has been used in this study for fluid-structure interaction 
simulation i.e. computing radiation impedance matrix (Zrad) (Rao, 2004): 

P = Zradvn = jωZradLsXs (2) 

Matrix Ls relates nodal displacements of nodes to normal displacement of element centers by: 

Xn = LsXs (3) 

Where Xn is the element normal displacement vector. Displacement vector at each element center is [17]: 

we = ∑ Nt
12
t=1 . dt (4) 

we is deflection of element “e” center in local coordinate system, d is a vector including deflection ∂w/∂x and ∂w/∂y (in 
local coordinate system) for four nodes of element “e” and also N is corresponding shape function in row matrix form 
Figure 1 shows element “e” and its parameters. 
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Figure 1: Element “e” of shell and its local coordinate 

2.2 BEM in discretized form 

Figure 2 shows a schematic view of exterior vibro-acoustic problem with various acoustic boundary conditions. 

 
Figure 2: General exterior vibroacoustic problem 

Acoustic pressure of any arbitrary point in domain can be calculated using discretized Kirchhoff-Helmholtz 
Boundary Integral Equation (KHBIE) and constant element assumption (Fahy & Gardonio, 2007): 

c ⋅ p − ∑ ∬p
∂g

∂n̂
N
r=1 dSr = −∑ ∬g

∂p

∂n̂
N
r=1 dSr (5) 

Where g is free space Green's function, dSr is the area of radiating element “r”, n̂ is local normal direction and N is 
number of shell elements on the interface area. Coefficient c has magnitude of 0, 1 or 0.5 for out of field, domain and 
interface points respectively. This procedure leads to a matrix equation between acoustic pressure and normal velocity 
vectors: 

HP = jωρfG(ω)vn (6) 

Because source point is always on the boundary, c is selected to be 0.5 and H=0.5I. Compare to Eq. (2), the 
radiation impedance matrix for shell is: 

Zrad(ω) = jωρfH
−1G(ω) = 2jωρfG(ω) (7) 

Substitution of Eq. (2) into Eq. (1) results: 

[Kst(1 + jη) − Mstω
2 + jωAZrad(ω)Ls]Xs = fext (8) 
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Clearly, the total fluid effect emerges in third term which can be written as 2ρfAG(ω)Ls is known as frequency 
dependent “Added mass matrix”. 

2.3 Model updating due to adding point masses 

If node r has additional mass equal to mr, only three elements of Mst must be modified. With reference to FEM 
standard procedures, additional mass matrix can be constructed by kinetic energy expression: 

Tadd =
1

2
∗ u̇r

TMadd u̇r
T =

(

 
 
 
 

u̇x

u̇y

u̇z

θ̇x

θ̇y

θ̇z)

 
 
 
 

r

T

[
 
 
 
 
 
mr 0 0 0 0 0
0 mr 0 0 0 0
0 0 mr 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

(

 
 
 
 

u̇x

u̇y

u̇z

θ̇x

θ̇y

θ̇z)

 
 
 
 

r

 (9) 

So, modification in mass matrix can be done by the following expressions: 

M̅st(6r − 5,6r − 5) = Mst(6r − 5,6r − 5) + mr (10) 

M̅st(6r − 4,6r − 4) = Mst(6r − 4,6r − 4) + mr (11) 

M̅st(6r − 3,6r − 3) = Mst(6r − 3,6r − 3) + mr (12) 

2.4 Model updating due to dynamic absorbers 

As shown in Figure 3, additional masses are connected to original system via S1 S2 . . Sna springs. 

  
Figure 3: Attached absorbers 

3. GOAL FUNCTION 

As mentioned in the introduction, although several goal functions have been proposed for optimization process, 
majority of researchers have chosen the average radiated power in specified frequency range for external vibro-
acoustic systems so it is desirable to define the goal function as: 

Fs =
1

ω2−ω1
∫P(ω) dω   (13) 

Where P(ω) is radiated power at a specific frequency: 

P(ω) = 0.5 ℜ(∫p(ω)vn
∗(ω)dS ) = 0.5 ℜ(∑ pr(ω)vn

∗(ω)N
r=1  dS ) (14) 



Fast Optimization of Tuned Mass-Spring Arrangement for Reduction of Acoustic Power Radiation of 
Submerged Ribbed Cylinder 

Mehdi Dadkhah et al. 

Latin American Journal of Solids and Structures, 2019, 16(1), e144 6/16 

ℜ( ) and ( )∗ denote the real part and conjugate of a complex number and the integral is evaluated over the entire 
radiation surface. Very wide range of frequency may result in a little enhancement in the goal function so it is 
necessary to find out the excitation frequency and the frequency range. 

4. COMPUTATIONAL COST REDUCTION 

4.1. Model order reduction 

Computing structural response from Eq. (8) is time consuming thus, use of reduction scheme is necessary because 
each evaluation of fitness (goal) function requires several calculations at some discrete frequencies. Therefore, two 
reduction strategies are used to model order reduction. 

A. Dry mode shapes modal reduction 

Normalized truncated dry mode shape matrix (𝝍𝒅) can be used as the first choice for projection: 

𝑿𝒔 = 𝝍𝒅 ⋅ 𝒀 (13) 

By pre-multiplying 𝝍𝒅
𝑻into Eq. (8), a new equation in reduced dimension space is formed: 

[𝚲𝟐(1 + j𝜂) − 𝑰ω2 + j𝜔𝝍𝒅
𝑻𝑨𝒁𝒓𝒂𝒅(𝜔)𝑳𝒔𝝍𝒅]𝒀 = 𝝍𝒅

𝑻𝒇𝒆𝒙𝒕 (14) 

B. Krylov reduction 

In Krylov subspace based reduction method, 𝝍𝒅 might be replaced by 𝝍𝒌 (Krylov subspace-based projection 

matrix); so by pre-multiplying 𝝍𝒌
𝑻into Eq. (8): 

[𝝍𝒌
𝑻𝑲𝒔𝒕 𝝍𝒌(1 + j𝜂) − 𝝍𝒌

𝑻𝑴𝒔𝒕 𝝍𝒌 ω
2 + j𝜔𝝍𝒌

𝑻𝑨𝒁𝒓𝒂𝒅(𝜔)𝑳𝒔𝝍𝒌]𝒀 = 𝝍𝒌
𝑻𝒇𝒆𝒙𝒕 (15) 

This procedure has shown its applicability in interior vibroacoustics (Puri & Morrey, 2011), however the method 
has not been addressed for exterior problems. In this case, the problem is different because system matrices are 
frequency dependent. A successful application of Krylov vectors for dimension reduction in exterior vibroacoustic 
analysis can be found in (Dadkhah et al. 2015). A ribbed simply supported rigidly baffled plate with flat side in contact 
with water (Figure 4) has been considered as a case study for dimension reduction using Krylov vectors by 5 and 25 
vectors. Point FRF of cross point “A” is shown in Figure 4 (b) both by full analysis and dimension reduction using Krylov 
vectors. As can be seen, this technique has desirable accuracy at least in first four modes. This accuracy can be 
enhanced by selecting more Krylov vectors. Also it has been found that the shift frequency factor does not have 
significant effect on the accuracy of vibroacoustic analysis of submerged plate. More details can be found on (Dadkhah 
et al. 2015). In this work, Krylov subspace based Ritz vectors have been used for model order reduction of submerged 
ribbed cylinder. 
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Figure 4 

a): A ribbed simply supported rigidly baffled plate in semi-infinite fluid domain. b): Point FRF of point A (Vertical excitation) 

4.2. Interpolation of radiation impedance matrix 

Eq. (7) can be evaluated faster by employing an interpolation technique for radiation impedance matrix (𝒁𝒓𝒂𝒅) 
calculation. In fact, the components of this matrix vary smoothly with frequency, so it is possible to use frequency 
interpolation to decrease the computational efforts. In this work, the radiation impedance is calculated at so-called 
“master frequencies” and then interpolated at each frequency linearly (or by higher order polynomials). This technique 
is useful to reduce the computational time without major decrease in accuracy. 

4.3. Interpolation of Modal (Reduced) Added Mass Matrix 

Regarding to Eq. (15), the modal added mass matrix (3rd term in the LHS) is also frequency dependent, therefore, 

one can interpolate 𝝍𝒌
𝑻𝑨𝒁𝒓𝒂𝒅(𝜔)𝑳𝒔𝝍𝒌 matrix instead of 𝒁𝒓𝒂𝒅, so the computation time can be saved further. 

Obviously, this can be done only when reduction is applicable. The only drawback is that in evaluating goal function e.g. 
radiated power, the pressure quantity is needed which enforces the calculation of 𝒁𝒓𝒂𝒅 in each frequency. This 
problem can be solved by the technique introduced in section 4.4. 

4.4. Taylor Series Expansion of G 

In BEM procedure, calculation of each element of G involves the integration of Green's function: 

𝐺𝑖𝑗 = ∬𝑔𝑖𝑗  𝑑𝑆𝑗    (16) 

Where 𝑔𝑖𝑗 is Green's function between source (j element center) and receiver (point i) and 𝑆𝑗 is the surface of element 

j. The term 𝑒−𝑗𝑘𝑟 in Green's function leads to frequency dependency of G, therefore, all elements must be calculated at 
each frequency or saved before frequency loop to use during the simulation. Using Taylor series expansion in this 
study, time and cost of computation is saved further: 

𝑒−j𝑘𝑟 = cos(𝑘𝑟) − j ∗ sin (𝑘𝑟) (17) 

cos(𝑘𝑟) = 1 −
(𝑘𝑟)2

2
+

(𝑘𝑟)4

24
− … = ∑

(𝑘𝑟)2𝑛

(2𝑛)!

𝑛𝑡
𝑛=0  (18) 

sin(𝑘𝑟) = 𝑘𝑟 −
(𝑘𝑟)3

6
+

(𝑘𝑟)5

120
−. .= ∑

(𝑘𝑟)2𝑛+1

(2𝑛+1)!

𝑛𝑡
𝑛=0  (19) 
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For small “kr” argument, only few terms are sufficient for reasonable accuracy. For example a good approximation 
up to kr=2ð can be achieved by only the first eight terms of the series. So: 

𝑮𝒊𝒋 = ∑ [𝛼𝑛(𝑘)∬ 𝑟𝑖𝑗
2𝑛−1 𝑑𝑆

𝑆𝑟

𝑛𝑡
𝑛=0 − 𝑗𝛽𝑛(𝑘)∬ 𝑟𝑖𝑗

2𝑛 𝑑𝑆
𝑆𝑟

] (20) 

Where 

𝛼𝑛(𝑘) =
𝑘2𝑛

4𝜋(2𝑛)!
 (21) 

𝛽𝑛(𝑘) =
𝑘2𝑛+1

4𝜋(2𝑛+1)!
 (22) 

Hence, G can be rewritten as weighted summation of some frequency independent matrices which can be 
evaluated before simulation: 

𝑮 = ∑ [𝛼𝑛(𝑘)𝑪𝒏
𝑛𝑡
𝑛=0 − 𝑗𝜷𝒏(𝑘)𝑆𝑛] (23) 

In above relation, only scalars (𝛼𝑛 and 𝛽𝑛) are frequency dependent. 

5. NUMERICAL TEST CASE 

5.1 Model description 

A ribbed cylindrical shell with two end caps is considered as a numerical case study and verification according to 
Figure 5. Table 1 shows the structural and fluid properties. 

 
Figure 5: Cylindrical shell with two end caps submerged in water (Zhou & Joseph, 2005) 

Table 1: Model properties 

Parameter Steel Water 

Poisson's ratio 0.3 --- 

Damping 0.06 --- 

Density (kg/m3) 7800 1000 

Young modulus (GPa) 202.08 --- 

Sound speed (m/s) --- 1461 

The excitation force is 𝑓𝑥(𝑡) = 1 ⋅ cos(𝜔𝑡)𝑁 which is inserted on point A in x direction (according to Figure 5. 
Fluid domain has been modeled separately by FEM acoustic elements and BEM. Total DOF of FEM/FEM model is 18699. 
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5.2 Results 

FEM/FEM model 

Calculated natural frequencies of submerged ribbed cylinder are shown in Figure 6. The maximum error between 
model used FEM/FEM model with those reported in (Zhou & Joseph, 2005) is 3.8% . The first six mode shapes of the 
submerged cylinder agree with (Zhou & Joseph, 2005). First two of mode shapes are shown in Figure 7. 

 
Figure 6: First six Natural frequencies of submerged ribbed cylinder 

 
Figure 7: The first two mode shapes of submerged cylinder calculated by FEM/FEM. (a) m=1,n=1 (b) m=1,n=3 

The results indicate that four terms are sufficient for acoustic impedance evaluation in 0 to 300 Hz frequency 
range in Taylor series expansion. Number of basis vectors i.e. number of columns of 𝜓 is set to be 50. As indicated in 
Figure 8, FRF of point “A” shows a small error between full order FEM model and reduced BEM model by Ritz vectors. 

 
Figure 8: Point FRF of A, FEM/BEM by Ritz vectors reduction and 106.4 Hz shift (___), FEM/BEM by dry modes reduction (____); Full 

FEM/FEM (- - - -) 
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The pattern of acoustic pressure radiated by vibrating cylinder has been compared with experimental results 
(Zhou & Joseph, 2005) and plotted in Figure 9.This figure shows resonable accuracy in acoustic pressure calculation. 

 
Figure 9: The acoustic pattern of radiating cylinder @(r= 240in & 258 Hz) 

The efficiency (precision and computational cost) of proposed methods has been studied by several tests before 
running optimization procedure. These comparisons have been done by a Core i7-2600, 3.4GHz CPU with 16 MB of 
RAM PC. 

a) Interpolation: 

After calculation of 𝑮(𝜔) in master frequencies, this matrix is calculated via interpolator polynomial (n=3) in other 
frequencies. Results show that much less computing time can be achieved by reduced added mass interpolation 
instead of 𝑮(𝜔) as indicated in Table 2 . 

b) Taylor Series Expansion: 

As can be seen from Table 2, using Taylor series expansion has been led to significant reduction in every 
evaluation of 𝑮(𝜔). 

c) Full vs. Reduced System of Equations: 

Table 3 shows a brief comparison between calculation time in full and reduced (via dry modes and Ritz vectors) 
system of equations. As can be seen, significant reduction in calculation time can be achieved by Ritz vectors with 
reasonable accuracy. 

As a result, the best strategy for response evaluation is applying Ritz vectors for order reduction and using Taylor 
series expansion for computing 𝑮(𝜔). 

Table 2: Different techniques for calculation of fluid effect and their efficiency 

 Technique Maximum 

Error in 

Average 

radiated power 

(%) 

Calculation time 

in single frequency 

(Acoustic part) (Sec) 

Computing 𝐆(𝛚) BEM 0 173.3 

Interpolation (n=3) 0.3 117.8 

Taylor Series Expansion (n=4) 0.1 1.1 

Using Reduced Added Mass Reduced added mass 

Interpolation 

(n=3) 

0.5 2.7 
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Table 3: Calculation time in different reduction methods 

Method Error (%) Response Calculation Time in 
One Frequency Step (Sec) 

 

Full FEM/BEM 

(Direct solve) 

0 80.2 

Full FEM/BEM 

(Using Sherman-Morrison Lemma)* 

0 15.5 

Using dry modes for reduction(n=50) 18.2 0.25 

Using Ritz vectors for reduction(n=50) 12.4 0.25 

5.3 Optimization Algorithm 

Heuristic methods require a large number of function evaluations but they have outperformed classical 
optimization methods such as linear or even nonlinear programming in several cases especially when considering multi-
modal functions thus requiring an optimization algorithm able to sort the globally optimal solution out of a large 
number of locally optimal solutions (Ratle and Berry (1998)). Based on statistical methods, crossover and mutation 
operators play an anti-trapping role in a Genetic Algorithm (GA) and they work better than other similar optimization 
procedures. Therefore, GA was chosen as optimization algorithm in this study. Converging best cost function to a fixed 
value and also converging average of cost function in every generation to the best cost function is a measure of 
approaching global minimum of function. A number of successful GA applications have been reported in the literature 
(Yuan et al. (2013), Yun et al. (2007), Zheng et al. (2005), Mohammed et al. (2008), Bassaou et al. (2001)). 

5.4 Optimal point mass placement 

In this section, optimal point mass placement is obtained in such a way that the average radiated power, 𝐹𝑠 (with 
𝑓1and 𝑓2 equal to 100 and 160Hz respectively) is minimized. These masses are placed only on rings and the harmonic 
force is exerted on point 30 (according to Figure 10). Based on design considerations, it is assumed that no more than 
4% of total mass (40 kg) is permitted to add as point masses. 

 
Figure 10: Additional point mass/absorber locations 

After 80 generations of 150 individuals for GA and adaptive feasible option for mutation function (several 
mutation functions has been tested), the best result is 11 dB reduction in cost function. The amount of reduction in 
cost function is relatively desirable and is almost fix value in different initial populations. As can be seen from Figure 11 
converging average of fitness function in last generations toward the best fitness function is a good sign of global 
optimization. Optimal point mass values have been shown in Table 4. 
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Figure 11: History of fitness function vs generations in point mass optimization 

Table 4: Details of point mass optimization, bounds, constraints and results 

Bounds 

∀ 𝐢 , 𝟎 ≤ 𝐦𝐢 ≤ 𝟑 𝐊𝐠 

Constraint 

∑𝐦𝐢

𝟕

𝐢=𝟏

≤ 𝟒𝟎 𝐊𝐠 

Values of Point Masses (Kg) 

𝐦𝟐𝟒 𝐦𝟐𝟔 𝐦𝟐𝟖 𝐦𝟑𝟎 𝐦𝟑𝟐 𝐦𝟑𝟒 𝐦𝟑𝟔 

1.28 2.90 2.91 0.01 2.68 2.93 1.38 

𝐦𝟒 𝐦𝟔 𝐦𝟖 𝐦𝟏𝟎 𝐦𝟏𝟐 𝐦𝟏𝟒 𝐦𝟏𝟗 

0.00 0.01 0.70 2.86 1.31 0.11 0.13 

𝐦𝟓 𝐦𝟕 𝐦𝟗 𝐦𝟏𝟏 𝐦𝟏𝟑 𝐦𝟏𝟓 𝐦𝟐𝟎 

0.48 0.21 2.03 2.96 2.66 0.26 0.50 

𝐦𝟑𝟓 𝐦𝟑𝟑 𝐦𝟑𝟏 𝐦𝟐𝟗 𝐦𝟐𝟕 𝐦𝟐𝟓 𝐦𝟐𝟏 

0.47 0.60 2.91 2.77 2.47 2.24 0.15 

Reduction in the Average Radiated Power (dB) 

11 

Modal analysis of optimized system shows slight natural frequency and mode shape changes (maximum of -5.3Hz 
for 5th mode) due to tight constraint of additional mass. Clearly, a little mass is proposed for point 30 (excited point) 
but three middle rings (which have the most amplitude in first two modes) have 66% of total point masses as 
highlighted in Table 4. On the other hand, 35% of total mass proposed to be placed on first column which includes the 
excitation point. However, adjusting mass distribution according to first or second mode amplitudes of points led to 
very weak effect in power reduction. 

5.5 Optimal dynamic absorber placement 

Similar to point mass in this case several scenarios have been set to obtain the best arrangment. Population size 
and number of generations that are the main parameters for GA have set to be 150 and 80 respectively and adaptive 
feasible option has been selected for mutation function (several mutation functions has been tested). Again according 
to Figure 12, converging average of fitness function in last generations toward the best fitness function is a good sign of 
global optimization. Table 5 shows the optimization results for placement of absorber on all points depicted in Figure 
10. Again final value of cost function is almost fix in different initial populations. 
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Figure 12: History of fitness function vs generations in dynamic absorber optimization 

Table 5: Details of absorber optimization, bounds, constraints and results 

Bounds 

∀ 𝒊 , 𝟎 ≤ 𝒎𝒊 ≤ 𝟑 𝑲𝒈 

∀ 𝒊 , 𝟐𝟎𝟎𝟎 ≤ 𝒌𝒗𝒊 ≤ 𝟕𝒆𝟕 𝑵/𝒎 

Constraint 

∑𝒎𝒊

𝟕

𝒊=𝟏

≤ 𝟒𝟎 𝑲𝒈 

Values of Point Masses (Kg) 

𝐦𝟐𝟒 𝐦𝟐𝟔 𝐦𝟐𝟖 𝐦𝟑𝟎 𝐦𝟑𝟐 𝐦𝟑𝟒 𝐦𝟑𝟔 

1.4 0.7 2.2 2.6 0.5 1.1 1.2 

𝐦𝟒 𝐦𝟔 𝐦𝟖 𝐦𝟏𝟎 𝐦𝟏𝟐 𝐦𝟏𝟒 𝐦𝟏𝟗 

2.7 0.5 1.5 2.9 1.4 1.4 1.2 

𝐦𝟓 𝐦𝟕 𝐦𝟗 𝐦𝟏𝟏 𝐦𝟏𝟑 𝐦𝟏𝟓 𝐦𝟐𝟎 

1.0 1.4 1.5 1.2 1.9 1.9 0.8 

𝐦𝟑𝟓 𝐦𝟑𝟑 𝐦𝟑𝟏 𝐦𝟐𝟗 𝐦𝟐𝟕 𝐦𝟐𝟓 𝐦𝟐𝟏 

1.3 1.5 1.4 1.5 0.2 0.7 1.8 

Stiffness, 𝐤𝐯𝐢*𝟏𝟎𝟔(
𝐍

𝐦
) 

𝐤𝟐𝟒 𝐤𝟐𝟔 𝐤𝟐𝟖 𝐤𝟑𝟎 𝐤𝟑𝟐 𝐤𝟑𝟒 𝐤𝟑𝟔 

0.8 0.6 1.0 1.8 0.4 0.4 1.2 

𝐤𝟒 𝐤𝟔 𝐤𝟖 𝐤𝟏𝟎 𝐤𝟏𝟐 𝐤𝟏𝟒 𝐤𝟏𝟗 

1.2 E-3 0.6 1.0 1.4 E-3 1.26 

𝐤𝟓 𝐤𝟕 𝐤𝟗 𝐤𝟏𝟏 𝐤𝟏𝟑 𝐤𝟏𝟓 𝐤𝟐𝟎 

1.7 0.8 0.4 1.2 0.7 1.3 0.7 

𝐤𝟑𝟓 𝐤𝟑𝟑 𝐤𝟑𝟏 𝐤𝟐𝟗 𝐤𝟐𝟕 𝐤𝟐𝟓 𝐤𝟐𝟏 

1.5 0.5 1.5 0.3 0.2 0.05 E-3 

Reduction in the Average Radiated Power (dB) 

20.7 

Most of mass changes proposed for the left column which is located on opposite side of excitation. Three mid 
rings have 48% of total added mass. The results show that use of mass-spring system (plus inherent structural damping 
of 1%) instead of point mass can decrease the cost function more significantly (20.7 dB reduction). 

Modal analysis of optimized system shows slight natural frequency and mode shape changes of submerged ribbed 
cylinder (except second mode) similar to point mass optimization (maximum of +5.3Hz for 6th mode) due to tight 
constraint of additional mass. 

The radiated power in initial design, with optimized point mass arrangement and with optimized absorber 
arrangement is shown on Figure 13. As can be seen, optimized point mass arrangement does not have substantial 
effect on overall radiated power whereas optimized dynamic absorber (TMD) arrangement has reduced radiated 
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power at 110, 130, 140, 150 and 160 Hz (which selected to evaluate Eq. (15)). Also there are several local peaks due to 
discrete absorber resonance peaks which are controlled by inherent damping mechanisms. The first natural frequency 
of structure has been decreased in both optimized situations. In addition, the second mode in Figure 8 (f=142.4 Hz) has 
been vanished by properly tuning of absorber parameters and this is the main reason for obtaining good reduction. 

 
Figure 13: Radiated power vs. frequency 

Without mass or absorber (___) 
With optimized point mass arrangement (____) 

With optimized dynamic absorber arrangement (- - -) 

6. CONCLUSIONS 

In this study, vibro-acoustic optimization of a submerged shell structure was investigated. As shown by several 
studies, BEM imposes time and memory limitations due to frequency dependency of fully populated BEM matrices. 
Therefore, two procedures (interpolation techniques and a sufficiently precise Taylor series expansion) have been 
proposed for computing the BEM matrices in each frequency line. Table.2 shows a drastic effect on calculation time 
especially for second procedure. Krylov vectors and structural mode shapes (modal truncation approach) have been 
used and compared before doing optimization. The orthogonality of 𝝍𝒅 with respect to 𝑲𝒔𝒕 and 𝑴𝒔𝒕 is not sufficient for 
accurate results in dry mode reduction because fluid effects leads to non-diagonal modal mass matrix. As a result, the 
best strategy for evaluation of response and cost function is using Taylor series expansion for computing BEM matrices 
and applying Krylov vectors for order reduction. 

In the case of point mass optimization, average radiated power reduction of 11 dB (which means 3.55 times 
smaller acoustic radiated power) has been achieved. Natural frequencies and mode shapes change slightly and three 
middle rings (which have the most amplitude in first two modes) have 66% of total point mass. 35% of total mass 
proposed to be placed on first column which includes the excitation point. However, adjusting mass distribution 
according to first or second mode is not so beneficial. 

In selecting tuned mass damper parameters the best position for minimizing sound power or structure kinetic 
energy in the case of single absorber is the point of excitation (as pointed by Michielsen & Arteaga,2016) but for 
multiple TMD's most of additional mass proposed for the left column which is located on opposite side of excitation 
(Contrary to point mass case). Three mid rings have 48% of total added mass. The second mode has no longer 
considerable participation on radiated power by properly tuning of TMD parameters and this is the main reason for 
achieving good reduction. 20.7 dB reduction (which means 10.84 times smaller acoustic radiated power) is the best 
situation in dynamic absorber (TMD) attachment case. 
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