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Abstract 
The dynamic response to moving masses of rectangular plates with 
general classical boundary conditions and resting on variable Win-
kler elastic foundation is investigated in this work. The governing 
fourth order partial differential equation is solved using a technique 
based on separation of variables, the modified method of Struble 
and the integral transformations. Numerical results in plotted 
curves are then presented.  The results show that as the value of 
the rotatory inertia correction factor Ro increases, the response 
amplitudes of the plate decrease and that, for fixed value of Ro, the 
displacements of the plate decrease as the foundation modulus Fo 
increases for the variants of the classical boundary conditions con-
sidered. The results also show that for fixed Ro and Fo, the trans-
verse deflections of the rectangular plates under the actions of mov-
ing masses are higher than those when only the force effects of the 
moving load are considered. For the rectangular plate, for the same 
natural frequency, the critical speed for moving mass problem is 
smaller than that of the moving force problem for all variants of 
classical boundary conditions, that is, resonance is reached earlier in 
moving mass problem than in moving force problem. When Fo and 
Ro increase, the critical speed increases, hence, risk is reduced. 
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Winkler foundation, Rotatory Inertia, Foundation modulus, Moving 
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1 INTRODUCTION 

Structures such as bridges, roadways, decking slabs, girders and belt drive (carrying machine chain) 
are constantly acted upon by moving masses and, hence, the problem of analyzing the dynamic 
response of elastic structures under the action of moving masses continues to motivate a variety of 
investigations [1-6]. In most analytical studies in Engineering and Mathematical Physics, structural 
members are commonly modeled as a beam or as a plate.  
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 The effects of moving loads on solid bodies are dual [1]. On one hand is the gravitational effect 
of the moving load while on the other hand is the inertia effect of the mass of the load on the vi-
brating solid bodies. When the inertia effect of the moving load is considered, the governing differ-
ential equation of motion becomes complex and cumbersome and no longer has constant coeffi-
cients. In particular, the coefficients become variable and singular. If the inertia effect of the moving 
load is neglected, the problem is termed moving force problem and when it is retained, it is termed 
moving mass problem. 
 Aside the problem arising from the inclusion of the inertia terms in moving mass problems, diffi-
culties often arise from the type of specified end-conditions. There are four classical boundary condi-
tions that are commonly of practical interest to an applied Mathematician or an Engineer. These 
are Pinned end conditions (Simply supported end conditions), Fixed / Clamped end conditions, 
Free end conditions and Sliding end conditions [1, 7]. 
 The analysis of beam and plate on Winkler foundation when the foundation modulus is constant 
is very common in literature. The work of Timoshenko [8] gave impetus to research work in this 
area of study. He used energy methods to obtain solutions in series form for simply supported finite 
beams on elastic foundations subjected to time dependent point loads moving with uniform velocity 
across the beam. Steele [9] also investigated the response of a finite, simply supported Bernoulli-
Euler beam to a unit force moving at a uniform velocity. He analyzed the effects of this moving 
force on beams with and without an elastic foundation. Using a considerably simpler vector formu-
lation with a Laplace rather than Fourier transformation, Steele [10] presented a review of the tran-
sient response of the Bernoulli-Euler beam and the Timoshenko beam on elastic foundation due to 
moving loads 
 Several researchers have also made tremendous efforts in the study of dynamics of structures 
under moving loads [11, 12, 13, 14, 15, 16, 17, 18]. Recently, Oni and Awodola [19] considered the 
dynamic response under a moving load of an elastically supported non-prismatic Bernoulli-Euler 
beam on variable elastic foundation. More recently, Oni and Awodola [20] investigated the dynamic 
behaviour under moving concentrated masses of simply supported rectangular plates resting on 
variable Winkler elastic foundation. 
 In most of the investigations in literature on vibration of rectangular plate under moving loads 
and resting on elastic foundations, work has been restricted to cases when the elastic foundations 
are regarded as being constant. The more complicated case, when the elastic foundation varies 
along the span of the structure has been neglected, where this is considered, work has been restrict-
ed to the simplest form of the problem when the structure is simply supported.  This paper is there-
fore concerned with the problem of assessing the dynamic response to moving concentrated masses 
of rectangular plates with general classical boundary conditions and resting on variable Winkler 
elastic foundations. 
 
2 GOVERNING EQUATION 

The problem of the dynamic response to moving concentrated masses of rectangular plate with 
general classical boundary condition and resting on Winkler foundation with stiffness variation is 
considered. Consider a rectangular plate carrying an arbitrary number (say N) of concentrated 
masses Mi moving with constant velocities ci, i = 1, 2, 3,…,N along a straight line parallel to the x-
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axis issuing from point y = s on the y-axis. The equation governing the dynamic transverse dis-
placement W(x,y,t) of the rectangular plate when it is resting on a variable Winkler foundation and 
traversed by several moving concentrated masses is the fourth order partial differential equation 
given by [20] 
 

    

D∇4W(x,y,t) + µ
∂2W(x,y,t)

∂t2
= µR0

∂4

∂t2 ∂x 2
+

∂4

∂t2 ∂y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥W(x,y,t)

−F0 4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥W(x,y,t) + Migδ(x −cit)δ(y − s)⎡

⎣
i=1

N

∑

−Mi
∂2

∂t2
+ 2ci

∂2

∂t ∂x
+ ci

2 ∂
2

∂x 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
W(x,y,t)δ(x −cit)δ(y − s) ⎤⎦

 (1) 

 
where D is the bending rigidity of the plate, m is mass per unit area of the plate, x is the position 
co-ordinate in x – direction, y is position co-ordinate in y – direction, t is the time,   R0  is the rota-

tory inertia correction factor,   ∇
2  is the two-dimensional Laplacian operator, F0 is the foundation 

modulus and  δ (.) is the Dirac-Delta function. 
 At this juncture, the boundary condition is arbitrary and the initial condition, without any loss 
of generality, is taken as 
 

   
W(x,y,t) = 0 =

∂W(x,y,t)
∂t

 (2) 

 
3 ANALYTICAL APPROXIMATE SOLUTION 

Evidently, an exact closed form solution of the above fourth order partial differential equation (1) 
does not exist. Consequently, an approximate solution is sought. Thus, the technique based on sep-
aration of variable described in [11] is employed. This versatile technique requires that the solution 
of equation (1) takes the form 
 

    
W(x,y,t) = ϕn(x,y)Tn(t)

n=1

∞

∑  (3) 

 
where φn are the known eigen functions of the plate with the same boundary conditions and have 
the form of [20] 
 

    ∇
4ϕn − ωn

4ϕn = 0  (4) 
 
where 
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ωn

4 =
Ωn

2µ
D

 (5) 

 
 Ωn, n = 1, 2, 3, … , are the natural frequencies of the dynamical system and Tn(t) are amplitude 
functions which have to be calculated. 
 In order to solve the equation (1), it is rewritten as 
 

    

D
µ
∇4W(x,y,t) +

∂2W(x,y,t)

∂t2
= R0

∂4

∂t2 ∂x 2
+

∂4

∂t2 ∂y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥W(x,y,t)

−
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥W(x,y,t) +

Mig
µ
δ(x −cit)δ(y − s)

⎡

⎣
⎢
⎢

i=1

N

∑

−
Mi

µ
∂2

∂t2
+ 2ci

∂2

∂t ∂x
+ ci

2 ∂
2

∂x 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
W(x,y,t)δ(x −cit)δ(y − s) ⎤⎦

 (6) 

 
 Rewriting the right hand side of equation (6) in the form of a series, we have 
 

    

R0
∂4

∂t2 ∂x 2
+

∂4

∂t2 ∂y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥W(x,y,t)−

F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥W(x,y,t) +

Mig
µ
δ(x −cit)δ(y − s)

⎡

⎣
⎢
⎢

i=1

N

∑

−
Mi

µ
∂2

∂t2
+ 2ci

∂2

∂t ∂x
+ ci

2 ∂
2

∂x 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
W(x,y,t)δ(x −cit)δ(y − s) ⎤⎦ = ϕn(x,y)Bn(t)

n=1

∞

∑
 (7) 

 
 When equation (3) is used in equation (7) we have  
 

    

R0 ϕn,xx(x,y)Tn,tt(t) +ϕn,yy(x,y)Tn,tt(t)⎡
⎣⎢

⎤
⎦⎥{

n=1

∞

∑ −
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥ϕn(x,y)Tn(t)

+ ⎡
⎣

i=1

N

∑ Mig
µ
δ(x −cit)δ(y − s)−

Mi

µ
ϕn(x,y)Tn,tt(t) + 2ciϕn,x(x,y)Tn,t(t)(

+ci
2ϕn,xx(x,y)Tn(t) )δ(x −cit)δ(y − s) ⎤⎦ } = ϕn(x,y)Bn(t)

n=1

∞

∑

 (8) 

 
where 
 

    

ϕn,x(x,y) implies
∂ϕn(x,y)
∂x

, ϕn,xx(x,y) implies
∂2ϕn(x,y)

∂x 2
,

ϕn,y(x,y) implies
∂ϕn(x,y)
∂y

, ϕn,yy(x,y) implies
∂2ϕn(x,y)

∂y2
,

Tn,t(t) implies
dTn(t)

dt
and Tn,tt(t) implies

d2Tn(t)

dt2

 (9) 
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 Integrating equation (8) on area A of the plate, we have  
 

    

A∫ R0 ϕn,xx(x,y)ϕp(x,y)Tn,tt(t) +ϕn,yy(x,y)ϕp(x,y)Tn,tt(t)⎡
⎣⎢

⎤
⎦⎥{

n=1

∞

∑

−
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥ϕn(x,y)ϕp(x,y)Tn(t) + ⎡

⎣
i=1

N

∑ Mig
µ
ϕp(x,y)δ(x −cit)δ(y − s)

−
Mi

µ
ϕn(x,y)ϕp(x,y)Tn,tt(t) + 2ciϕn,x(x,y)ϕp(x,y)Tn,t(t)(

+ci
2ϕn,xx(x,y)ϕp(x,y)Tn(t) )δ(x −cit)δ(y − s) ⎤⎦ }dA =

A∫ ϕn(x,y)ϕp(x,y)Bn(t)
n=1

∞

∑ dA

 (10) 

 
 Considering the orthogonality of φn(x,y), we have that 
 

    

Bn(t) =
1

P* A∫ R0 ϕn,xx(x,y)ϕp(x,y)Tn,tt(t) +ϕn,yy(x,y)ϕp(x,y)Tn,tt(t)⎡
⎣⎢

⎤
⎦⎥{

n=1

∞

∑

−
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥ϕn(x,y)ϕp(x,y)Tn(t) + ⎡

⎣
i=1

N

∑ Mig
µ
ϕp(x,y)δ(x −cit)δ(y − s)

−
Mi

µ
ϕn(x,y)ϕp(x,y)Tn,tt(t) + 2ciϕn,x(x,y)ϕp(x,y)Tn,t(t)(

+ ci
2ϕn,xx(x,y)ϕp(x,y)Tn(t) )δ(x −cit)δ(y − s) ⎤⎦ }dA

 (11) 

 

 where 
    
P* = ϕp

2 dA
A∫  

 Using (11) and taking into account (3) and (4), equation (6) can be written as 
 

    

ϕn(x,y)
Dωn

4

µ
Tn(t) +Tn,tt(t)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
ϕn(x,y)

P* A∫ R0 ϕq,xx(x,y)ϕp(x,y)Tq,tt(t)⎡
⎣⎢{

q=1

∞

∑

+ϕq,yy(x,y)ϕp(x,y)Tq,tt(t) ⎤⎦⎥ −
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥ϕq(x,y)ϕp(x,y)Tq(t)

+ ⎡
⎣

i=1

N

∑ Mig
µ
ϕp(x,y)δ(x −cit)δ(y − s)−

Mi

µ
ϕq(x,y)ϕp(x,y)Tq,tt(t)(

+2ciϕq,x(x,y)ϕp(x,y)Tq,t(t) + ci
2ϕq,xx(x,y)ϕp(x,y)Tq(t) )δ(x −cit)δ(y − s) ⎤⎦ }dA

 (12) 

 
 Equation (12) implies that  
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Tn,tt(t) +
Dωn

4

µ
Tn(t) =

1

P* A∫ R0 ϕq,xx(x,y)ϕp(x,y)Tq,tt(t)⎡
⎣⎢{

q=1

∞

∑

+ϕq,yy(x,y)ϕp(x,y)Tq,tt(t) ⎤⎦⎥ −
F0

µ
4x − 3x 2 + x 3⎡
⎣⎢

⎤
⎦⎥ϕq(x,y)ϕp(x,y)Tq(t)

+ ⎡
⎣

i=1

N

∑ Mig
µ
ϕp(x,y)δ(x −cit)δ(y − s)−

Mi

µ
ϕq(x,y)ϕp(x,y)Tq,tt(t)(

+2ciϕq,x(x,y)ϕp(x,y)Tq,t(t) + ci
2ϕq,xx(x,y)ϕp(x,y)Tq(t) )δ(x −cit)δ(y − s) ⎤⎦ }dA

 (13) 

 
 Equation (13) is a set of coupled second order ordinary differential equations. 
 Expressing the Dirac-Delta function in the Fourier cosine series as 
 

    
δ(x −cit) =

1
LX

1 + 2 cos
jπcit
LXj=1

∞

∑ cos
jπx
LX

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (14) 

  
and 
 

    
δ(y − s) =

1
LY

1 + 2 cos
kπs
LYk=1

∞

∑ cos
kπy
LY

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (15) 

  
equation (13) then becomes 
 

    

d2Tn(t)

dt2
+ αn

2Tn(t)−
1

P*
R0P1

* d2Tq(t)

dt2
−

F0

µ
P2

*Tq(t)
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪q=1

∞

∑

−
i=1

N

∑ Mi

LXLY µ
2

P3
*

2
+ cos

kπs
LYk=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢
⎢
⎢

P3
**(k) + cos

jπcit
LX

P3
***(j)

j=1

∞

∑

+2 cos
jπcit
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P3
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟

d2Tq(t)

dt2
+ 4ci

P4
*

2
+ cos

kπs
LY

P4
**(k)

k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

+ cos
jπcit
LX

P4
***(j) +

j=1

∞

∑ 2 cos
jπcit
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P4
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟

dTq(t)

dt

+2ci
2 P5

*

2
+

⎛

⎝
⎜⎜⎜⎜

cos
kπs
LY

P5
**(k)

k=1

∞

∑ + cos
jπcit
LX

P5
***(j)

j=1

∞

∑

+2 cos
jπcit
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P5
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟
Tq(t)

⎤

⎦

⎥
⎥
⎥

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

=
Mig

P*µi=1

N

∑ ϕp(cit,s)

 (16) 

 
where 
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αn

2 =
Dωn

4

µ
, 

    

P1
* = ϕn,xx(x,y) +ϕn,yy(x,y)⎡

⎣⎢
⎤
⎦⎥0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P2
* = 4x − 3x 2 + x 3⎡

⎣⎢
⎤
⎦⎥0

LY

∫0

LX

∫ ϕn(x,y)ϕp(x,y)dydx,
 

    

P3
* = ϕn(x,y)

0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P3
**(k) = cos

kπy
LY

0

LY

∫0

LX

∫ ϕn(x,y)ϕp(x,y)dydx,
 

    

P3
***(j) = cos

jπx
LX

ϕn(x,y)
0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P3
****(j,k) = cos

jπx
LX

cos
kπy
LY

0

LY

∫0

LX

∫ ϕn(x,y)ϕp(x,y)dydx,
 

    

P4
* = ϕn,x(x,y)

0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P4
**(k) = cos

kπy
LY

0

LY

∫0

LX

∫ ϕn,x(x,y)ϕp(x,y)dydx,
 

    

P4
***(j) = cos

jπx
LX

ϕn,x(x,y)
0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P4
****(j,k) = cos

jπx
LX

cos
kπy
LY

0

LY

∫0

LX

∫ ϕn,x(x,y)ϕp(x,y)dydx,
 

    

P5
* = ϕn,xx(x,y)

0

LY

∫0

LX

∫ ϕp(x,y)dydx,

P5
**(k) = cos

kπy
LY

0

LY

∫0

LX

∫ ϕn,xx(x,y)ϕp(x,y)dydx,
 

    

P5
***(j) = cos

jπx
LX

ϕn,xx(x,y)
0

LY

∫0

LX

∫ ϕp(x,y)dydx

and P5
****(j,k) = cos

jπx
LX

cos
kπy
LY

0

LY

∫0

LX

∫ ϕn,xx(x,y)ϕp(x,y)dydx,
 

 
 Equation (16) is the transformed equation governing the problem of the rectangular plate on a 
variable Winkler elastic foundation. This differential equation holds for all variants of the classical 
boundary conditions.  
 In what follows, φn(x,y) are assumed to be the products of the beam functions ψni(x) and ψnj(y) 
[20]. That is 
 

    
ϕn(x,y) = ψni(x)ψnj(y)  (17) 
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 These beam functions can be defined respectively, as 
 

    
ψni(x) = sin

Ωnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

 (18) 

and 
 

    
ψnj(y) = sin

Ωnjy

LY

+ Anj cos
Ωnjy

LY

+ Bnj sinh
Ωnjy

LY

+Cnj cosh
Ωnjy

LY

 (19) 

 
where Ani, Anj, Bni, Bnj, Cni and Cnj are constants determined by the boundary conditions. Ωni and 
Ωnj are called the mode frequencies. 
 In order to solve equation (16) we shall consider only one mass M traveling with uniform veloci-
ty c along the line y = s. The solution for any arbitrary number of moving masses can be obtained 
by superposition of the individual solution since the governing differential equation is linear. Thus 
for the single mass M1 equation (16) reduces to 
 

    

d2Tn(t)

dt2
+ αn

2Tn(t)−
1

P*
R0P1

* d2Tq(t)

dt2
−

F0

µ
P2

*Tq(t)
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪q=1

∞

∑ −Γ 2
P3

*

2
+ cos

kπs
LYk=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢
⎢
⎢

P3
**(k)

+ cos
jπct
LX

P3
***(j)

j=1

∞

∑ + 2 cos
jπct
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P3
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟

d2Tq(t)

dt2
+ 4c

P4
*

2
+ cos

kπs
LY

P4
**(k)

k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

+ cos
jπct
LX

P4
***(j) +

j=1

∞

∑ 2 cos
jπct
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P4
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟

dTq(t)

dt
+ 2c2 P5

*

2
+

⎛

⎝
⎜⎜⎜⎜

cos
kπs
LY

P5
**(k)

k=1

∞

∑

+ cos
jπct
LX

P5
***(j)

j=1

∞

∑ + 2 cos
jπct
LXk=1

∞

∑
j=1

∞

∑ cos
kπs
LY

P5
****(j,k)

⎞

⎠

⎟⎟⎟⎟⎟
Tq(t)

⎤

⎦

⎥
⎥
⎥

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

=
Mg

P*µ
Ψpi(ct)Ψpj(s)

 (20) 

 
 where 
 

   
Γ =

M
LXLY µ

 (21) 

 
 Equation (20) is the fundamental equation of our problem when the rectangular plate has arbi-
trary end support conditions. In what follows, we shall discuss two special cases of the equation (20) 
namely; the moving force and the moving mass problems. 
 
3.1 Case I: rectangular plate traversed by a moving force 
 
By setting Γ = 0 in equation (20), an approximate model of the differential equation describing the 
response of a rectangular plate resting on a variable Winkler elastic foundation and traversed by a 
moving force would be obtained. 
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 Thus, setting Γ = 0 in equation (20), we have 
  

    

d2Tn(t)

dt2
+ αn

2Tn(t)−
P1

*R0

P*

d2Tq(t)

dt2
+

P2
*F0

µP*
Tq(t)

q=1

∞

∑
q=1

∞

∑ =
Mg

P*µ
Ψpi(ct)Ψpj(s) (22) 

 
 Evidently, an exact analytical solution to this equation is not possible. Consequently, the ap-
proximate analytical solution technique, which is a modification of the asymptotic method of Stru-
ble discussed in [20] shall be used. 
 To solve equation (22), first, we neglect the rotatory inertial term and rearrange the equation to 
take the form 
 

    

d2Tn(t)

dt2
+ αn

2 + Γ*P2
*⎡

⎣⎢
⎤
⎦⎥Tn(t) + Γ*P2

* Tq(t)
q=1
q≠n

∞

∑ =
Mg

P*µ
Ψpi(ct)Ψpj(s)  (23) 

where 
 

    
Γ* =

F0

µP*
 (24) 

 
 Consider a parameter λ < 1 for any arbitrary ratio Γ * defined as 
 

   
λ =

Γ*

1 + Γ*
 (25) 

 
so that 
 

    Γ
* = λ + o(λ2)  (26) 

 
 Substituting equation (26) into the homogenous part of equation (23) yields 
 

    

d2Tn(t)

dt2
+ αn

2 + λP2
*⎡

⎣⎢
⎤
⎦⎥Tn(t) + λP2

* Tq(t)
q=1
q≠n

∞

∑ = 0  (27) 

 
 When λ is set to zero in equation (27), a situation corresponding to the case in which the effect 
of the foundation is regarded as negligible is obtained. In such a case the solution is of the form 
 

    
Tn(t) = Cf cos(αnt − β)  (28) 

 
where Cf, αn and β are constants. 
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 Since λ < 1 for any arbitrary mass ratio Γ *, Struble’s technique requires that the asymptotic 
solution of the homogenous part of equation (23) be of the form 
 

    
Tn(t) = An(t)cos αnt −Φn(t)⎡

⎣
⎤
⎦ + λT1(t) + o(λ2)  (29) 

 
where An(t) and Φn(t) are slowly varying functions of time or equivalently 
 

    

dAn(t)
dt

→ o(λ);
d2An(t)

dt2
→ 0(λ2)  

    

dΦn(t)
dt

→ o(λ);
d2Φn(t)

dt2
→ 0(λ2)  

(30) 

 
where  →  implies “ is of ”  
 Thus, equation (27) can be replaced with 
 

    

d2Tn(t)

dt2
+ γs

2Tn(t) = 0  (31) 

 
where 
 

    
γs = αn +

λP2
*

2αn

 (32) 

 
represents the modified frequency due to the effect of the foundation. It is observed that when λ = 
0, we recover the frequency of the moving force problem when the effect of the foundation is ne-
glected. 
 Using equation (3.31), equation (22) can be written as 
 

    

d2Tn(t)

dt2
+ γs

2Tn(t)−
P1

*R0

P*

d2Tq(t)

dt2
q=1

∞

∑ =
Mg

P*µ
Ψpi(ct)Ψpj(s)  (33) 

 
 The homogenous part of equation (33) is rearranged to take the form 
 

    

d2Tn(t)

dt2
+

γs
2

1−λ0P1
*
Tn(t)−

λ0P1
*

1−λ0P1
*

d2Tq(t)

dt2
q=1
q≠n

∞

∑ = 0  (34) 

 

where 
    
λ0 =

R0

P*
 

 Now consider the parameter ε0 < 1 for any arbitrary mass ratio   λ0  defined as 
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ε0 =

λ0
1 + λ0

 (35) 

 
 It can be shown that 
 

    λ0 = ε0 + o(ε0
2)  (36) 

 
 Following the same argument, equation (34) can be replaced with 
 

    

d2Tn(t)

dt2
+ γsf

2Tn(t) = 0  (37) 

 
where 
 

    
γsf = γs 1 +

ε0P1
*

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (38) 

 
 is the modified frequency corresponding to the frequency of the free system due to the presence 
of the rotatory inertia. It is observed that when ε0 = 0, we recover the frequency of the moving 
force problem when the rotatory inertia effect is neglected. 
 In order to solve the non-homogenous equation (33), the differential operator which acts on 
Tn(t) is replaced by the equivalent free system operator defined by the modified frequency γsf. Thus 
 

    

d2Tn(t)

dt2
+ γsf

2Tn(t) = K0Ψpi(ct)Ψpj(s)  (39) 

 
where 
 

    
K0 =

Mg

P*µ
 (40) 

 
 Therefore, the moving force problem is reduced to the non-homogeneous ordinary differential 
equation given as 
 

    

d2Tn(t)

dt2
+ γsf

2Tn(t) = K0Ψpj(s) sinαpit + Api cosαpit + Bpi sinhαpit +Cpi coshαpit⎡
⎣⎢

⎤
⎦⎥  (41) 

 

 where 
   
αpi =

Ωpic

LX
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 When equation (41) is solved in conjunction with the initial conditions, one obtains expression 
for Tn(t). Thus in view of equation (3), one obtains 
 

    

W(x,y,t) =
nj=1

∞

∑
ni=1

∞

∑
K0Ψpj(s)

γsf [γsf
4 − αpi

4 ]
[γsf

2 − αpi
2 ][Cpi{ γsf (coshαpit − cosγsf t)

+ Bpi(γsf sinhαpit − αpi sin γsf t)]+ [γsf
2 + αpi

2 ][Apiγsf (cosαpit − cosγsf t)

− (αpi sin γsf t − γsf sinαpit)] }[ sin
Ωnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

][sin
Ωnjy

LY

+ Anj cos
Ωnjy

LY

+ Bnj sinh
Ωnjy

LY

+Cnj cosh
Ωnjy

LY

]

 (42) 

 
 Equation (42) represents the transverse displacement response to a moving force of a rectangular 
plate resting on variable Winkler elastic foundation and having arbitrary edge supports. 
 
3.2 Case II: rectangular plate traversed by a moving mass 
 
 If the mass of the moving load is commensurable with that of the structure, the inertia effect of 
the moving mass is not negligible. Thus Γ ≠ 0 and one is required to solve the entire equation (20) 
when no term of the coupled differential equation is neglected. This is termed the moving mass 
problem. 
 Thus, equation (20) can be rewritten in the form 
 

    

1 +
2ε
P*

P3
*

2
+ cos

kπs
LY

P3
**(k) + cos

jπct
LX

P3
***(j)

j=1

∞

∑
k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢
⎢
⎢

+2 cos
jπct
LX

cos
kπs
LY

P3
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟

⎤

⎦

⎥
⎥
⎥

d2Tn(t)

dt2

+
4εc
P*

P4
*

2
+

⎛

⎝
⎜⎜⎜⎜

cos
kπs
LY

P4
**(k) + cos

jπct
LX

P4
***(j)

j=1

∞

∑
k=1

∞

∑ + 2 cos
jπct
LX

cos
kπs
LY

P4
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟

dTn(t)
dt

+ γsf
2 +

2εc2

P*

P5
*

2
+ cos

kπs
LY

P5
**(k) + cos

jπct
LX

P5
***(j)

j=1

∞

∑
k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢
⎢
⎢

+2 cos
jπct
LX

cos
kπs
LY

P5
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟

⎤

⎦

⎥
⎥
⎥
Tn(t)

+
ε

P*
2

P3
*

2
+ cos

kπs
LY

P3
**(k) + cos

jπct
LX

P3
***(j)

j=1

∞

∑
k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢
⎢
⎢q=1

q≠n

∑ +2 cos
jπct
LX

cos
kπs
LY

P3
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟

d2Tq(t)

dt2

4c
P4

*

2
+

⎛

⎝
⎜⎜⎜⎜

cos
kπs
LY

P4
**(k) + cos

jπct
LX

P4
***(j)

j=1

∞

∑
k=1

∞

∑ + 2 cos
jπct
LX

cos
kπs
LY

P4
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟

dTq(t)

dt

+2c2 P5
*

2
+ cos

kπs
LY

P5
**(k) + cos

jπct
LX

P5
***(j)

j=1

∞

∑
k=1

∞

∑
⎛

⎝

⎜⎜⎜⎜⎜
+2 cos

jπct
LX

cos
kπs
LY

P5
****(j,k)

k=1

∞

∑
j=1

∞

∑
⎞

⎠

⎟⎟⎟⎟⎟⎟
Tq(t)

⎤

⎦

⎥
⎥
⎥

=
εgLXLY

P*
Ψpi(ct)Ψpj(s)

 (43) 
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where 
   
ε =

M
LXLY µ

   

we rearrange equation (43) to take the form 
 

    

d2Tn(t)

dt2
+

µ0R2(t)
1 + µ0R1(t)

dTn(t)
dt

+
γsf

2 + µ0R3(t)

1 + µ0R1(t)
Tn(t) +

µ0

1 + µ0R1(t)
R1(t)⎡
⎣

d2Tq(t)

dt2
+ R2(t)

dTq(t)

dtq=1
q≠n

∞

∑

+R3(t)Tq(t) ⎤⎦⎥ =
µ0gLXLY

[1 + µ0R1(t)]P
*
Ψpi(ct)Ψpj(s)

 (44) 

 
where ε has been written as a function of the mass ratio µo, 

 

    
R1(t) =

2

P*

P3
*

2
+ cos

kπs
LYk=1

∞

∑
⎡

⎣

⎢
⎢
⎢

P3
**(k) + cos

jπct
LX

P3
***(j)

j=1

∞

∑ +2 cos
jπct
LX

cos
kπs
LYk=1

∞

∑
j=1

∞

∑ P3
****(j,k)

⎤

⎦

⎥
⎥
⎥  

 

    
R2(t) =

2c

P*

P4
*

2
+ cos

kπs
LYk=1

∞

∑
⎡

⎣

⎢
⎢
⎢

P4
**(k) + cos

jπct
LX

P4
***(j)

j=1

∞

∑ +2 cos
jπct
LX

cos
kπs
LYk=1

∞

∑
j=1

∞

∑ P4
****(j,k)

⎤

⎦

⎥
⎥
⎥  

 

    
R3(t) =

2c2

P*

P5
*

2
+ cos

kπs
LYk=1

∞

∑
⎡

⎣

⎢
⎢
⎢

P5
**(k) + cos

jπct
LX

P5
***(j)

j=1

∞

∑ +2 cos
jπct
LX

cos
kπs
LYk=1

∞

∑
j=1

∞

∑ P5
****(j,k)

⎤

⎦

⎥
⎥
⎥
 

 
 Considering the homogeneous part of the equation (44) and going through the same arguments 
and analysis as in the previous case, the modified frequency corresponding to the frequency of the 
free system due to the presence of the moving mass is 
 

    

βsf = γsf 1−
µ0

2
R1 −

R3

γsf
2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (45) 

 
retaining terms to o(µo) only. 
 Thus, to solve the non-homogeneous equation (44), the differential operator which acts on Tn(t) 
and Tq(t) is replaced by the equivalent free system operator defined by the modified frequency βsf. 
Therefore, taking into account equations (18) and (19), we have 
 

    

d2Tn(t)

dt2
+ βsf

2Tn(t) = G0Ψpj(s)sinαpit + Api cosαpit + Bpi sinhαpit +Cpi coshαpit  (46) 

 
where 
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G0 =

µ0gLXLY

P*
 (47) 

 
 It is noticed that equation (46) is analogous to equation (41) with βsf and G0 replacing γsf and K0 
respectively. Therefore, when equation (46) is solved in conjunction with the initial conditions, one 
obtains expression for Tn(t) and in view of equation (3), one obtains 
 

    

W(x,y,t) =
nj=1

∞

∑
ni=1

∞

∑
G0Ψpj(s)

βsf [βsf
4 − αpi

4 ]
[βsf

2 − αpi
2 ][Cpi{ βsf (coshαpit − cosβsf t)

+ Bpi(βsf sinhαpit − αpi sinβsf t)]+ [βsf
2 + αpi

2 ][Apiβsf (cosαpit − cosβsf t)

− (αpi sinβsf t − βsf sinαpit)] }[ sin
Ωnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

][sin
Ωnjy

LY

+ Anj cos
Ωnjy

LY

+ Bnj sinh
Ωnjy

LY

+Cnj cosh
Ωnjy

LY

]

 (48) 

 
 Equation (48) is the transverse displacement response to a moving mass of a rectangular plate 
resting on variable Winkler elastic foundation and having arbitrary edge supports. The constants 
Ani, Api, Anj, Apj, Bni, Bpi, Bnj, Bpj, Cni, Cpi, Cnj and Cpj are to be determined from the choice of the 
end support condition. 
 
4 ANALYSIS OF THE SOLUTION 

Next, the phenomenon of resonance is examined. Equation (42) clearly shows that the rectangular 
plate on a variable Winkler elastic foundation and traversed by a moving force reaches a state of 
resonance whenever 
 

   
γsf =

  

Ωpic

LX

 (49) 

 
while equation (48) shows that the same plate under the action of a moving mass experiences reso-
nance effect whenever 
 

   
βsf =

  

Ωpic

LX

  (50) 

 
where 
 

    

βsf = γsf 1−
µ0

2
R1 −

R3

γsf
2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (51) 
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 Equations (50) and (51) imply that 
 

    

βsf = γsf 1−
µ0

2
R1 −

R3

γsf
2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
Ωpic

LX

 (52) 

 
 Consequently from equations (49) and (52), for the same natural frequency, the critical speed 
(and the natural frequency) for the system of a rectangular plate traversed by a moving mass is 
smaller than that of the same system traversed by a moving force, for all variants of classical 
boundary conditions. Thus, for the same natural frequency of the plate, the resonance is reached 
earlier when we consider the moving mass system than when we consider the moving force system. 
 
5 ILLUSTRATIVE EXAMPLES 

In this section, we shall illustrate the foregoing analysis by two practical examples. Particularly we 
shall consider classical boundary conditions such as clamped end conditions and simple-clamped end 
conditions. 
 
5.1  Rectangular plate clamped at all edges 

For a rectangular plate clamped at all its edges, the boundary conditions are given by 
 

   W(0,y,t) = 0, W(LX ,y,t) = 0 ,     W(x,0,t) = 0, W(x,LY ,t) = 0     (53) 
 

   

∂W(0,y,t)
∂x

= 0,
∂W(LX ,y,t)
∂x

= 0 , 
   

∂W(x,0,t)
∂y

= 0,
∂W(x,LY ,t)
∂y

= 0     (54) 

 
 Thus for the normal modes 
 

   Ψni(0) = 0, Ψni(LX ) = 0 , 
   
Ψnj(0) = 0, Ψnj(LY ) = 0  (55) 

 

   

∂Ψni(0)
∂x

= 0,
∂Ψni(LX )
∂x

= 0 ,  
   

∂Ψnj(0)

∂y
= 0,

∂Ψnj(LY )

∂y
= 0  (56) 

 
 For simplicity, our initial conditions are of the form 
 

   
W(x,y,0) = 0 =

∂W(x,y,0)
∂t

 (57) 

 
 Using the boundary conditions and the initial conditions it can be shown that 
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Ani =
sinhΩni − sinΩni

cosΩni − coshΩni

=
cosΩni − coshΩni

sinΩni + sinhΩni

, ⇒ Api =
sinhΩpi − sinΩpi

cosΩpi − coshΩpi

Anj =
sinhΩnj − sinΩnj

cosΩnj − coshΩnj

=
cosΩnj − coshΩnj

sinΩnj + sinhΩnj

, ⇒ Apj =
sinhΩpj − sinΩpj

cosΩpj − coshΩpj

 (58) 

 

   

Bni = −1, ⇒ Bpi = −1

Bnj = −1 ⇒ Bpj = −1,
 

  

Cni = −Ani ⇒Cpi = −Api

Cnj = −Anj ⇒Cpj = −Apj

  (59) 

 
and from (58), one obtains 
 

   cosΩni coshΩni = 1  (60) 
 
which is termed the frequency equation for the dynamical problem, such that [2] 
 

  Ω1 = 4.73004, Ω2 = 7.85320, Ω3 = 10.99561  (61) 
 
 Using (58), (59) and (61) in equations (42) and (48) one obtains the displacement response re-
spectively to a moving force and a moving mass of a rectangular plate resting on a variable Winkler 
elastic foundation and clamped at all its edges. 
 
5.2  Rectangular plate simply supported at edges x = 0, x = Lx and clamped at edges y = 

0, y = Ly 

For a rectangular plate clamped at edges y = 0, y = LY with simple supports at edges x = 0, x = 
LX, the boundary conditions at such opposite edges are 
 

   W(0,y,t) = 0, W(LX ,y,t) = 0 ,      W(x,0,t) = 0, W(x,LY ,t) = 0  (62) 
 

   

∂2W(0,y,t)

∂x 2
= 0,

∂2W(LX ,y,t)

∂x 2
= 0 ,   

   

∂W(x,0,t)
∂y

= 0,
∂W(x,LY ,t)
∂y

= 0  (63) 

 
and for the normal modes 
 

   Ψni(0) = 0, Ψni(LX ) = 0 ,  
   
Ψnj(0) = 0, Ψnj(LY ) = 0  (64) 

 

   

∂2Ψni(0)

∂x 2
= 0,

∂2Ψni(LX )

∂x 2
= 0 ,  

   

∂Ψnj(0)

∂y
= 0,

∂Ψnj(LY )

∂y
= 0  (65) 
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 Using the boundary conditions, the following values of the constants and the frequency equation 
are obtained for the clamped edges. 
 

   

Anj =
sinhΩnj − sinΩnj

cosΩnj − coshΩnj

, ⇒ Apj =
sinhΩpj − sinΩpj

cosΩpj − coshΩpj

 (66) 

 

   
Bnj = −1 ⇒ Bpj = −1 , 

  
Cnj = −Anj ⇒Cpj = −Apj  (67) 

 
 The frequency equation of the clamped edges is given by the following determinant equation 
 

   

(sinhΩnj − sinΩnj ) (cosΩnj − coshΩnj )

(cosΩnj − coshΩnj ) (sinΩnj + sinhΩnj )
= 0  (68) 

 
which when simplified yields 
 

   
cosΩnj coshΩnj = 1  (69) 

 
 For the simple edges, it is readily shown that 
 

Ani = 0, Bni = 0, Cni = 0, and Ωni = niπ (70) 
 
Similarly, 
 

Api = 0, Bpi = 0, Cpi = 0, and Ωpi = piπ  (71) 
 
 Using (66), (67), (69) and (70) in equations (42) and (48) one obtains the displacement response 
respectively to a moving force and a moving mass of a simple-clamped rectangular plate resting on 
a variable Winkler elastic foundation. 
 
6 NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS 

In order to carry out the calculations of practical interests in dynamics of structures and Engineer-
ing design for the illustrative examples, a rectangular plate of length LY = 0.914m and breadth LX 
= 0.457m is considered. It is assumed that the mass travels at the constant velocity 0.8123m/s. 
Furthermore, values for E, S and Γ are chosen to be 3.109x109kg/m2, 0.4m and 0.2 respectively. For 
various values of the foundation moduli F0 and the rotatory inertia correction factor R0, the deflec-
tions of the plate for all the illustrative examples are calculated and plotted against time t. 
 Figures 6.1 and 6.2 display the effect of foundation modulus (F0) on the transverse deflection of 
the clamped rectangular plate in both cases of moving force and moving mass respectively. The 
graphs show that the response amplitude decreases as the value of the foundation modulus increas-
es. 
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Figure 6.1   Displacement of moving force for clamped rectangular plate on variable Winkler foundation for various values of foundation 
modulus Fo. 

 
Figure 6.2   Displacement of moving mass for clamped rectangular plate on variable Winkler foundation for various values of foundation 

modulus Fo. 
 

The effect of rotatory inertia correction factor (R0) on the transverse deflection in both cases of 
moving force and moving mass displayed in figures 6.3 and 6.4 respectively show that an increase in 
the value of the rotatory inertia correction factor decreases the deflection of the simple-clamped 
rectangular plate resting on variable Winkler elastic foundation. 
 Figure 6.5 compares the displacement curves of the moving force and moving mass for a simple-
clamped rectangular plate for fixed F0 and R0, the response amplitude of a moving mass is greater 
than that of a moving force problem. This result holds for other choices of classical boundary condi-
tions. 

Fig. 6.1: Displacement of moving force for clamped rectangular plate on variable Winkler 
foundation for various values of foundation modulus Fo.
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Fig. 6.2: Displacement of moving mass for clamped rectangular plate on variable Winkler 
foundation for various values of foundation modulus Fo.
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Figure 6.3   Displacement profile of moving force for simple-clamped rectangular plate on variable Winkler foundation for various values of 
rotatory inertia correction factor Ro. 

 
 

 
 

Figure 6.4   Displacement profile of moving mass for simple-clamped rectangular plate on variable Winkler foundation for various values of 
rotatory inertia correction factor Ro. 

Fig. 6.3: Displacement profile of moving force for simple-clamped rectangular plate on 
variable Winkler foundation for various values of rotatory inertia correction factor Ro.
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Fig. 6.4: Displacement profile of moving mass for simple-clamped rectangular plate on 
variable Winkler foundation for various values of rotatory inertia correction factor Ro.
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Figure 6.5   Comparison of the deflections of moving force and moving mass cases for simple-clamped rectangular plate on variable Win-
kler foundation with Fo=1000 and Ro=4 

 
7 CONCLUSION 

The dynamic response to moving masses of rectangular plates with general boundary conditions and 
resting on Winkler elastic foundation with stiffness variation is considered in this work. The fourth 
order partial differential equation governing the system is a non-homogenous equation with variable 
and singular coefficients. The method based on Separation of variables is used to transform the 
governing equation to a set of coupled second order ordinary differential equations. The modified 
Struble’s technique and the method of integral transformations are employed to obtain the closed 
form solution of the transformed equation for both cases of moving force and moving mass prob-
lems. 
 From the analyses of the solutions, the resonance conditions are obtained for the problem for all 
variants of classical boundary conditions. The numerical analyses are carried out for both moving 
force and moving mass problems for two illustrative examples of classical boundary conditions; (i) 
clamped ends condition and (ii) simple-clamped ends condition.  The analyses show that the mov-
ing force solution is not an upper bound for the accurate solution of the moving mass problem and 
that as the rotatory inertia correction factor increases, the response amplitudes of the plates de-
crease for both cases of moving force and moving mass problem. The displacements of the rectangu-
lar plates resting on variable Winkler elastic foundations decrease as the foundation modulus in-
creases when the rotatory inertia correction factor is fixed. 
 Furthermore, the response amplitude for the moving mass problem is greater than that of the 
moving force problem for fixed values of rotatory inertia correction factor and foundation modulus, 
this implies that resonance is reached earlier in moving mass problem than in moving force problem 
of the rectangular plate resting on Winkler elastic foundation with stiffness variation. It is therefore 
unsafe to rely on the moving force solutions. 

Fig. 6.5: Comparison of the deflections of moving force and moving mass cases for simple-
clamped rectangular plate on variable Winkler foundation with Fo=1000 and Ro=4.
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 For the rectangular plate with general classical boundary conditions and resting on Winkler 
elastic foundation with stiffness variation, for the same natural frequency, the critical speed for 
moving mass problem is smaller than that of the moving force problem for all variants of classical 
boundary conditions, and as rotatory inertia correction factor and the foundation modulus increase, 
the critical speeds increase indicating a safer dynamical system. 

Finally, the results in this work agree with what obtain in literature [21, 22]. Hence the method 
employed in this work is accurate and the solutions are convergent. 
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