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Finite element formulation and analysis of a functionally graded Timo-
shenko beam subjected to an accelerating mass including inertial effects of 

the mass 

Abstract 
This study describes a new finite element method that can be used to analyse 
transverse and axial vibrations of a Functionally Graded Material (FGM) beam 
under an accelerating / decelerating mass. The differential equations of the FGM 
beam are obtained using First-order Shear Deformation Theory (FSDT). In these 
equations, the interaction terms of mass inertia are derived from the second-order 
exact differentiation of displacement functions with respect to mass contact point. 
The FGM beam is made of two different materials (Steel and Alumina Al2O3), 
which vary in thickness with a power law. Including the effects of neutral axis 
shift and mass inertia, the proposed method can be used when the dynamic be-
haviour of the FGM Timoshenko beams is to be analysed in transverse and axial 
directions, depending on the interaction with the acceleration of the moving 
loads. After validating this work with literature studies, new investigations and 
findings are presented for both moving load and mass assumptions. In addition, 
the obtained results of Timoshenko Beam (TBT) and Euler Bernoulli beam the-
ory (EBT) are compared for FGM beams with various speeds and accelerations 
of moving mass. 
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1 INTRODUCTION 

In recent years, there has been a new class of composite materials known as Functionally Graded Materials (FGMs), 
where different components of materials are graded continuously under a force law. This nonhomogeneous composite new 
material is an alternative to stress concentrations in conventional composite structures where the laminates have very 
different mechanical and thermal properties. In FGM, the proportions of constituent materials are slowly changed volu-
metrically to remove the interfacial effects of thermal and mechanical stresses. In some engineering applications, materials 
are expected to withstand high temperatures under severe loading conditions. Because of better thermal resistance, the 
properties of the ceramic component can withstand high temperature environments, while the metal component in the 
functionally graded materials (FGMs) provides more mechanical strength to reduce fracture performance probability. In 
defense, aviation and aerospace, automotive, transportation systems and similar engineering applications, the FGMs have 
the ability to combine many different properties such as thermal and mechanical strength, structural lightness and wear 
resistance. It is expected that the use of FGMs in engineering applications will increase as the production opportunities 
with the developing technology increase. A wide range of FGM application systems are support systems such as beams. 
In recent years, many scientists have studied the static and vibrational behaviour of FGM beams (Aydogdu and Taskin, 
2007; Chakraborty et al., 2003; Ebrahimi et al., 2016; Eltaher et al., 2013; Jafari-Talookolaei et al., 2018; Kang and Li, 
2010; Khan et al., 2016; Kim and Lee, 2014; Kosmatka, 1995; Lien et al., 2017; Mashat et al., 2014; Masoodi and Moghad-
dam, 2015; Murín et al., 2010; Nguyen and Nguyen, 2015; Rezaiee-Pajand et al., 2018; Rezaiee-Pajand and Masoodi, 
2016; Rezaiee-Pajand and Rajabzadeh-Safaei, 2018; Sina et al., 2009; Taati, 2018; Taeprasartsit, 2013; Yokoyama, 1996; 
Zhang and Zhou, 2008). Analysis of systems subjected to moving loads, an ongoing long-standing problem, and some 
studies have investigated the transverse responses of the limited number of FGM beams to moving forces, in the transverse 
and axial directions, neglecting the effects of inertia (Kadivar and Mohebpour, 1998; Nguyen et al., 2013; Rajabi et al., 
2013; Şimşek and Al-shujairi, 2017; Şimşek and Kocatürk, 2009). Other studies of moving loads at constant and variable 
speeds have also investigated the transverse responses of beams and plates with uniform cross-section and homogeneous 
materials (Kadivar and Mohebpour, 1998; Michaltsos, 2002; Wang, 2009; Yoshida and Weaver, 1971). Considering the 
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inertia effect of mass, some analytical and finite element studies of moving mass for beams and plates are given in 
(Cifuentes, 1989; Esen, 2013; Meirovitch, 1967; Wu, 2005). 

The calculation methods given in the literature for FGM beams in general are for low speed load movements and 
simplified conditions where the convective acceleration effect of moving load mass is neglected. In this study, a more 
realistic modelling and analysis method of such systems is provided without neglecting the Coriolis, inertia and centrifugal 
effects of the moving load accelerating along the deflected shape of the FGM beams. The natural vibration frequencies are 
important in the dynamic behavior of FGM and other beams. For this reason, any factor that affects or alters the frequency 
of the beam in the dynamic interaction is also very important. This is also the reason why the inertia effect of mass should 
be involved in the dynamic interaction of moving mass and beam, and in this study, this behavior is examined in this 
context in order to better understand the dynamic behavior. In addition to transverse vibration, axial vibration is also 
induced by inertia effects of the mass of the load in the conditions of rapid acceleration and panic braking, which have 
been often neglected in the literature. Moreover, this work also presents a detailed comparison of moving load and moving 
mass assumptions for FGM beams, including differences between Timoshenko (TBT) and Euler-Bernoulli beam theories 
(EBT). 

2 MATHEMATICAL MODELLING 

Figure 1 shows a FGM beam of length L exposed to a mass, moving from left to right with a variable speed. The 
modelling of the finite elements over the length is considered to have n beam elements with n + 1 nodes. The two nodes 
of each beam element have three displacements and forces at each node. Where xp is the time-dependent global position 
of the moving mass, and xm is the local coordinate of the mass measured from the left end of the element. A rectangular 
section with width b and height h and a material for the beam is considered to be a FGM consisting of two basic materials 
and it is assumed that effective material properties are distributed in the direction of thickness (z-direction) according to a 
power law as: 

1( ) ( ) , ( ) , 1
2

n n

b t b t t b
z zP z P P P V z V V
h h
                    

 (1) 

In Eq. (1) P(z) signifies the effective material properties, including mass density, Young's modulus, shear modulus 
and Poisson ratios; Pt and Pb are the material properties of the material at the top and bottom surfaces, respectively; Vt and 
Vb respectively be the volume fractions of the materials at the top and bottom surfaces; n is the non-negative power-law 
index, expresses the distribution of the constituent materials. Figure 2 depicts the change in volume fraction along the 
beam thickness for various index values of the FGM beam. 
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Figure 1: A thick FGM beam under the influence of a moving point mass. 

 

Due to variation of the effective Young's modulus, the neutral axis is no longer at the mid-plane thus, the shift of the 
neutral axis can be decided by solving the following equation (Eltaher et al., 2013; Zhang and Zhou, 2008). 
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Where z0 is the geometric neutral axis shift and h is the thickness of the beam, the position of the physical neutral axis 
depends on the ratio between the Et / Eb of the Young modules and the power law index n of the material components. 
Figure 2 shows the effect of the power law index n on the neutral axis shift of the FGM beam for various values of the Et 
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/ Eb ratio. In the figure, the shift increases with increasing Et / Eb ratio, but decreases as n index increases. Here indices t 
and b, respectively, stand for top surface (ceramic) and bottom surface (metal). 

 
Figure 2: a) Effect of the power law index on the physical neutral axis position. b) Variation in volume fraction in the thickness 

of FGM beams depending on the power-law exponent n. 

 

In the formulation, the following assumptions will be assumed (Figure 1): inertia effects of mass will take part in the 
calculations, and the moving mass will always be in contact with the beam, separation not allowed. When a FGM beam is 
considered in a coordinate system (x, z) where the x-axis coincides with the physical neutral axis of the beam as shown in 
Fig. 1, by adopting the FSDT and by including the axial force at the contact point with the beam, the displacements at any 
point of the beam become: 

( , , ) ( , ) ( , ),     ( , , ) ( , )u x z t u x t z x t w x z t w x t    (3) 

Where ( , )u x t , ( , )w x t  and ( , )x t  are the axial, transverse displacement and rotation of the cross section at point x on the 

physical neutral axis, Considering FSDT the strains and stresses related to the displacement field in Eq. (3) are given by 

;
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Where   is the surface correction factor. From Eq. (4), the strain energy of the beam is given by 
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Where D11 is the axial, D12 is the axial-rotational, D22 is the bending, and D33 is the shear rigidities, respectively and 
computed as 

2
11 12 22 33, , (1, , ) ( ) ,   ( )

A A
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The kinetic energy resulting from the equation (3) is 
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Where 
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The potential energy of the moving mass including convective acceleration is given by 

( , ) ( , ) ( ( )) ( , ) ( , ) ( ( ))p p p p p pV m g w x t w x t x x t m a u x t u x t x x t                  (9) 

Where g is gravitational acceleration, δ(.) is the Dirac delta function, ( , )p pm w x t  and ( , )p pm u x t  are inertia forces in z and 

x direction respectively, ( )px t  is the function describing the motion of the mass at time t, and given by 
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with x0 and v0 are initial position and velocity while a denotes the acceleration of the mass. Using Hamilton’s principle, 
Eqs. (5), (7) and (9) lead to the resulting coupled governing differential equations 
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and the geometric and natural boundary conditions for the hinged-hinged beam 

22 33( , ) 0, 0, ( ) 0  a t  = 0 and   =w x t D D w x x L        (12) 

2.1 Finite element formulation 

When the static case of Eq. (11) solved, then using the derived shape functions 
u , 

w and 
  (given in Appendix 

A- A.1-A.4:), the nodal displacements of a two node Timoshenko beam element with six Dof are (Kosmatka, 1995; Yoko-
yama, 1996): 

d 1 1 1 2 2 2
T

u w u w       (13) 

where 
1 1d u , 

2 1d w  and 
3 1d   are the axial, transverse displacements, and rotation at node 1, respectively; 

4 2d u

, 
5 2d w  and 

6 2d   are the displacements at node 2. With shape functions, the axial and transverse displacement and 

the rotation in the element are found from their nodal displacements using 

     d d d,     ,    
T T T

u wu w        (14) 

 u ,  w  and    are vectors of shape functions for u, w and θ, respectively 

Including geometric stiffness effect from axial force, and placing the shape functions in Eq. (14) into Eq. (6), the 
following total strain energy for all elements in equal length is obtained in the form 

 T Td kd d k k k k k d
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where n symbolizes the total number of elements, and k is the element stiffness matrix, which consisting of the axial 

stiffness matrix kuu
, coupling stiffness matrix ku

, bending stiffness matrix k , shear stiffness matrix k, and geometric 

stiffness matrix 
Gk , defined as follows 
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The sing of the kG
 is negative for acceleration and positive for deceleration of the mass. The kinetic energy can be 

specified with the help of equation (14) as 
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To include the effects of mass inertia, considering the convective acceleration the following contact force terms from 
Eq. (11) in axial and transverse directions should be evaluated. They are: 

2
( , )
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 (19) 

These force terms effect on the beam element s on which the moving mass is located (Fig.1), at time t. Except for the 

axial force pm a  and the gravitational transverse force pm g , when the velocity and acceleration of the mass is quite high, 

the inertia, Coriolis and centripetal force components can be high enough to effect of the interaction of the mass with the 
beam in transverse and axial directions. In such a case, for including these effects of the moving mass, Eq. (19) is rewritten 
using the same interpolating functions at the contact point of the mass and the nodal displacements of the Timoshenko 
beam element given in Eq. (14). Where, the position of the moving mass on the element s is ( )mx t as seen in Fig.1. 

Considering the relative position ( ) ( ) /mt x t l  , using ( )t with time and spatial derivations of Eq. (14), and then substi-

tuting into Eq. (19), finally rearranging the terms, the following time dependent second order differential matrix equation 
is obtained. 

md cd kd f     (20) 

Wherem , c  and k are, respectively, the additional mass, damping and stiffness matrices, and f is the loading force vector 
of the beam element s (as given in Appendix A - A.6). 

2.2 Equation of Motion of the entire System 

The motion equation for the multi-degree of freedom damped structural system shown in Fig.1 is as follows 

Mq Cq Kq F,     (21) 

Where M, C, and K are total mass, damping and stiffness matrices, respectively, q , q and q are acceleration, velocity, and 
displacement vectors, respectively. Also, F is the general external force vector at time t of the system. If there is a mass 
moving with a constant acceleration on the structure, mass, stiffness matrices of the all elements are obtained from Eqs. 
(16 and 18))) and then the element matrices of the beam element (s) are modified by adding the property matrices given 
in Eq. (20). The instantaneous force vector F is also time dependent and the coefficients of the total force vector are zero 
except for the nodal forces of the beam element s. Thus, the overall force vector of the complete system becomes: 
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3 RESULTS AND DISCUSSION WITH NUMERICAL SOLUTIONS 

The following non-dimensional frequency parameter is defined as 

0 0

0 0

2 2
1 1 / ( ) , ( )

h h h h
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 

 
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In the literature, when dealing with the moving mass problem, the moving mass is generally accepted as the moving 
load and the inertia effects of the mass are neglected, and the fundamentals frequency parameter is calculated according to 
the above formula. According to this assumption, the frequency parameters are given according to the slenderness of the 
beams in Table 1 in comparison for the same materials of FGM beam made of Al and Al2O3 used in previous studies 
(NGUYEN et al., 2013; Sina et al., 2009) . However, it may be an acceptable approach if the velocity of the load is too 
small and the mass of the moving load is too small relative to the mass of the beam. Because, as shown in Figure 3, as the 
mass ratio increases, the frequency parameter is greatly influenced by the inertia effects of mass. Figure 3 shows the 
variation of the fundamental frequency parameter according to different power law exponent n and Et / Eb ratio and mass 
ratio (mass of the load / mass of the beam), and the position of the mass on the beam. 

 

Table 1: Fundamental frequency parameter (λ1) for FG beam made of Al and Al2O3 

Index, n Source L/h=10 L/h=30 L/h=100 

0 Present 2.9982 2.8458 2.8488  
From (Nguyen et al., 2013) 2.8026 2.8438 2.8486  

From (Sina et al., 2009) 2.797 2.843 2.848 
0.3 Present 3.0993 2.7397 2.7425  

From (Nguyen et al., 2013) 2.6992 2.7368 2.7412  
From (Sina et al., 2009) 2.695 2.737 2.742 

5 Present 3.103 2.8839 2.8874 
10 Present 2.9667 3.064 3.0677 
15 Present 2.9982 3.0993 3.103 

 
As the mass ratio approaches 1, the fundamental frequency decreases by an average of 50% and, of course, this rate 

varies depending on the position of the mass on the beam. Figure 4 shows how the first four natural frequencies change 
relative to the position of the mass and mass ratio ε. The most important point to note here is the nodal points of the 
corresponding vibration mode at the 2nd, 3rd and 4th natural frequencies and there is no frequency change when the mass 
passes through these points. The shifts of physical neutral axis are given in Table 2. 

 

Table 2: Relative shift of physical neutral axis 
 z0/h 

Index, n l/h=10 l/h=30 l/h=100 
0 0 0 0 

0.3 0.0504 0.0504 0.0504 
5 0.1517 0.1517 0.1517 

10 0.1196 0.1196 0.1196 
15 0.0792 0.0792 0.0792 
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Figure 3. Change of the fundamental frequency parameter λ1. 

 
Figure 4. Change of the normalized frequencies of modes 1-4. 

 

The well-known velocity parameter for the fundamental mode is the ratio of the loading frequency (ω = πV / L) of 
the moving load to the fundamental natural frequency ω1 of the beam. If the velocity is constant, this term does not change, 
but in the case of the load motion with an acceleration, the velocity is not constant, so the loading frequency changes. 
When the load is considered as a moving force, the fundamental frequency is constant at ω1 for constant speeds. However, 
when the effect of mass inertia is included, the ω1 varies depending on the position and the mass of the load. (see Figure 
3). In this work, the reason this issue is referred to and taken care of is that the frequency parameter is given only according 
to the material composition and the beam dimensions in most literature studies. Design and calculation should be done 
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considering this fact in the FGM applications where the mass of moving load is high, and the travelling velocity is not 
constant. 

Example 1. To compare the present method with the same assumptions as the others, we consider a simple supported 
isotropic beam-plate under m = 0.4485 kg, F = 4.4 N as a moving load investigated in the literature in both cases, adding 
the inertial effects of mass to the account and accepting the mass as a moving load. The size and material properties of the 
plate are the same as those preferred in Meirovitch 1967, i.e. lx = 10.36 cm; ly = 0.635 cm, h = 0.635 cm; E = 206.8 GPa, 
ρ = 10686.9 kg / m3. In Table 3, dynamic amplification factors (DAF), defined as the ratio of maximum dynamic displace-
ment to maximum static displacement, are compared with numerical, analytical and experimental results using different 
theories available in the literature. For the Timoshenko beam (column 3) the results obtained with the present method 
appear to be close to the results of the analytical solution (Meirovitch, 1967) and the first order shear deformation theory 
(FSDT) (Michaltsos, 2002) . In addition, the current study and moving mass studies in the literature have been compared 
to show differences between moving mass and moving load assumptions, and the results of (Sharbati and Szyszkowski, 
2011; Wu, 2005) and the present study are very close for moving mass assumption. However, unlike the moving load 
(motion force) approach which neglects the effects of mass inertia, the DAF has increased significantly at some high 
speeds, but at very low speeds, all results are very close. 

 

Table 3: Dynamic amplification factors (DAF) versus velocity 

V (m/s) 1 2 3 4 5 6 7 8 9 
15.6 1.0704 1.0576 1.025 1.04 1.045 1.2261 1.2178 1.2179 1.2178 
31.2 1.1376 1.1230 1.121 1.09 1.35 1.8582 1.8812 1.8814 1.8812 
62.4 1.2858 1.2690 1.258 1.183 1.273 4.5794 4.9609 4.9614 4.9609 
93.6 1.5974 1.5768 1.572 1.194 1.572 2.9025 3.1876 3.1879 3.1876 

124.8 1.7154 1.6989 1.701 1.549 1.704 1.5712 1.7302 1.7304 1.7302 
156 1.7356 1.7187 1.719 1.527 1.716 0.8950 0.9958 0.9959 0.9958 

187.2 1.6908 1.6813 - 1.471 - 0.5729 0.6357 0.6358 0.6357 
250 1.5312 1.5206 1.548 1.374 1.542 0.2718 0.3074 0.3074 0.3074 

 (1) Present moving load (TBT), (2) Present moving load (EBT), (3) Moving load, analytical from (Meirovitch, 1967), (4) Moving load, third order shear 
deformation theory (TSDT) from (Mohebpour et al., 2011), (5) Moving load (FSDT) from (Michaltsos, 2002), (6) Present moving mass (TBT), (7) Present 
moving mass (EBT), (8) Moving mass (EBT) from (Sharbati and Szyszkowski, 2011), (9) moving mass (EBT) from (Wu, 2005). 

 
Example 2: let us consider the following FGM beam investigated by (Nguyen et al., 2013) and (Şimşek and Kocatürk, 

2009), whose properties are shown in Table 4. Here, beam length L = 20 m, height h = 0.9 m, width 0.4 m and power law-
exponent n = 0.2, 0.3, 0.5, 1, 2, 0, 1000. The calculated physical properties of the beam based on the power law-exponent 
are given in Table 5. It is assumed here that the beam is full steel on the base surface and full Al2O3 (99.9%) on the top 
surface. In columns 2 and 3, the effective Young's modulus’s and densities are given according to power-law exponent. In 
column 4 the term Φ gives the relative significance of the shear deformations to the bending deformations, by setting Φ = 
0 for neglecting shear deformation, displacement functions Eq. (A.3) are exact for beam element of EBT. The loading is 
100 kN, and the corresponding moving mass, mp in column 7 while mass of the beam mb is given in 6. 

 

Table 4. Material properties of FGM components. 

Properties Unit Steel Alumina (Al2O3) 
E GPa 210 390 
ρ kg/m3 7800 3960 
υ - 0.3 0.23 
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Table 5. Material and physical properties of FGM beam based on power law exponent. 

Power-law exponent n Ez(GPa) ρ z (kg/m3) Φ z0(m) mb (kg) mp (kg) 
mpg 
(kN) 

0.2 360 4600 0.0793 0.017 33120 10193.7 100 
0.3 348 4846 0.0793 0.0233 34892 10193.7 100 
0.5 330 5240 0.0796 0.0327 37728 10193.7 100 
1 300 5880 0.0811 0.045 42336 10193.7 100 
2 270 6520 0.0832 0.05 46944 10193.7 100 

Full alumina, n=0 390 3960 0.0797 0 28512 10193.7 100 
Full steel, n=1000 213 7796 0.0861 0.0004 56132 10193.7 100 

 
Dynamic amplification factors (DAFs) of the maximum midpoint displacements versus velocity of the mass for dif-

ferent power-law exponents considering moving load and moving mass assumptions, are given in Figure 5. Where DAF 
Max (w(L/2, t))/ w0 is the ratio of the maximum displacement occurring at midpoint of the beam to the static displacement 
occurring when the mass is statically at the midpoint of the beam, where w0 =FL3/48EzIz. 

 
Figure 5. Dynamic amplification factors versus velocity of the mass for different power-law exponents considering moving 

load and moving mass assumptions. 

 

In Table 6, the maximum DAFs and corresponding mass velocities are given in the assumption of moving mass and 
moving load. There are small differences in DAFs compared to the given in (Şimşek and Kocatürk, 2009) even if the 
corresponding velocities are the same or very close. These small differences are due to the same ratio of Poisson’s of 
alumina and steel, which is not clarified in (Şimşek and Kocatürk, 2009) and but they are accepted as the same in (Şimşek 
and Al-shujairi, 2017). The Poisson ratio of the alumina is v = 0.23 and it is 0.30 for the steel. Furthermore, the static 
deformation must be calculated considering the FGM beam, not the normal beam. Because, as seen in Table 5, the effec-
tive-Young’s modulus, effective density, and beam mass vary according to the power-law exponent. This change affects 
both static and dynamic displacements. The other differences are the inclusions of axial coupling and rotary inertia. In this 
study, in addition to the shear effect, in the TBT (Timoshenko beam theory), the effects of the rotary inertia and axial 
coupling are fully applied. No effect has been neglected in this study, with the aim of setting up a basic reference to the 
future literature studies and researchers without neglecting the full effects. 

 

Table 6. Maximum normalized deflections at the midpoint of the beam and corresponding velocities 

Power-law exponent 
Moving load (Present) 

Moving load (Şimşek 
and Kocatürk, 2009) 

Moving mass (Present) 

n wmax(x, t)/w0 v (m/s) wmax(x, t)/w0 v (m/s) wmax(x, t)/w0 v (m/s) 
0.2 1.7772 221 1.0344 222 2.8624 361 
0.3 1.7897 211 - - 2.8129 345 
0.5 1.8019 197 1.1444 198 2.7336 321 
1 1.7897 178 1.2503 179 2.5837 290 
2 1.7233 163 1.3376 164 2.3868 265 

Full alumina, n=0 1.7359 251 0.9328 252 3.0086 410 
Full steel, n=1000 1.6878 135 1.7324 132 2.1969 218 
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As can be seen from Fig. 5, the acceptance of moving mass leads to displacements which are twice as high as the 
moving load assumption. At small velocities below 25 m / s, both admissions yield close results. At high speeds, calculation 
of actual displacements with moving load assumption may give misleading results. As can be seen in Eqs. (A.6), the 
components of k vary linearly with the mass of the load while vary in proportion to the square of the velocity. At the same 
time, if the Coriolis effect is involved in the calculation, the components of the matrix c change linearly with both mass 
and velocity; and the effect of inertia is accounted for, the components matrix m vary depending on the mass. This negli-
gence can be made at low speeds but must not be neglected at high and very high speeds. 

Nowadays, especially in the case of high-speed train transport, the speed of transport vehicles has reached 500 km/h, 
as is the case of the Japanese bullet train. For moving load and moving mass assumptions; to compare the effects of low 
and very high speed, Fig. 6 shows the results obtained at velocities of v = 25, 50, 75, 100, 150 and 200 m / s. In tables 7 to 
10, the normalized maximum displacement and corresponding mass positions in these graphs are presented. 

 

Table 7. Relative mass position of max. mid-point displacement 
 

xp(t)/L (Moving load) 

V (m/s) 25 50 75 100 150 200 

n=0.2 0.53 0.49 0.35 0.44 0.59 0.72 
n=0.3 0.55 0.51 0.36 0.46 0.61 0.73 
n=0.5 0.44 0.54 0.39 0.48 0.64 0.77 
n=1 0.48 0.59 0.42 0.51 0.68 0.82 
n=2 0.52 0.64 0.45 0.55 0.72 0.87 

Alumina 0.47 0.44 0.63 0.40 0.54 0.66 
Steel 0.42 0.38 0.51 0.63 0.82 0.96 
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Figure 6. Normalized time dependent mid-point displacements of the FGM beam for v=25, 50, 75 and 150 m/s and for differ-

ent power-law exponent n. 
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Table 8. Normalized max. mid-point displacement. 

 w(L/2,t)/w0 (Moving load) 

V (m/s) 25 50 75 100 150 200 

n=0.2 1.10 1.19 1.14 1.39 1.68 1.77 
n=0.3 1.10 1.21 1.19 1.44 1.72 1.79 
n=0.5 1.10 1.22 1.26 1.51 1.76 1.80 
n=1 1.13 1.19 1.34 1.58 1.77 1.78 
n=2 1.10 1.10 1.36 1.57 1.72 1.69 

Alumina 1.06 1.12 1.12 1.25 1.57 1.70 
Steel 1.05 1.16 1.48 1.64 1.68 1.56 

 

Table 9. Relative mass position of max. mid-point displacement 
 

xp(t)/L (Moving mass) 

V (m/s) 25 50 75 100 150 200 

n=0.2 0.44 0.55 0.39 0.50 0.67 0.83 
n=0.3 0.46 0.57 0.41 0.52 0.69 0.85 
n=0.5 0.49 0.60 0.43 0.54 0.72 0.87 
n=1 0.53 0.65 0.46 0.58 0.77 0.90 
n=2 0.57 0.34 0.49 0.60 0.81 0.94 

Alumina 0.54 0.50 0.36 0.46 0.63 0.77 
Steel 0.44 0.41 0.56 0.69 0.88 1.00 

 

Table 10. Normalized max. mid-point displacement 
 

w(L/2,t)/w0(Moving mass) 

V (m/s) 25 50 75 100 150 200 

n=0.2 1.09 1.22 1.29 1.66 2.11 2.36 
n=0.3 1.12 1.22 1.35 1.71 2.15 2.37 
n=0.5 1.15 1.20 1.43 1.78 2.20 2.37 
n=1 1.14 1.12 1.53 1.85 2.20 2.32 
n=2 1.08 1.10 1.55 1.84 2.11 2.21 

Alumina 1.07 1.19 1.14 1.50 1.99 2.30 
Steel 1.10 1.26 1.67 1.90 2.06 2.17 

 

3.1 Effect of the Sudden Acceleration and Deceleration 

The effects of sudden acceleration on systems such as missile launchers and bridges are worth examining today as 
they may be in the case of sudden accelerations of missiles and projectiles or sudden braking of high-speed vehicles. To 
examine this effect and analyse the interaction of the beam with the mass, the results of sudden acceleration and decelera-
tion situations are given in the following section. The same constant acceleration and deceleration rate of 600 m/s2 are 
considered where the velocity of the mass is increased from zero to 154.86 m/s and decreased from this velocity to zero. 
In the case of acceleration, the mass is at the left end of the beam and the velocity is zero. In the case of braking, the 
velocity of the mass is zero at the right end of the beam. 

Figure 6 shows that normalized time dependent mid-point displacements of the FGM beam for v=25, 50, 75 and 150 
m/s and for different power-law exponent n. Figure 7 shows the effect of constant acceleration on normalized mid-point 
displacements of different material constituents; and for EBT and TBT. In both theories, the largest displacements are 
occurred in the beams made of full steel material. The reason for this is that in the case of full steel, the mass of the beam 
is at its greatest value. Large mass causes large mass matrix m and high displacement due to low natural frequency in 
dynamic load. With the same geometry, the FGM compound, which is large in effective modulus of elasticity and low in 
effective density, makes the smallest displacement. In fact, this is one of the reasons why FGM materials are preferred. As 
can be seen from the figures, EBT has a lower displacement than TBT. One of the reasons for this is the greater the stiffness 
matrix in EBT and the stiffer the material is. Another reason is the effect of axial coupling and rotary inertia which does 
not considered in EBT. This is better understood from the following axial displacement graphs in Figure 8. For this reason, 
TBT modelling gives more accurate results in high-speed moving load applications. At low speeds and low dynamic loads, 
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EBT can be applied instead of TBT as the results will be close to each other. We have chosen the example of high accel-
eration with the aim of revealing the difference between these two theories. In the case of acceleration and deceleration, 
considering the relative position of the mass on the beam, the contact point xp of the mass varies with a quadratic function 
of time while the velocity of the mass varies linearly, therefore, according to the relative position, it is expected that the 
displacement graphs of both situations will be very different. at rapid acceleration, the mass starts to accelerate from the 
left end of the beam, and before it reaches a quantity that will magnify the beam vibrations, the mass travels a great deal 
over the beam. Only after the mass passes the midpoint of the beam, the vibrational amplitudes grow. In the case of 
deceleration, the amplitudes increase earlier as the initial velocity and acceleration are higher. Another point is that the 
early excited beam has already begun to vibrate. The vibration amplitude tends to decrease with a fluctuation although the 
velocity of the mass rapidly decays over time. The decrease in amplitude is not as fast as the decrease in mass velocity. 
These events can be observed in both EBT and TBT models. 

. These events can be observed in both EBT and TBT models. 

 
Figure 7. Effect of acceleration and deceleration on normalized mid-point displacements. 



İsmail ESEN et al. 
Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial 
effects of the mass 

Latin American Journal of Solids and Structures, 2018, 15(10), e119 14/18 

 
Figure 8. Axial normalized mid-point displacements of the FGM compounds for sudden acceleration and deceleration using 

EBT and TBT. 

4 CONCLUSIONS 

In this study, a realistic model of a FGM Timoshenko beam under the influence of accelerated mass is established. 
The inertia effect of moving masses which are not adequately addressed in the literature studies for FGM beams is widely 
presented for different speeds and accelerations. It is understood that the dynamic behaviour of the beam is not overly 
affected by inertia effects at low and constant load speeds, as indicated in the literature for low speed civil engineering 
applications. However, at high speeds and in the case of acceleration or deceleration, it has been observed that the dynamic 
behaviour of the FGM beam changes significantly due to effect of the mass of the load. In some cases, the DAF increased 
by a factor of 2 due to the natural frequency change in the beam under the influence of the moving mass. In the analyses 
made, it was observed that the fundamental frequency changed by 50% (figures 5 and 6) when the mass of the moving 
load was equal to the mass of the beam. Thus, the decrease in fundamental frequency will reduce the speed parameter of 
the load. The speed parameter is the ratio of the influence frequency (ω=πv/L) of the moving mass to the actual funda-
mental frequency of the beam. The speed parameter of the fundamental frequency is defined as the ratio of ω/ω1, and the 
maximum response occurs when this ratio is equal to 1. It was also emphasized that design and calculation should be done 
considering the frequency variation in FGM applications where the mass and velocity of the load is high, and the speed of 
motion is not constant. 

Modelling of the FGM beam with a moving mass have been extensively studied in the assumptions of TBT, EBT, 
moving mass and moving load at constant and variable moving speeds of the mass, and results of the analysis have been 
given in detail. The effects of sudden acceleration / deceleration cases on transverse and axial vibration of the FGM beam 
were also presented. 
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Appendix A 
The vectors of shape functions for u, w and θ, respectively in Eq. (14) are in the form 

 
 
 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

T
u u u u u u u

T
w w w w w

T
 

      

      

      

      

    
    
    

 (A.1) 

with 

   
   

2 2
1 2 3

2 2
4 5 6

2
12 11 22 33 12 11 332

61 , , 3 (4 ) (1 )
(1 ) (1 )

6, , 3 (2 ) ,
(1 ) (1 )

12( ), / , ; / ; / ( )

u u u

u u u

l

l
x D D D D D D D
l l

        

        

 

         
 

      
 

       

 (A.2) 

 3 2
1 4 2

3 2
3

3 2
5

3 2
6

10, 2 3 1 ,
1

2 1 ,
1 2 2

1 2 3 ,
1

1
1 2 2

w w w

w

w

w

l

l

     

   

   

   

         
                         

      
              

 (A.3) 

 
 

2 2
1 4 2 3

2 2
5 6

1 6 10, , 3 (4 ) 1 ,
1 1
1 6 1, 3 2

1 1

l

l

   

 

       

     

                
             

 (A.4) 

Derivation of Eq. (25) 

Eq. (24) is evaluated using nodal displacement equations in Eq. (14) using u  and w  including shear deformation 
effects but omitting rotatory coupling with axial motions. In such a case, the external force equations for the contact point 
of the mass are: 
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 (A.5) 

When Eq. (A.5) is arranged in terms of nodal acceleration, velocity and displacement vectors, the following matrix 
equation is obtained with the coefficients of the property matrices and force vector given as: 
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