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Abstract 
Free vibration of a bimaterial circular nano-tube is investigated. The tube is formed by bonding together a 
Si3N4/SUS304 functionally graded upper semi tube and a ZrO2/Ti-6Al-4V functionally graded lower semi tube. 
The material properties of the tube are assumed to vary along the radius according to power law with the 
power index of upper semi tube differing from that of lower semi tube. Based on non-local elasticity theory 
and Hamilton’s principle, a refined beam model considering the effect of transverse shear deformation is used 
to derive the governing equations, then analytical solution is obtained by using a two-steps perturbation 
method. Our results were compared with the existing ones. The effects on tube’s linear and non-linear 
frequency are analyzed of the factors, including small scale parameter, temperature, the double volume 
fraction indexes, slenderness ratio and different types of beam model. A new approach is suggested in this 
article to change the natural frequency of the tubes by adjusting constituent materials. In contrast to 
conventional approach, the new one can result in more accurate frequency control in the same dimensionless 
size of tubes. 
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1. Introduction 

Non-homogeneous composite materials composed of functionally graded material (FGM) in which the effective 
material properties can be changed in a certain direction have captured extensive attention in a multitude of industries 
(Jha et al., 2013; Koizumi, 1997). Owing to superior performance, such material could satisfy the majority of design 
requirements of each component. In order to analyze its mechanical properties, classical formulas were modified and 
new theories were proposed (Huang and Li, 2010b; Shafiei et al., 2016a; Shafiei et al., 2016b; Zhang, 2013; Hosseini et 
al., 2016; Thinh et al., 2016). However, with emerging new demands in manufacturing and engineering, most of the 
previous studies related to FGMs whose effective material properties only vary in the direction of thickness or length 
can’t meet those needs and challenges very well (Nemat-Alla, 2003; Fan et al., 2013; Lü et al., 2009; Wang et al., 2016; 
Lei et al., 2016; Gupta et al., 2015; Thang and Nguyen-Thoi, 2016). Consequently, in recent years, more and more 
researchers have been studying structural components made of two or three-directional functionally graded materials 
and subjected to different types of functionally graded distribution (Şimşek, 2015; Hao and Wei, 2016; Lü et al., 2008; 
Nguyen et al., 2017; Pydah and Sabale, 2017; Nejad and Hadi, 2016a; Nejad and Hadi, 2016b; Nejad et al., 2016). 
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In practical uses, FGMs may be fabricated into different structural components, e.g. plates, rods and tubes. Among 
these components, tube is one of the most important and frequently used structural components in many industries. 
Fig.1 shows some potential fields for functionally graded materials as well as tubes application(Hosseini et al., 2017; Jha 
et al., 2013; Zhang et al., 2014; Kiani and Eslami, 2013; Kakar, 2013; Djamaluddin et al. 2015; Huang et al. 2016; Adeli et 
al. 2017; Hadi et al. 2018; Shishesaz et al. 2017). For efficient use of such components, it is necessary to study its 
mechanical behaviors like vibration, buckling and bending. Thereinto, the investigation on the vibration of FGM tubes 
and cylindrical shells was, is and remains to be a hot research subject. Yang et al. (2014) studied the effect of outer 
diameter, Poisson’s ratio and flow velocity on the vibration frequency. Zhong et al. (2016) utilized a two-steps 
perturbation method to analyze the influence of different dimension parameters on linear frequency and nonlinear 
frequency. 

As can be shown in the open literature, most of the researchers change natural frequency of tubes through altering 
dimensions. However, they could not change the frequency of tubes to satisfy demands very well since dimension of 
tubes cannot be changed arbitrarily (Dohmann and Hartl, 1997). To overcome this deficiency, we design double 
functionally graded distributions to change and control frequencies of tubes through adjusting respective material 
compositions. The design has an advantage to break the limits of dimensions. 

It is a practicable technique to bond two materials together (Qiao and Chen, 2008; Suhir, 2016). The strengthening 
method can provide effective stress transfer from one to the other and secure the durability of components. Owing to 
good performance, bimaterial structures have been widely used in engineering practice, such as scarf joints (Le, 2011), 
pumping membrane (Hsu et al., 2000), thermal sensor (Lim et al., 2005). Noël et al. (2016) undertook an analytical 
sensitivity analysis for shape optimization of bimaterial structure. Huang et al. (2009) studied deflection of two kinds of 
thermal bimaterial structure in which two materials present excellent interlaminar bonding ability. Zheng (2012) 
developed another analytical model to study torsional bimaterial cantilever, which can predict some performance. 

 
Figure 1. Potential fields for functionally graded material and tubes application. 

Various methods have been developed to solve equations of nonlinear vibration, such as high dimensional harmonic 
balance method(Hall et al., 2002; Liu et al., 2007), harmonic balance method(Dai et al., 2014), perturbation 
methods(Mook and Nayfeh,1979). Perturbation methods are frequently used. Nazemnezhad and Hosseini-Hashemi 
(2014) studied non-linear free vibration of FG beams under different boundary conditions with the aid of the multiple-
scale perturbation method. Ghadiri et al. (2017) used Euler-Bernoulli beam model to analyze forced vibration of beams 
subjected to moving concentrated load. To obtain analytical solution from non-linear differential equations, they used 
the perturbation technique. Shen and Wang (2014) used a two-steps perturbation technique, to investigate vibration of 
beams exposed to different types of thermal environment. 
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In analysis of vibration problems involving nano-structures(Hosseini et al. 2018), the non-local elasticity theory 
proposed by Eringen (1983) is extensively used to study the small-scale effec ts. To analyze post-buckling of porous nano-
tubes, She et al. (2017a) put forward a non-classical model based on non-local elasticity theory. Rahmani and Pedram 
(2014) analyzed the size-dependent effect on the vibration of FGM nano-beams by utilizing non-local elasticity theory 
and obtained a closed form solution. Zenkour et al. (2015) used this theory to describe the small-scale effect on the 
behavior of respective field variables. Salehipour et al. (2015). modified the non-local elasticity theory in analysis of FGM 
at nanoscale. The influence of non-local parameter was analyzed in detail based on an improved non-local elasticity 
theory. Hosseini and Rahmani (2016) investigated thermal buckling as well as non-linear vibration of a curved FG beam 
based on Eringen’s different formulation. Narendar (2017) studied thermodynamic of a rod subjected to a moving heat 
source based on the Eringen’s non-local model. Differing from above references adopted Eringen’s equivalent differential 
formulation, Tuna and Kirca (2016) analyzed buckling and vibration of beams by using the original integral constitutive 
equation. To obtain the exact solution of the original integral model, the Laplace transform method was adopted. 

To date, there is no free vibration analysis of nano-tubes consisted of functionally graded bi-semi-tubes.From the 
perspective of bimaterial structure, we design a tube that is formed by bonding together a Si3N4/SUS304 functionally 
graded upper semi tube and a ZrO2/Ti-6Al-4V functionally graded lower semi tube and used a two-steps perturbation 
method to obtain corresponding analytical solutions. Through adjusting respective material compositions, linear 
frequencies and nonlinear frequencies is studied in detail. The purpose of this work is to put forward alternative approach 
to change and control frequencies of tubes whose results can provide a route toward designing tubes and undertaking 
nan-analysis of materials. 

2. Basic theoretical formulation 

2.1 Functionally graded bi-semi-tubes 

Proposed in this section, the basic equations of bi-functionally graded materials can serve as benchmark theoretical 
formulation for exactly analytical solutions of the equilibrium equations in later chapters. 

An FGM tube with outer radius R0, inner radius Ri, as well as length L shown in Fig. 2 is formed by bonding together 
a Si3N4/SUS304 functionally graded upper semi-tube with a ZrO2/Ti-6Al-4V functionally graded lower semi-tube. The 
behavior of the FGM tube made of two types of functionally graded semi-tube must comply with general mechanics 
theorem; besides, both Si3N4/SUS304 functionally graded semi-tube material properties and ZrO2/Ti-6Al-4V functionally 
graded semi-tube material properties should continuously vary along the radius directions, respectively. Thus, the 
effective material properties Pf including Young’s modulus, thermal expansion, Poisson’s ratio, as well as mass density, 
can be assumed to vary according to power-law and thus can be expressed as: 
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where p1, p2, p3, p
4
 stand for the material constituents of SUS304, Si3N4, Ti-6Al-4V and ZrO2 respectively. The symbol of 

N1 aligned with N2 represent the volume fraction index in their respective angle intervals. The temperature factor is 
assumed to be a nonlinear function of temperature, which can be described as (Ghiasian et al., 2014) 

   1 2 3

0 1 1 2 3
1P T P P T PT PT PT




    

 

Here P0, P-1, P1, P2, and P3 denote the coefficients of Kelvin’s temperature-dependence which are tabulated in Table 1. 

Table 1 Temperature-dependent coefficients of material properties (Reddy and Chin, 1998). 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 E(Pa) 348.43×10+9 0.0 -3.070×10-4 2.160×10-7 -8.964×10-11 

 α(1/k) 5.8723×10-6 0.0 9.095×10-4 0.0 0.0 

 p(Kg/m3) 2370 0.0 0.0 0.0 0.0 
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SUS304 E(Pa) 201.04×10+9 0.0 3.079×10-4 -6.543×10-7 0.0 

 α(1/k) 12.33×10-6 0.0 8.096×10-4 0.0 0.0 

 p(Kg/m3) 8166 0.0 0.0 0.0 0.0 

ZrO2 E(Pa) 244.27×10+9 0.0 -1.371×10-3 1.214×10-6 -3.681×10-10 

 α(1/k) 12.766×10-6 0.0 -1.491×10-3 1.006×10-5 -6.778×10-11 

 p(Kg/m3) 3000 0.0 0.0 0.0 0.0 

Ti-6Al-4V E(Pa) 122.56×10+9 0.0 -4.586×10-4 0.0 0.0 

 α(1/k) 7.5788×10-6 0.0 6.638×10-4 -3.147×10-6 0.0 

 p(Kg/m3) 4429 0.0 0.0 0.0 0.0 

The temperature can be separated into two parts: T=T0+ΔT, where ΔT is the thermal increment from certain 
reference temperature T0=300K at which a tube has no thermal strains. Notice from the expression of the effective 
material properties Pf that inner surface (r=Ri) of FGM tube is made of SUS304 and Ti-6Al-4V, whereas outer surface 
(r=R0) of FGM tube is made of Si3N4 and ZrO2. Obviously, this differs from the conventional functionally graded tube or 
cylinder. When N1 and N2 are both equal to zero, the composite tube of the effective material properties Pf degenerates 
to the bi-material tube consisted of two different materials. 

2.2 non-local elasticity theory 

When dealing with nano-structures, the effect of long-range inter-atomic forces can’t be ignored in the process of 
analysis. Eringen (1983) took the effect of long-range inter-atomic into account and put forward the non-local elasticity 
theory based on the experiment of phonon dispersion as well as atomic theory of the lattice dynamics. According to his 
theory, the stress at any point x in a body varies along with not only the strain at that point but also those at all other 
points x’ of the body. Therefore, the whole stress field σij(x) can be arrived at 
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0

, d ; /
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where the factor α (|x-x’|, μ), small scale, is the non-local attenuation function, which incorporates into the constitutive 
equations the influences at the reference point x generated by the local strain at the source point x’, where |x-x’| 
represents the Euclidean distance. The factor α can be expressed as α=e0a/L where e0 is a material constant determined 

by experiments or by reliable theoretical models. The parameters a and L are the internal (e.g. lattice parameter) and 
external characteristic lengths (e.g. crack length and wavelength) of the nano-solids, respectively. 

However, it is difficult to obtain analytical results by applying the above expressions, therefore Eringen (1983) 
turned the integral constitutive relations to an equivalent differential form as 
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It is obviously observed that the non-local constitutive relation can degenerate to the classical elasticity theory when the 
result of μ is taken as zero. 

2.3 Equilibrium equations 

As shown in Fig. 2, the functionally graded nano-tube of length L¸ inner radius Ri and outer radius R0, is consisted of 
upper semi-tube made of functionally graded materials (Si3N4/SUS304) and lower semi-tube made of functionally graded 
materials (ZrO2/Ti-6Al-4V). Besides, the nano-tube is subjected to a uniform temperature field as well as a uniform 
transverse load. 

Suppose that its middle-axis coincides with the Ox-axis of a Cartesian coordinate system O-xyz and the positive Z-
axis is perpendicular to the X-axis and directed upwards. The origin of a Cartesian coordinate system O-xyz is set at the 
middle surface of the tube 
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Figure. 2. Geometry and coordinate of FG bi-semi-tubes 

For circular tube, three displacement functions (u1, u2, u3) can be listed as follows (Zhang and Fu, 2013) 
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where u(x, t) and w(x, t) stand for the X-dire and lateral displacements respectively, and θ(x, t) stands for the rotation of 
the normal relative to the Y axis. To easily deduce the relationship of the strain and displacement based on the von 
karman non-linearity theory, the displacement function Eq. (4) can be rewritten in a simplification form 
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The nonlinear strain-displacement expressions in line with the von karman non-linearity theory can be induced as: 
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According to the Hooke’s law, for the case of a uniform thermal environment, the stresses associated with strain 
components from Eq. (6) can be determined as 
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It should be mentioned that the Poisson’s ratio v of four materials in this tube are all set to be 0.3, the same value 
(She et al., 2017b). This assumption is made by referring the fact that, Cao and Evans (1989) in their experiment found 
the upper and lower beams possess similar Poisson’s ratio when the thickness ratio is equivalent to 0.1 and Other 
researchers (Yang et al., 2014) also demonstrated different Poisson’s ratio for FGM to have no obvious effect on the 
results. 

The necessary boundary conditions for the stress of the tube at the places (r=R0, Ri) must satisfy Eq. (8). 

0,| 0
ixr r R R    (8) 

The virtual strain energy of the tube is assumed to be 
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in which Ω stands for the volume of the tube. By substituting Eq. (6) into Eq. (9), the virtual strain energy is reappraised 
as 
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Besides, the work performed by the external force is illustrated as 
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22

31
1

d
2

T f

uu

t t





   

 

   
    
    

  (12) 

So, Eq. (12) can be deduced to 
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In terms of the Hamilton principle, the corresponding governing equations can be induced as 
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Substituting Eq. (10), (11), and (13) into Eq. (14) and set these coefficients of δu, δθ, δw into zero, we obtain the nonlinear 
equilibrium equations can be expressed as 
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where N in Eq. (15) is a constant and can be written in the form. 
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Moreover, certain general forces and moments of inertia involved with Eq. (15) are presented as 
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Combined with the non-local constitutive relations, general forces of the tube are defined as 
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where Δ is the Laplace operator. Other coefficients in Eq. (18) and (19) are given by 
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Eq. (15) can be reformulated as 
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For simply supported ends, necessary boundary conditions of the tube are given by 

0, ; 0, 0, 0, 0X L u w M P      (21) 

For the calculation convenience, we introduce the non-dimensional parameters. 
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General governing equations described in Eq. (20) can be rewritten in terms of dimensionless variables as 
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 (23) 

Meanwhile, the dimensionless boundary conditions can be described as 

0, ; 0, 0, 0, 0u w M P       (24) 

3. Solution of the model 

In this section, we obtain corresponding analytical solutions of Eq. (22) and (23) by using a two-steps perturbation 
procedure. To begin with, to get a set of vibration equations, we suppose that the expanded form of dimensionless 
displacement, dimensionless rotation angle and dimensionless transverse load can be expressed as: 
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 (25) 

Where the small perturbation parameter(ε) has no physical meaning, which is introduced into Eq. (22) and (23). Then, 
we collect terms of the same order(ε) to arrive at 
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To solve the differential perturbation equations, asymptotic solutions of dimensionless displacement as well as 
dimensionless rotation angle, satisfying simply supported ends, are given by 
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Substituting Eq. (30) into Eq. (26), we could have 
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By substituting Eq. (30) and (31) into Eq. (27), we obtain the equation to determine
1

q . 

   
   

2

44 44 771 4 2 2 277 44 55

33 2 2

55 77 55 77

1

102 1 sin
q n T

S S m S S S S
m S S m m m

S m S S m S
A   

 
    

 

   
  
   

 (32) 

Later, the substitution of Eq. (30) and Eq. (31) into Eq. (28) yields: 
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3

q is determined by substituting Eq. (30), (31) and (33) into Eq. (29) 
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Eventually, the analytical solution of non-dimension transverse load can be expressed as 
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Because the value of λq is equivalent to zero when solving free vibration problems, we apply the method of Galerkin in 
Eq. (35) to obtain the Duffing equation. 
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So, the analytical solution of Eq. (36) can be written as 
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where the symbol of
1

mA  ( mW L ) is dimensionless amplitude of the vibration of the tube. ωL and ωNL stand for 

dimensionless linear frequency and dimensionless nonlinear frequency, respectively. 
So far, most of the theories were established based on three classical models. They are Euler beam model, 

Timoshenko beam model as well as Reddy beam model. They could be taken to be the specific of our model. 
When f=-z, the displacement function Eq. (5) can be converted to that of Euler-Bernoulli model. Corresponding 

coefficients are 
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When f=0, the displacement function of Eq. (5) can be converted to that of Timoshenko model. The corresponding 
coefficients are 
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where the shear factor ks is copied from Zhang and Fu (2013) and is given by 
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in which 0
/

i i
R R R and the Poisson’s ratio v is assumed to be the average value of the four materials. 

When
3 2

4 (3 )f z h  ,the displacement function Eq. (5) can be converted to that of Reddy model. Corresponding 
coefficients are the same as ones of the present model. More detail information can be found in Eq. (36). 

4. Results and discussions 

In this part, we fully utilize above analytical solution to discuss the vibration behavior of the nanotubes consisted of 
functionally graded bi-semi-tubes. As is shown by the results, some novel behaviors of the bi-semi-tubes are rather 
different from those of the conventional FGM nanotubes. 

4.1 validation research 

Owing to no existing data for the functionally graded bi-material tube in the published literature, both dimensionless 
free vibration frequencies of functionally graded tube and non-dimension frequencies of isotropic tube are calculated by 
present mathematical model. The results obtained in such a way can be conveniently used to verify the present deduced 
results directly. In Table. 2, the dimensionless frequency of a functionally graded nanotube with (Ri=0.5R0, L=20R0, 
R0=1nm, T=300K, N=1) is used to verify the current solution. That this table demonstrates a small difference between the 
results reported by Fuh-Gwo Yuan and the ones in this study clearly indicates that present solution is reliable and 
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reasonable. To further validate the present model, the dimensionless natural frequency for an isotropic cylindrical shell 
with (Ri=0.998R0, L=20R0, v=0.3, T=300K) under simply supported ends are tabulated in Table 3. As is seen in Table 3, 
present results show a good agreement with published ones. Therefore, the two examples convince us the validation of 
the present model. 

Table 2 Comparisons of non-dimension natural frequencies (
2

0 0 0= E L R  )for a simply supported functionally graded nano-tube. 

ea (nm) Source ω1 ω2 ω3 ω4 ω5 ω6 

0 She et 
al.(2018) 

8.234 31.154 64.833 105.467 150.345 197.783 

 present 8.23465 31.1693 64.9569 105.943 151.539 200.103 

 difference 0.0079% 0.0491% 0.1911% 0.4513% 0.7942% 1.1730% 

1 She et 
al.(2018) 

8.134 29.722 58.647 89.302 118.237 143.932 

 present 8.1349 29.7364 58.7595 89.7056 119.177 145.62 

 difference 0.0111% 0.0484% 0.1918% 0.4519% 0.7950% 1.1728% 

2 She et 
al.(2018) 

7.855 26.379 47.18 65.672 80.74 92.692 

 present 7.85609 26.3921 47.2709 65.9684 81.3811 93.7782 

 difference 0.0139% 0.0497% 0.1927% 0.4513% 0.7940% 1.1718% 

4 She et 
al.(2018) 

6.972 19.399 30.384 38.991 45.602 50.71 

 present 6.97255 19.4084 30.442 39.167 45.9641 51.3047 

 difference 0.0079% 0.0485% 0.1909% 0.4514% 0.7940% 1.1727% 

Table 3 Comparisons of non-dimension natural frequencies (
2

0 0 0(1 ) /R v E   
) of an isotropic cylindrical shell with simply 

supported ends. 

Source ω1 ω2 ω3 ω4 ω5 ω6 

Present 0.016032 0.0584366 0.116619 0.182637 0.252086 0.322774 

Huang and Li(2010a) 0.016 0.0583 0.1166 0.1827 — — 

difference 0.2000% 0.2343% 0.0163% 0.0345% — — 

Soldatos and Hadjigeorgiou 
(1990) 

0.0161065 — — — — — 

difference 0.4625% — — — — — 

4.2 discussions of physical parameters 

The formulation of the non-dimension frequency is
 2

0 0 0
/ /L R E  

where
 

0 0
/ /

L
L E   

.The values of ρ0 

and E0 are equivalent to 8166 kg/m3 and 201.04 GPa respectively. The effective properties of four types of material 

(SUS304, Si3N4, Ti-6Al-4V, ZrO2) are tabulated in Table. 1. 

Table 4  Comparisons of different beam models on non-dimension natural frequency for the tube. (Ri=0.8R0, R0=1nm, T=300K, 
μ=1nm, N1 = N2=1) 

L/R0 Type ω1 ω2 ω3 ω4 ω5 ω6 

10 present 7.43775 21.431 33.8462 42.2183 48.3741 52.1002 

 Reddy 7.89062 24.9218 41.9437 55.6315 66.0122 73.9078 

 Timoshenk
eo 

7.55271 22.0804 34.791 43.8394 49.9564 54.1038 

 Euler 8.12966 27.3531 48.9082 67.8279 82.8544 94.3441 

20 present 8.32875 29.7857 57.4965 86.0832 112.685 136.225 

 Reddy 8.47132 31.5567 63.8111 99.5921 134.869 167.457 
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 Timoshenk
eo 

8.36684 30.2108 58.7819 88.3215 115.551 139.164 

 Euler 8.54003 32.5187 67.7934 109.412 153.048 195.633 

40 present 8.59396 33.3182 71.3927 119.211 173.194 230.288 

 Reddy 8.63197 33.8848 73.9559 126.215 187.633 255.179 

 Timoshenk
eo 

8.60428 33.4674 72.0333 120.843 176.286 235.127 

 Euler 8.6498 34.1601 75.2732 130.075 196.22 271.174 

80 present 8.66356 34.3761 76.332 133.279 203.634 285.611 

 Reddy 8.67322 34.5279 77.0774 135.538 208.869 295.817 

 Timoshenk
eo 

8.66619 34.4171 76.5307 133.869 204.968 288.133 

 Euler 8.67772 34.5992 77.4332 136.641 211.492 301.093 

Within the results of Table. 4, the effect of slenderness ratio and respective beam models on non-dimension natural 
frequency for the tube can be illustrated as follows: 

(i) The non-dimension natural frequency of the present model is close to that of Timoshenko model, but smaller 
than that of Reddy model and that of Euler model. 

(ii) A higher slenderness ratio tends to waken the stiffness of the tube. In another word, with the slenderness ratio 
becoming large, the frequency gradually ascends, regardless of which model is adopted. 

(iii) The difference between the answers of four beam models becomes prominently with increasing the natural 
frequency number. That is due to the fact that increasing the natural frequency number needs more degrees of freedom. 
However, among those beam models, only the present model takes two directions of transverse shear into account. So, 
the results of the present model are the smallest and close to the actual. The results of Euler-Bernoulli are the biggest, 
because it dosen’t consider any transverse shear and has the biggest stiffness of the tube. The difference between 
Timoshenko model and Reddy model is that Reddy model takes high-order shear deformation into consideration so that 
the results of Reddy model are higher than those of Timoshenko model. 

Table 5 Effect of both volume indexes N1 and N2 on non-dimension natural frequency for the tube. (Ri=0.99R0,R0=1nm,L=20R0,T=300K, 
μ=1nm) 

N1 N2 ω1 ω2 ω3 ω4 ω5 ω6 

0 0 12.742 44.9606 85.6571 126.941 164.95 198.41 

 1 11.5867 40.8836 77.889 115.428 149.988 180.411 

 2 11.237 39.6496 75.5381 111.944 145.461 174.965 

 3 11.0677 39.0523 74.4002 110.258 143.269 172.33 

1 0 9.65694 34.0743 64.9161 96.2024 125.005 150.36 

 1 8.92743 31.4997 60.0101 88.9303 115.554 138.989 

 2 8.69674 30.6857 58.4591 86.6318 112.567 135.396 

 3 8.58338 30.2857 57.6972 85.5027 111.1 133.632 

2 0 8.93416 31.5239 60.057 89.0013 115.648 139.104 

 1 8.27907 29.2119 55.6513 82.4707 107.16 128.892 

 2 8.06995 28.474 54.2454 80.3871 104.452 125.635 

 3 7.96684 28.1102 53.5524 79.3601 103.118 124.03 

3 0 8.6078 30.3723 57.8632 85.7502 111.423 134.023 

 1 7.98327 28.1682 53.663 79.5241 103.331 124.287 

 2 7.78306 27.4617 52.317 77.5294 100.739 121.169 

 3 7.6842 27.1129 51.6525 76.5447 99.4598 119.63 

Table 6 Comparisons of different types of functionally graded nanotubes on non-dimension natural 
frequency.(Ri=0.8R0,R0=1nm,L=20R0,T=300K, μ=1nm) 

Type ω1 ω2 ω3 ω4 ω5 ω6 
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Present Type: 
N1=N2=2 

7.53019 26.9274 51.9737 77.8075 101.844 123.111 

Present Type: 
N1=2;N2=3 

7.43088 26.5727 51.2901 76.7857 100.509 121.5 

Present Type: 
N1=3;N2=2 

7.25387 25.9396 50.0679 74.9558 98.1143 118.606 

Present Type: 
N1=N2=3 

7.15879 25.6001 49.4136 73.9781 96.8369 117.065 

*Type B: N=2 7.02493 25.1159 48.4664 72.5415 94.9335 114.738 

*Type B: N=3 6.77029 24.2068 46.7154 69.9257 91.5172 110.618 

**Type A: N=2 7.83693 28.0276 54.1046 81.0082 106.046 128.203 

**Type A: N=3 7.3863 26.4162 50.9947 76.3535 99.956 120.846 

Notation: ** The datum of type A are from …… 

*The datum of type B are from …… 

 

Figure. 3. Different types of functionally graded nanotube 

Results from Table. 5 distinctly reflects the influence of double material gradient indexes N1 and N2 on non-
dimension natural frequency for the tube. Fig. 3 shows the different types of functionally graded nanotube. When both 
the content of SUS304 and Ti-6Al-4V increase, dimensionless natural frequency of the tube decreases continuously. 
Table. 6 gives comparisons on non-dimension natural frequency among various types of functionally graded tubes. It can 
be seen from this table that the non-dimension natural frequency of the tube consisted of functionally graded bi-semi-
tubes is between that of conventional functionally graded tube(Si3N4/SUS304) and that of conventional functionally 
graded tube (ZrO2/Ti-6Al-4V) when material indexes(N) of different types of functionally graded tube are equal. 
Therefore, some frequencies that cannot be obtained by Type A and Type B but can be obtained by present type so long 
as by adequately moderating N-value. Besides, compared with conventional functionally graded tube, the tube with 
double volume indexes has a smaller adjusting step size to produce more frequencies in the same conditions thus results 
in more accurate frequency control. Therefore, results show that this design can satisfy the requirement of the natural 
frequency very well when dimensionless sizes of the tube are kept unchanged. 

Table 7 Effect of inner radius Ri to outer radius R0 ratio on non-dimension natural frequency for the tube.(T=300k,R0=1nm,μ=1nm, 
L=20R0, N1=N2=1) 

Ri/R0 ω1 ω2 ω3 ω4 ω5 ω6 

0 7.41975 27.6568 55.9436 87.2724 118.014 146.189 

0.1 7.31893 27.2484 55.0316 85.7128 115.737 143.19 

SUS304 

Si3N4 

Type A: Conventional functionally graded tube  

made of SUS304 and Si3N4 

Ti-6Al-4V 

ZrO2 

Type B: Conventional functionally graded tube  

made of Ti-6Al-4V and ZrO2 

Si3N4P2 

SUS304P1 

Ti-6Al-

4VVP3 

ZrO2P4 

Present Type: Functionally graded 

 bi-semi-tubes 
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0.2 7.29666 27.0838 54.4903 84.5506 113.795 140.41 

0.4 7.44862 27.3719 54.4093 83.4874 111.342 136.42 

0.8 8.32875 29.7857 57.4965 86.0832 112.685 136.225 

0.99 8.92743 31.4997 60.0101 88.9303 115.554 138.989 

The effect of the ratio of the inner radius Ri to the outer radius R0 on non-dimension natural frequencies of the tube 
has been listed in Table. 7. It reveals that as the thickness of the tube continues to reduce, the dimensionless natural 
frequencies of the tube decrease at first, then increase remarkably. In terms of this trait, the effect of the thickness of 
the tube should be considered in design of vibrating tubes. 

Table 8 Effect of nonlocal parameter μ on non-dimension natural frequency for the tube.(Ri=0.8R0, R0=1nm,T=300K,L=20R0,N1=N2=1) 

μ (nm) ω1 ω2 ω3 ω4 ω5 ω6 

1 8.32875 29.7857 57.4965 86.0832 112.685 136.225 

2 8.04329 26.4358 46.2548 63.3045 76.9485 87.7274 

4 7.1387 19.4406 29.7877 37.5854 43.4606 47.9944 

6 6.13538 14.6317 21.1935 26.0661 29.7438 32.597 

8 5.24971 11.5423 16.2964 19.8369 22.5211 24.6116 

As for the effect of the non-local parameter μ on non-dimension natural frequency for the tube, it can be observed 
from Table. 8 that the frequency is getting smaller when the value of parameter μ becomes larger and lager while other 
size parameters remain unchanged. Hence, we have demonstrated the non-local parameter μ has a tendency to reduce 
the non-dimensionless natural frequencies of the tube. 

Table 9 Effect of dimensionless temperature λT on non-dimension natural frequency for the tube.(Ri=0.8R0,R0=1nm,L=20R0,N1=N2=1, 
μ=1nm) 

λT ω1 ω2 ω3 ω4 ω5 ω6 

0 8.32875 29.7857 57.4965 86.0832 112.685 136.225 

50 7.68164 28.8773 56.2126 84.372 110.524 133.601 

100 6.92245 27.8981 54.8619 82.5885 108.277 130.871 

150 5.99892 26.8302 53.4264 80.7114 105.919 128.003 

200 4.80641 25.6528 51.8871 78.7187 103.423 124.963 

It can be calculated from Eq. (36) and Eq. (37) that if the value of dimensionless temperature λT becomes large, the 
result of ωL will descend. Table. 9 indicates that with the non-dimension temperature elevating, the dimensionless 

frequencies of the tube subjected to uniform thermal environment diminish inversely. 
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Figure. 4. Comparisons of different beam models on the amplitude-frequency of the studied tube made of SuS303, Si3N4, ZrO2 and Ti-

6Al-4V. (Ri=0.8R0, R0=1nm, T=300K, μ=1nm, N1=N2=1) 

Fig. 4 presents comparisons of different beam models on the amplitude-frequency of the tube made of SuS303, 
Si3N4, ZrO2 and Ti-6Al-4V. As could be seen in this figure, the results of present model are higher than those of other 
beam models and the results of Euler beam model is the lowest when L=10R0. However, for large slenderness 
ratio(L/R0≥30), all the resultsωNL/ωL become nearly the same value. In conclusion, transverse shear plays a crucial role in 

the vibration behavior of short tubes, whereas its effect on the vibration behavior of long enough tubes is neglectable. 

 
Figure. 5. The influence of non-local parameter μ with Figure. 6. The influence of dimensionless temperature λT with respective to 

the amplitude-frequency of the tube. respective to the amplitude-frequency of the tube. 

(R0=1nm, T=300K, Ri=0.8R0, L=20R0, N1=N2=1) (R0=1nm, Ri=0.8R0, L=20R0, N1=N2=1, μ=1nm) 
Fig. 5 depicts the influence of non-local parameter μ on the relation of amplitude-frequency of the tube. These 

curves reveal that the ratio of the nonlinear frequency to linear frequency(RNFLF) of the tube can be remarkably 
improved by means of increasing the value of non-local parameter μ. Thus, the small-scale parameter μ plays an 
indispensable role in the nonlinear vibration problem. 

Fig. 6 present the effect of non-dimension temperature on the relation of amplitude-frequency of the tube. It can 
be found that the RNFLF increases when the tube is exposed to a rising thermal environment. The results of Fig. 6 can be 
predicted from Eq. (36) and Eq. (37). The reason is that a higher dimensionless temperature λT can result in lower 
denominator of the expression of ωNL/ωL. 
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Figure. 7. The influence of material index N2 and N1 with Figure. 8. The influence of material index from different types of respective 

to the amplitude-frequency of the tube. functionally graded tube on the amplitude-frequency. 

(R0=1nm, T=300K, Ri=0.8R0, L=20R0, N1=1) (R0=1nm, T=300K, Ri=0.8R0, L=20R0) 
Fig. 7 shows the influence of material index N2 and N1 on the variation law of amplitude-frequency of the tube. From 

this figure, a conclusion can be drawn that with both material indexes N1 and N2 increasing, corresponding amplitude 
frequency curves become lower. In other words, as the content of SUS304 and Ti-6Al-4V continues to ascend, the 
nonlinear vibration frequencies reduce gradually. 

Fig. 8 exhibits the difference between the tube consisted of functionally graded bi-semi-tubes and the tube made 
of functionally graded materials (Si3N4 and SuS304). Shown in this figure, the RNFLF of the former tube is larger than that 
of the later tube for the high value of the phase of SUS304. 

 
Figure. 9. The influence of inner radius Ri above the amplitude Figure. 10. The influence of slenderness ratio above the amplitude 

frequency of the tube.(R0=1nm, T=300K, μ=1nm, frequency of the tube.(R0=1nm, T=300K, μ=1nm, L=20R0, N1=N2=1) Ri=0.8R0, 
N1=N2=1) 

Fig. 9 describes the influence of inner radius Ri above the amplitude frequency of the tube. It can be seen that when 
taking larger inner radius under the same outer radius, the nonlinear to linear frequencies ratio goes down. 

Fig. 10 shows the influence of slenderness ratio above the amplitude frequency of the tube. The figure clearly plots 
that a bigger slenderness ratio leads to a smaller ωNL/ωL curve. That is due to the fact that a large slenderness is able to 

waken the stiffness of the studied tube. 

5. Conclusions 

This paper focuses on free vibration of nano-tubes formed by bonding together a Si3N4/SUS304 functionally graded 
upper semi-tube and a ZrO2/Ti-6Al-4V functionally graded lower semi-tube. Firstly, four types of material distribution of 
the FGM bi-semi-tubes were assumed. By using a two-steps perturbation method, the analytical solution was obtained 
to carry out a vibration analysis in detail. Finally, some important conclusions are outlined. 

(1) The ascending of slenderness ratio can increase the natural frequencies, whereas the ascending of dimensionless 
temperature and non-local parameter μ can decrease the natural frequencies. 

(2) The natural frequencies reduce with the increase of the content of SUS304 and Ti-6Al-4V. 
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(3) Compared with conventional functionally graded tube, obviously, the tube with two volume indexes results in more 
accurate frequency control in the same dimensionless size of tubes. 

(4) The decrease of the thickness of the tube makes the natural frequencies firstly decline and then rise. 

(5) The increment of dimensionless temperature λT and non-local parameter μ can improve the RNFLF while the 
increase of slenderness ratio and the decrease of the thickness of tubes can make the RNFLF decline. 

(6) The influence of double volume indexes on the relation of amplitude-frequency of bi-semi-tubes is more obvious 
than the influence of one volume index on the relation of amplitude-frequency of conventional functionally graded 
tubes. 
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