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Abstract 
This paper focuses on a metamodel-based design optimization 
algorithm. The intention is to improve its computational cost and 
convergence rate. Metamodel-based optimization method intro-
duced here, provides the necessary means to reduce the computa-
tional cost and convergence rate of the optimization through a 
surrogate. This algorithm is a combination of a high quality 
approximation technique called Inverse Distance Weighting and a 
meta-heuristic algorithm called Harmony Search. The outcome is 
then polished by a semi-tabu search algorithm. This algorithm 
adopts a filtering system and determines solution vectors where 
exact simulation should be applied. The performance of the algo-
rithm is evaluated by standard truss design problems and there 
has been a significant decrease in the computational effort and 
improvement of convergence rate. 
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1 INTRODUCTION 

Employing exact simulations are very common in optimizing engineering design. The problem with 
some of the most common and robust optimization algorithms such as Genetic Algorithm, Ant Col-
ony, and Harmony Search, is that they entail a large number of iterations for reaching the optimum 
solution [1-4]. This is a significant barrier when applying exact simulations to real life engineering 
optimization problems. It has long been recognized that approximations or metamodeling tech-
niques are most effective tools for reducing the computational effort in complex problems. The basic 
approach is to replace the computationally expensive simulation with a compatible approximate, 
which is then used in optimization runs. This inexact model is often referred to as metamodel 
(model of a model). A survey on the use of metamodels in structural optimization has been carried 
out by Barthelemy and Haftka [5] and recently, Jin et al. [6] and Martin and Simpson [7] have re-
viewed metamodeling techniques for some engineering optimizations. 
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Notations 
 

 α  Normalization factor 

   
γ(xi,xj )  Fitted semi-variance of 

  z(xi)  and 
  
z(xj )  

   γ(xi,x0)  fitted semi-variance between ( )iz x  and 
0( )z x  

  γi  Material density of each truss member 

  δallowed
 Maximum allowable deflection 

  δi
 Deflection of each truss member 

  δmax
 Maximum existing deflection 

  σallowed  Maximum allowable stress 

  σi
 Stress of each truss member 

  σmax
 Maximum existing stress 

  ΔA  Search domain of area of each member 
 ψ  Lagrange multiplier 

 Al  The minimum allowable area of truss member 

 Au  The maximum allowable area of truss member 

 Ai
 Cross sectional area of each truss member 

 Ai
new  Cross sectional area of each truss member generated at new steps 

 Ai
normalized  Normalized cross-sectional area of each member 

 C  The number of data points included in the circle with radius r  

 di
 Distance between 

  x0
 to 

 xi
 

 Di
 Observation point 

 E  Modulus of elasticity 

  f (x)  Objective function 
HM Harmony memory 
HMCR Harmony memory consideration rate 
HMS The size of harmony memory 

 I  Current iteration number of the algorithm 

 K  Total number of iterations 

 Li  Length of each truss member 

 m  The number of truss members 
 n  The number of decision variables 
 N  Total number of data points 
 P  Test point 
PAR Pitch adjusting rate 

 q  The minimum number if sample point entries 

 r  Radius of the circle containing the data points 

  
SGqm×m

 Sample grid matrix 

 W  Structure weight 

  x0  Test point 

 xi  Observation point and optimization variable 

  
′xi  The new value of  xi  

 Xi
 Set of possible range of each decision variable 

  xk
max  The maximum value of kth decision variable 

  xk
min  The minimum value of kth decision variable 

 z  random variable to be estimated 

 zi  The value at the observation point 
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Optimization using metamodels entails [8]: 
 
1. The exact model is replaced by a low order polynomial. This is to reduce the number of exact 
simulations and smooth out the numerical noise. 
2. Enables separation of the analysis code from the optimization routine and eases the integration 
of codes from various disciplines. 
3. Provides an overall view of the design search space. 
4. Provides an in depth knowledge of the problem domain and hence makes it easier to adjust im-
portant design parameters during the optimization process. 
The shortcoming of metamodel, especially those using polynomials for their approximations, is that 
the cost of providing precise data for fitting the global approximations increases rapidly with the 
number of design variables, which makes it difficult to construct a good global approximation with 
low order polynomials. 

Some well-known metamodel methods are: Inverse Distance Weighting (IDW) [9]; Polynomial 
Regression (PR) [6, 8]; Moving Least Squares Method (MLSM) [8]; Kriging (KG) [7, 10-14]; Multi-
variate Adaptive Regression Splines (MARS) [15]; and Radial Basis Function (RBF) [6, 8]. 

The algorithm presented in this paper is a combination of IDW and HS, which provides a more 
robust and global search capabilities. An immature version of IDW+HS algorithm has been already 
published by the authors [16]. In this research, the prior algorithm is enhanced by normalizing the 
results and then polishing the final outcome using a semi-tabu search method. IDW is selected for 
its applicability and ease of use for multidimensional metamodeling problems and HS is selected for 
its ability to support continuous variable functions [3, 17-21]. The numerical results shows that the 
enhanced IDW+HS algorithm (IDW+HS+Tabu), in comparison to the pure HS algorithm as well 
as the other conventional meta-heuristic algorithms (GA and ACO), leads to a lower computational 
cost and higher convergence rate. 

 
 
2 APPROXIMATION ALGORITHM SELECTION 

As mentioned above, the IDW model is employed in this research for approximation. The easier 
extendibility and competitive computational cost of this model compared to the other interpolation 
methods such as Kriging (KG), Polynomial Regression (PR), Multivariate Adaptive Regression 
Splines (MARS), Radial Basis Functions (RBF) caused the IDW to be chosen and employed in this 
work [6, 22]. The dominant problems of these methods are their high computational cost and di-
mension limit. 

One serious problem of the KG, for example, is the large number of observation points needed to 
estimate the result [23]. On the other hand, as in the IDW, the kriged estimate is a weighted aver-
age of the values at the observation points in which the weights are obtained by solving (1). 
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λjγ(xi,xj ) + ψ = γ(xi,x0);∀i = 1..n
j=1

n

∑

λj =
1

di
2

1

dj
2

j=1

n

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

λj = 1
j=1

n

∑

 (1) 

where 
   
γ(xi,xj )  is the fitted semi-variance of   z(xi)  and 

  
z(xj ) , y  is a Lagrange multiplier and 

   γ(xi,x0)  is the fitted semi-variance between   z(xi)  and   z(x0) ,  di  is the distance from test point   x0  

to observation point ix , and z  is the random variable to be estimated [22]. This weighting formu-
lation significantly increases the computational effort, while having a small difference in results 
compared to IDW [24]. 

The other models involve similar drawbacks. For instance, in spite of the quick convergence [25] 
and easy implementation of PR [6], some instabilities may arise when applying this technique to 
highly nonlinear problems with high-order polynomials [6, 26] or it may be too difficult to take suf-
ficient sample data to estimate all of the coefficients in the polynomial equation, particularly in 
large dimensions. MARS, also did not show a satisfying performance when a scarce set of samples is 
applied [6]. As far as RBF is concerned, although it has performed well in metamodeling problems, 
when the sample points grow up, the performance of the method decreases [8]. Although a Shepard 
like modification [9] seems to be applicable for enhancing the performance, it is not considered in 
this research because of its complexity and high computational effort. On the other hand, the over-
all accuracy essentially depends on the selected basis function for a given set of data samples in the 
modified versions [27]. 
 In terms of cross-validation, the accuracy of the approximation is not highly important at the 
early stages. Instead, computational cost must be of a great importance in selecting the approxima-
tion method. On the other hand, while the algorithm closes to the final stages, the predicted values 
are becoming closer to the global optimum (Figure 1). 
 

 
Figure 1   Closeness of the IDW result to the global optimum 
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3 INVERSE DISTANCE WEIGHTING MODEL (IDW) 

The IDW is a multivariable model based on an interpolation, which is well suited to irregularly 
spaced data. In two-dimensional space, there are two general types of exact interpolation meth-
ods: Single global function and a collection of simple and local functions. The former is usually 
accompanied by an unmanageable complexity, while the latter is well defined and matches ap-
propriately at its boundaries and is continuously differentiable even at the local junctions [9]. 
 The value at any point  in a plane is a weighted average of values at the data point  in 
which weighting is a function of distance to those points. Shepard [9] has introduced (2) for in-
terpolating values at . The function indicates that the points further away from  will have 
lower weights. 
 

   

f1(P) =

di
−u

i=1

N

∑ zi

di
−u

i=1

N

∑
di ≠ 0,u > 0

zi di = 0

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

 (2) 

 
where  is the value at the data point  and  is the Cartesian distance between  and  
( ). As  approaches to a data point ,  approaches to zero. For , both left and 
right partial derivatives exist and for , there is no derivative. Empirical data shows that the 
higher exponents ( ) tend to make the surface relatively flat near all data points with very 
steep gradient over a small interval between data points. Lower exponents produce a surface rela-
tively flat with short blips. An exponent of  not only gives seemingly satisfactory results for 
the general surface mapping and description purposes, but also presents the simplest form of cal-
culation as Shepard [9] recommended. Figure 2 proves that  leads to the best concurrence 
with the exact simulation. In Cartesian coordinates the distance between two points can be ex-
pressed as (3). 
 

 
Figure 2   Influence of on Chi-Square test function 
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di

2 = x − xi( )2 + y − yi( )2⎡
⎣
⎢

⎤
⎦
⎥  (3) 

 
Since Shepard's radius function, does not fit multidimensional problems, it is modified as (4) 

and the rest of the equations remain unchanged. 
 

 

   
rn = C

xk
max − xk

min( )
k=1

n

∏
N

 

 
  

(4) 

 
where = number of decision variables; = total number of data points; = the number of 
data points included in the circle with radius  (Shepard recommended ); and  and 

= maximum and minimum value of decision variable  respectively. To achieve a higher 
compatibility with the exact simulation, Shepard has introduced several improvements to the 
original function (i.e. considering directions, determining the slope, etc.). These extra modifica-
tions not only increase the computational load, but also are not easily applicable to the multidi-
mensional space hence they are not considered in this research. 
 
4 HARMONY SEARCH ALGORITHM 

Harmony Search (HS) algorithm is a replication of a musical performance process. A musician's 
search to find a better state of musical harmony (a perfect state) [3] is similar to optimization pro-
cess that seeks to find a global solution (a perfect state) as determined by an objective function. 
The pitch of each musical instrument determines the aesthetic quality; similarly, the set of values 
assigned to each decision variable determines the value of the objective function. The optimization 
procedure of HS algorithm consists of the following steps: 
 
1. Initializing the optimization problem and algorithm parameters: The general form of optimization 
problem is specified as follows: 
 

   

Minimize f (x)

Subject  to xi ∈ Xi,i = 1,2,...,n
 (5) 

 
where = an objective function; = optimization variable; and = the set of possible range of 
each decision variable. The parameters of HS algorithm, that is, HMS, HMCR, and PAR are also 
specified at this step. HM is a memory space where all the solution vectors (sets of decision varia-
bles) are stored which is similar to the genetic pool in GA. This will be shared with IDW as its 
initial points. 

n N C

r 7C = max
kx

min
kX k

( )f x ix iX
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2. Initializing HM: HM matrix shown in (6) is filled with as many solution vectors as the value of 
HMS. These solutions are randomly generated and sorted according to the values of the objective 
function, . 
 

   
HM = x

1,x 2,…,xHMS⎡
⎣⎢

⎤
⎦⎥  (6) 

 
3. Improvise a new harmony from HM: Memory considerations and pitch adjustments determine if 
the new harmony vector    ′x = ( ′x1, ′x2,…, ′xn)  should be generated from HM. That is,   ′xi  (the value of 

variable for the new vector) is chosen from the values in HM or .The value of HMCR which 
varies between 0 and 1 will determine where to choose the possible new value as indicated by (7). 
 

   

′x
i
←

′x
i
∈ x

i

1,x
i

2,...,x
i

HMS{ } w.p. HMCR

′x
i
∈ X

i
w.p. 1−HMCR( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (7) 

 
Every component of the new harmony vector,    

′x = ( ′x1, ′x2,…, ′xn)  is examined to determine 
whether it should be pitch-adjusted. This procedure uses the PAR parameter that sets the rate of 
adjustment for the pitch chosen from the HM as shown in (8). 
 

   

′xi ←
YES w.p. PAR
No w.p. 1−PAR

⎧
⎨
⎪⎪

⎩⎪⎪
 (8) 

 
The HMCR and PAR parameters, introduced in Harmony Search, help the algorithm find glob-

ally and locally improved solutions, correspondingly. 
 
4. Update the HM: The new harmony vector replaces the worst harmony if a better objective func-
tion value is obtained. HM is then resorted. 
 
5. Check if the termination criterion is satisfied:  When the termination criterion is not satisfied 
steps  3 and  4 are repeated. 
 

For further information about the HS algorithm see Refs [3, 17-21]. 
 
5 THE NEW MULTILEVEL OPTIMIZATION ALGORITHM 

In this study, a combination of IDW and HS is employed to decrease the computational effort 
and improve the convergence rate. The presented method has been applied to a number of truss 
design problems, which are presented in the next section. 

An optimal truss design is one in which the optimal cross-sectional area assigned to each 
member satisfies the given constraints. Design constraints typically consist of the maximum al-

( )f x

thi iX
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lowable compressive and/or tensile stress in any member of the truss and the maximum allowable 
deflection of any node [1]. The truss optimization objective function can be expressed as (9). 
 

    

Minimize W = γi
i=1

m

∑ LiAi;    i = 1,2,…,m

Subject  to | σi |≤ σallowed

| δi |≤ δallowed

Al ≤ Ai ≤ Au

 (9) 

 
where = weight of the truss; = number of members making up the truss; = material den-
sity of member ; = length of member ; and = cross-sectional area of member i, chosen from 
a set of areas between  and , where = lower bound and = upper bound. The parameters 

  σi  and   δi  represent the stress and deflection of the member of the truss respectively.  
 The algorithm consists of the following steps: 
 
1. Generating the sample points and initializing HM: sample points are generated by selecting   
cross-sections from an eligible set of cross-sections. At least one cross-section should be chosen near 
the upper bound and one near the lower bound (e.g.  and  respectively). The remaining 
selections should be distributed uniformly between these bounds. Then a sample grid matrix 
(
  
SGqm×m

) is generated from the chosen cross-sections, where  is the number of truss members and 

should be greater than or equal to 2 (the minimum number of sample point entries). In other 
words, the entries of sample grid matrix are chosen from those sample points. For instance, (10) 
shows the formation of SG matrix for 25-bar truss from the sample points 0.5 and 3.0. 
 

   

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
3.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 3.0 0.5 0.5 0.5 0.5 0.5 0.5
       

3.0 3.0 3.0 3.0 3.0 3.0 0.5 3.0
3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (10) 

 
 HMS determines the number of cross-sections from SG matrix that HM should be filled with. An 
exact simulation is applied to each point in HM. Both IDW and HS get their initial points from the 
same HM. 
 
Note: In (9) the cross-sectional constraint is zero cost, while   σi  and   δi  impose computational ef-

forts. In the case where   σi  and   δi  are not satisfied, HM would not be updated. In this case, the 
algorithm recovers the unacceptable solution and by applying superposition principle, makes it more 

W m ig

i iL i iA
lA uA l u

thi

0.9 uA 1.1 lA

m

q
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acceptable. That is, the cross-sectional area of each member is multiplied by  α  (11) and then it 
would be added to HM. Applying such a factor to the cross-sectional area makes the stress and 
deflection ratios to be as close as possible to 1. The above operation will satisfy the first two con-
straints mentioned in (9) for all solution vectors, but the cross-sectional constraint may be violated. 
As HM is filled by order of priority from the lightest to the heaviest truss, which generally implies 
that HM will be filled from the smallest to the largest cross-sections, the repeated application of 
algorithm through its convergence process will force the satisfaction of cross-sectional area con-
straint. For a detailed explanation of the normalization process, assume the algorithm found the 
solution [0.236, 0.409, 2.094, 1.992, 0.426, 0.459, 1.106, 2.026] which is not acceptable according to 
the stress and deflection ratios (1.5 and 0.216 respectively). However, the solution could be recov-
ered through the normalization process by multiplying the solution to the normalization factor, 1.5, 
which is obtained using (11). The recovered solution would be [0.354, 0.614, 3.141, 2.988, 0.639, 
0.688, 1.658, 3.039], with stress and deflection ratios of 1.000 and 0.144, which satisfies the criteria 
and could be added to HM. It should also be noted that the only parameter, which affects the per-
formance of the algorithm, is the initial sample points. 
 

    

α = max{
σallowed

| σmax |
,
δallowed

| δmax |
}

Ai
normalized = αAi

 (11) 

 
2. Generating a new solution vector: A new solution vector is generated according to (12) where 
the cross-sectional area of the member is determined using HMCR and PAR (see (7) and (8) re-
spectively). 
 

   

Ai
new ∈ {max{Ai(1−ΔA),Al},min{Ai(1−ΔA),Au}}

ΔA =
Au −Al

2
K − I

K

 (12) 

 
where = new cross-sectional area of  member; = total number of iterations; and  = 
current step. 
 
3. Estimating the approximate response:  IDW is used to estimate the new solution response. If the 
new approximate response is better than the worst one stored in HM, the algorithm will proceed to 
the next step. Otherwise, it will return to the previous step. 
 
4. Evaluating the exact response: An exact response evaluation process is applied to the new gener-
ated solution. If the accurate response is acceptable, the worst solution in HM is replaced. Other-
wise, the algorithm will return to step  3. In further iterations, as the responses in HM get closer to 
the optimal response, the distance between the approximate and accurate responses is reduced. 

new
iA

thi K I
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Numerical examples show that the most of unnecessary and expensive calculations are eliminated in 
the early iterations where the responses are far enough from the optimal response. 
 
5. Checking the termination criteria: The algorithm terminates in a certain number of iterations 
(   ΔA = 0  i.e. ). Although the most of the meta-heuristic algorithms have some other criteria 
together with maximum iterations, we avoided to adopt such criteria here, because the IDW reduc-
es the number of HS (exact analysis) iterations. On the other hand, the criteria excluding maximum 
iterations may lead to a premature solution. If the termination criterion is not met, the algorithm 
repeats steps  3 and  4. 
 
6. Polishing the result: A semi-tabu algorithm is applied to the final solution to obtain a better 
solution. The semi-tabu is to find a smaller cross section area for each member to reach a better 
solution, while satisfying the criteria. This is achieved by reducing each area by multiplying by 0.95 
in a loop, while satisfying the criteria. It should be noted that only one member is reduced in each 
loop. 
 

Figure 3 shows the optimization procedure of the IDW+HS algorithm. 
 

 
Figure 3   Optimization procedure of IDW+HS algorithm 

 
 

K I=
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6 COMPUTATIONAL EXPERIMENTS 

The efficiency of the algorithm was evaluated through some numerical examples. To investigate the 
computational cost and convergence rate, three examples (10, 25, and 72-bar truss) are selected 
from refs [1-4]. The algorithm was developed using Python programming language and ran on a 
Centrino, 1.4 GHZ computer. The structural analysis also was done using OpenSees code. 
The 10-bar truss is discussed in detail to show the efficacy of the algorithm, and the other examples 
are given for further investigations. These problems have been widely used as benchmarks to test 
and verify the efficiency of many different engineering optimization methods. 
 
 
6.1 Ten-bar truss 

Figure 4 shows the geometry and support conditions for two-dimensional cantilever 10-bar truss 
with a single loading condition. 
 

 
Figure 4   Configuration of 10-bar truss 

 
The material used in this structure has a modulus of elasticity of  and a mass 

density of 
    
γ = 2.768T

m3 . The design constraints are: maximum allowable stress in any member of 

the truss     σallowable = ±0.172MPa ; maximum deflection of any node (in both vertical and horizontal 
directions)

     δallowable = 50.8mm . The upper and lower limits of cross-section areas of each truss 

member    0.645mm2 ≤ Ai ≤ 225.8mm2 . The sample points by which the sample grid is generated are 
1.0 and 30.0. Figure 5 compares the convergence rate of the proposed algorithm with that of some 
other algorithms (GA, ACO, HS, IDW+HS, etc.). The IDW+HS has been already compared with 
the other pure meta-heuristic algorithms by the authors [16]. Here the IDW+HS is compared with 
the new modified algorithm. The comparison indicates that although the IDW+HS+Tabu fits the 
IDW+HS at the early stages, in the final steps, the semi-tabu algorithm leads to a lighter design. 
The exact design weight is shown in Table 1. It can be seen that the new algorithm designed a 
lighter structure compared to the IDW+HS algorithm (4893 vs 4963), in a fewer iterations (682 vs 
1870). 
 

68.948E GPa=
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Figure 5   The convergence diagram for minimum weight design of 10-bar truss with various algorithms 

 
Table 1   The best solutions obtained from various algorithms for 10-bar truss 

 
Truss member ACO GA: Camp et al. Mahfouz GA HS IDW+HS IDW+HS+Tabu 

1 29.90 28.92 33.50 30.05 29.85 29.88 
2 0.10 0.10 1.62 0.27 0.53 0.14 
3 26.10 24.07 22.90 22.86 22.81 20.53 
4 15.40 13.96 14.20 14.58 14.54 13.84 
5 0.10 0.10 1.62 0.10 0.10 0.37 
6 0.50 0.56 1.62 0.28 0.73 1.02 
7 20.90 21.95 22.90 20.64 20.58 18.18 
8 7.40 7.69 7.97 8.11 7.31 7.04 
9 0.10 0.10 1.62 0.24 0.10 1.06 
10 18.70 22.09 22.00 20.69 21.01 23.33 

Weight (lb) 4994 5076 5491 4982 4963 4893 
Iterations 12000 15000 8000 5000 1870 682 

 
6.2 Twenty Five-bar Truss 

Material properties and design constraints: 

   E = 68.948GPa ; 
    
γ = 2.768T

m3 ;     σallowable = ±0.276MPa ;     δallowable = 8.89mm ; 

   0.645mm2 ≤ Ai ≤ 21.94mm2 ; sample points = 0.5 and 3.0. 
 

Table 2   Single load case for 25-bar truss 
 

Node (Ton) (Ton) (Ton) 
1 0.454 -4.536 -4.536 
2 0.0 -4.536 -4.536 
3 0.227 0.0 0.0 
4 0.272 0.0 0.0 

 

xF yF zF



M.M. Shahbazi et al / Improved version of Inverse Distance Weighting metamodel assisted Harmony Search algorithm for truss design optimization    295 

	  	  

Latin American Journal of Solids and Structures 10(2013) 283-300 
 

Table 3   Multiple load case for 25-bar truss 
 

Case Node (Ton) (Ton) (Ton) 

1 

1 0.454 -4.536 -2.268 
2 0.0 -4.536 -2.268 
3 0.227 0.0 0.0 
6 0.227 0.0 0.0 

2 
1 0.0 9.072 -2.268 
2 0.0 -9.072 -2.268 

 
 

 
Figure 6   Configuration of 25-bar truss 

 
 

 
Figure 7   The convergence diagram for minimum weight design of 25-bar truss under single load case with various algorithms 

 
 
 

xF yF zF
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Table 4   The best solutions obtained from various algorithms for 25-bar truss under single load case 

 
Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+Tabu 

1 1 0.10 0.10 0.12 0.28 0.52 
2 2-5 0.30 0.50 0.17 0.30 0.40 
3 6-9 3.40 3.40 3.40 3.40 3.04 
4 10-11 0.10 0.10 0.12 0.11 0.56 
5 12-13 2.10 1.90 1.23 1.73 1.64 
6 14-17 1.00 0.90 0.82 0.91 0.64 
7 18-21 0.50 0.50 0.94 0.53 0.51 
8 22-15 3.40 3.40 3.35 3.39 3.37 

Wight (lb) 485 485 482 476 451 
Iterations 7700 15000 5000 2838 166 

 

 
Figure 8   The convergence diagram for minimum weight design of 25-bar truss under multiple load case with various algorithms 

 
 

Table 5   The best solutions obtained from various algorithms for 25-bar truss under multiple load case 
 

Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+Tabu 
1 1 0.01 0.01 0.10 0.10 0.41 
2 2-5 2.00 2.01 1.65 2.05 2.21 
3 6-9 2.97 2.95 3.12 2.97 2.55 
4 10-11 0.01 0.01 0.13 0.19 0.32 
5 12-13 0.01 0.03 0.11 0.12 0.43 
6 14-17 0.69 0.68 0.53 0.67 0.63 
7 18-21 1.68 1.68 2.04 1.57 1.38 
8 22-15 2.67 2.68 2.80 2.64 2.49 

Wight (lb) 545.53 545.80 559.45 542.14 516.82 
Iterations 7700 15000 5000 2838 557 
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6.3 Seventy Two-Bar Truss 

Material properties and design constraints: 
 

68.948E GPa= ; 
32.768T
m

g = ;     σallowable = ±0.172MPa ;     δallowable = 6.35mm ; 

   0.0645mm2 ≤ Ai ≤ 19.355mm2 ; sample points= 0.05 and 2.20 
 

 
Figure 9   Configurations of 72-bar truss 

 
Table 6   Nodal coordinates of  story for 72-bar truss 

 
Node X (m) Y (m) Z (m) 
i+1 -1.524 -1.524 1.524i 
i+2 1.524 -1.524 1.524i 
i+3 1.524 1.524 1.524i 
i+4 -1.524 1.524 1.524i 

 
Table 7   load conditions for 72-bar truss 

 

Case Node (Ton) (Ton) (Ton) 

1 

17 0.0 0.0 -2.268 
18 0.0 0.0 -2.268 
19 0.0 0.0 -2.268 
20 0.0 0.0 -2.268 

2 17 2.268 2.268 -2.268 

thi

xF yF zF
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Figure 10   The convergence diagram for minimum weight design of 72-bar truss with various algorithms 

 
 

Table 8   The best solutions obtained from various algorithms for 72-bar truss 
 
Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+ Tabu 

1 1-4 1.948 1.856 1.86 1.85 1.99 
2 5-12 0.508 0.493 0.51 0.51 0.42 
3 13-16 0.101 0.100 0.01 0.01 0.08 
4 17-18 0.102 0.100 0.01 0.04 0.15 
5 19-22 1.303 1.283 1.30 1.27 1.04 
6 23-30 0.511 0.503 0.52 0.51 0.49 
7 31-34 0.101 0.100 0.01 0.02 0.06 
8 35-36 0.100 0.100 0.02 0.02 0.02 
9 37-40 0.561 0.518 0.53 0.53 0.71 
10 41-48 0.492 0.523 0.54 0.50 0.41 
11 49-52 0.100 0.100 0.02 0.02 0.01 
12 53-54 0.107 0.105 0.04 0.07 0.11 
13 55-58 0.156 0.156 0.17 0.17 0.19 
14 59-66 0.550 0.550 0.54 0.52 0.59 
15 67-70 0.390 0.398 0.44 0.43 0.50 
16 71-72 0.592 0.675 0.60 0.60 0.50 

Wight (lb) 380 380 365 359 357 
Iterations 18500 - 5000 1800 985 

 
7. CONCLUSION 

This paper describes a surrogate-based optimization algorithm. It is a combination of a metamod-
el and a meta-heuristic algorithm. Most of the meta-heuristic algorithms (e.g. GA, HS, and ACO) 
employ a large initial population size, which leads to a large and costly number of function evalu-
ation and suffer from slow convergence. These prohibitive factors are more pronounced when ap-
plied to exact simulation. IDW+HS+Tabu algorithm implements the optimization process in two 
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steps. First, the IDW is applied to eliminate the unnecessary calculations. Then the remaining 
solutions are processed for exact simulation. Then superposition principle is applied to normalize 
the result of exact simulation. Finally HM is updated by the results. The algorithm was applied 
to four truss design problems. The obtained results showed that the proposed method not only 
reduces the computational effort but also significantly improves convergence rate. As shown 
above, the proposed algorithm saves the computational cost from 86 to 99 percent. 
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