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Abstract 

The subject of the present work is the numerical verification and 

experimental validation of the FEM model which would enable us to 

analyse the vibrations of collecting electrodes. The effectiveness of 

electrostatic precipitators (ESP) depends on many factors. One of 

these factors is the efficiency of periodic cleaning of the collecting 

electrodes; thus the dust is removed by inducing vibrations. These 

vibrations are caused by the axial impact of a hammer on an anvil 

beam. In the course of the impact, and afterwards, the stresses due to 

the impact are produced in both the rapper system and in the collect-

ing electrode section. The paper presents a modified finite element 

method which can be used in simulations and to analyse the vibra-

tions of collecting electrodes. In the verification process the calcula-

tion results obtained were compared with those from commercial 

software (Abaqus). The calculations and measured results were com-

pared for validation. The comparisons were made using peak and 

RMS (root-mean-squared) values as well as special factors and hit 

rates. An acceptable compatibility of the results proves that the 

model can be applied in the analysis of vibrations of electrodes in 

design practice. 
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1 INTRODUCTION 

Electrostatic precipitation is a commonly used method for removing fine particles from airstreams. 

The effectiveness of these devices depends on many factors, such as the charging of particles, trans-

porting the charged particles to the collecting surfaces, precipitation of the charged particles onto 

the collecting surfaces, neutralising the charged particles on the collecting surfaces, removing the 

particles from the collecting surface to the hopper, and conveying the particles from the hopper to a 

disposal point [1-4]. This research is only focused on one of these phenomena, i.e. the dislodging of 

particles. Removing dust collected on the electrodes is achieved by bringing them to vibrate with 

accelerations that allow for the effective separation of dust coagulated on their surface. 
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The collecting electrodes are rapped by a number of methods [5-7]. Generally, precipitator manufac-

turers use hammer and anvil rappers to remove particles from the collecting electrodes. One rapper 

system uses hammers mounted on a rotating shaft, as shown in Figure 1. As the shaft (1) rotates, 

the hammers (2) drop (by gravity) and strike the anvils (5) of the anvil beams (3) that are attached 

to the collecting electrodes (4). The weight of the hammers and the length of their mounting arm 

control the rapping intensity. The frequency of the rapping can be changed by adjusting the speed 

of the rotating shafts. Thus, rapping intensity and frequency can be adjusted for the varying dust 

concentration of the flue gas. 

 

 
 

Figure 1. Rapper system. 

 

 The next chapter presents a computational model that allowed to simulate the vibrations of 

collecting electrodes caused when struck during the process of shaking off dust. It has been assumed 

that an average class PC should be sufficient to do all of the computations, and the calculation time 

should not exceed several dozen minutes. Two methods were used to model the arrangement: the 

deformable finite element method (FEM)[8] and the rigid finite element method (RFEM)[9]. 

 Chapter 3 presents the results of verification and validation of the model. Within the verifica-

tion, and besides establishing an integration step and the density of the digitised grid of electrode 

plates that provide adequate precision (and convergence) of the calculation results, the results of 

our own calculations were compared with the results received using the Abaqus commercial pack-

age. Within the process of validation, conformity of the results of our own calculations was com-

pared with the results of measurements conducted on a special test stand. 

 

2. COMPUTATIONAL MODEL 

 

An essential feature of the finite element method is both its ability to handle complicated geome-

tries (and boundaries) [8], [10] and its implementation in many commercial packages and open 

source software. Despite the existing commercial software, it is still necessary to search for more 

efficient solutions which are less sophisticated but more tailored to designers’ specific needs. This is 

the case when modelling the collecting electrode system (CES) of electrostatic precipitators (Fig. 2).  
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Figure 2. The most important aspects of modelling: a) schematic view of a collecting electrode system, b) SIGMA VI 

profile, ) measured force impulse F(t). Vibrations are generated as the system’s response for a single force impulse 

F(t). 

 

 The model combines the finite element method (FEM) used to describe spring deformations [11] 

and mass and geometrical features of the collecting electrodes with the rigid finite element method 

(RFEM) [9], [12] used to reflect the behaviour of the beam segments of the modelled system. The 

remaining constructional elements, such as the joints that fasten the electrodes to the suspension 

beam, distance-marking bushes and riveted and screw joints, were considered in the model as con-

centrated masses. Equations of motion of individual sub-systems (electrodes and beams) and of the 

whole system were derived in the present paper from Lagrange’s equations of second order. In this 

paper both geometrical and physical linear systems are taken into consideration (vibrations around 

the static equilibrium position). That is why it is possible to present the kinetic and potential en-

ergy of deformation in quadratic forms: 

 

1

2
TT q Mq , (1) 

 

T1

2sV q Cq , (2) 

 

 where ,M C  are matrices with constant elements and q  is the vector of generalised coordinates. 

If the damping is passed over, then the application of Lagrange’s equation leads to the following 

equations of the system’s motion: 

 

Mq Cq G Q , (3) 

 where M  is the mass matrix, C is the stiffness matrix, 
gVG
q

, gV  is the potential energy of 

gravity forces, 
T

1 nQ QQ  is the vector of generalised forces and n is the number of degrees 
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of the system’s freedom. Thus, to formulate equations of the system’s (sub-system’s) motion, one 

should determine the mass matrixM , the stiffness matrix C , as well as vectors G and Q. 

The next sub-sections contain the basic relations that will allow to determine the matrices and vec-

tors from (3) for electrodes treated as shells modelled with the deformable finite element method 

(FEM) [8]. A brief way will also be presented of discretising the beams modelled with the rigid fi-

nite element method (RFEM), the model of joining elements which connect the beams and elec-

trodes, as well as the aggregation of the sub-systems’ motion equations to equations for the whole 

system. 

 

2.1  Model of shell elements 

With electrode k a co-ordinate system is connected with axes directed as in Fig. 3. A single elec-

trode strip has both a constant width and thickness.  

 This suggests how it should be divided into elements. It is assumed that the strips are numbered 

from 1 km , where the first strip on the left has the number 1 while the last strip on the right has 

the number km . In the x̂  direction, the strip is divided into kn  elements with a length of: 

 

k
k

k

l
x

n
, (5) 

 

 where kl  is the length of the plate (and the length of the strip is 1 km ). 

 Thus, the whole collecting electrode is divided into: 

 
( )k
e k kn m n , (6) 

 

 elements.  

 

 

Figure 3. Strip j with width ,k jb  and inclination angle ,k j  towards the ŷ  axis: 

 – system of global coordinates, k – co-ordinate system connected with electrode k, with axes parallel 

to the axis of system . 
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 The strain energy of an element with the number , ,k j i (Fig. 3) is independent of i (in view 

of the division into elements with a constant length of kx  in direction x̂ ) and from angle ,k j . A 

rectangular four-node element, as presented in Fig. 4a, is considered here. 

 

 

Figure 4. Four-node shell element: a) taking into consideration the following indexes:  

 k – plate, j – strip, i – element of strip j, b) passing over indexes k, j and i. 

 

 The nodal displacements of the element are described by the following values: 

 
T

, , , , , , , , , , , , , , , , , , , , ,, , , , ,  for  1,  2,  3,  4k j i s k j i s k j i s k j i s k j i s k j i s k j i su v w sq , (7) 

 

 where , , ,k j i su , , , ,k j i sv , , , ,k j i sw  are displacements of node , , ,k j i s  in the direction of the , ,k j ix , 

, ,k j iy , , ,k j iz  axes, respectively, and , , ,k j i s , , , ,k j i s , , , ,k j i s  are rotations in the node around the axis 

parallel to , ,k j ix , , ,k j iy , , ,k j iz , respectively. In further considerations, during which the potential 

strain energy of the element and its kinetic energy were described, indexes (k,j,i) were omitted to 

simplify the notation. Thus, the presented procedure refers to the element from Fig. 4b. 

The nodal displacements are described by the following values: 

 
T

, , , , ,  for  1,  2,  3,  4s s s s s s su v w sq , (8) 

 

 It is assumed that the shield state is described by displacements ,s su v  and rotation angles s , 

while displacement field ,u v  is described by the functions: 

 
2 2

1 2 3 4 5 6( , , ) ( ) ( )u u u u u uu x y t a a x a y a x y a y a x y , (9af) 

 
2 2

1 2 3 4 5 6( , , ) ( ) ( )v v v v v vv x y t a a x a y a x y a x a x y , (9b) 
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 and  
 is described by relation [13]: 

 

1
2

u v

y x
. (9c) 

 

 It is assumed that the plate state is described by deflection w  and angles , , which are 

described by the following relations: 

 
( ) ( ) ( ) ( ) ( ) ( )2 2
1 2 3 4 5 6

( ) ( ) ( ) ( )3 2 2 3
7 8 9 10
( ) ( )3 3
11 12

, , ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ,

w w w w w w

w w w w

w w

w x y t a a x a y a x a x y a y

a x a x y a x y a y

a x y a x y

 (10a) 

 

w

y
, (10b) 

 

w

x
. (10c) 

 

 Factors ( ) ( ) ( ) ( )
1 6 1 6,u u v va a a a  and ( ) ( )

1 12
w wa a  can be determined from the respective boundary 

conditions: 

 

1 2 3

4 2, 4,

, , , , , ,
2 2 2 2 2 2

,
, , , , ,

2 2 2 2 2 2y y

x y x y x y
u u t u u t u u t

ux y x y u x y
u u t u t u t

y y

 (11a) 

 

1 2 3

4 1, 3,

, , , , ,
2 2 2 2 2 2 ,

, , , , ,
2 2 2 2 2 2x x

x y x y x y
v v t v v v v

x y v x y v x y
v v v t v t

x x

 (11b) 

 

1 1 1, , , , , ,
2 2 2 2 2 2

x y w x y w x y
w w t t t

y x
 (11c) 

 

2 2 2, , , , , ,
2 2 2 2 2 2

x y w x y w x y
w w t t t

y x
 (11d) 

 

3 3 3, , , , , ,
2 2 2 2 2 2

x y w x y w x y
w w t t t

y x
 (11e) 
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4 4 4, , , , , .
2 2 2 2 2 2

x y w x y w x y
w w t t t

y x
 (11f) 

 

 The strain energy of the shell element in Fig. 5b is the sum of: 

 
( ) ( )t pE E E , (12) 

 

 where ( )tE  is the energy of the shield state and ( )pE  is the energy of the plate state. The strain 

energy of the element, after necessary transformations [11], can be presented in the form of: 

 

1,1 1,2 1,3 1,4 1

T T T T 2,1 2,2 2,3 2,4 21
1 2 3 42

3,1 3,2 3,3 3,4 3

4,1 4,2 4,3 4,4 4
4

T T1 1
2 2

1 1
l

l s

E

C C C C q

C C C C q
q q q q

C C C C q

C C C C q

q C q q
4

, ,l s sC q

 (13) 

 

 Where sq  are specified in (8), 
TT T T T

1 2 3 4q q q q q  and C  is the square, symmetric 

stiffness matrix of an element with dimensions of 24 24 .  

It should be noted that for the defined physical parameters of plates , , ,E h , the stiffness matri-

ces of the elements depend only on dimensions kx x  and ,k jy b . In view of the designa-

tion in Fig. 4 and relation (5), in the discussed case: 

 

, , , ,,k j i k j k k jx bC C C , (14) 

 

for 1,  ... ,  ;  1,  ... ,  k ki n j m . The formula for the strain energy of element (k,j,i) may be 

presented in the following form: 

 
4 4

T1
, , , , , , , , , , , ,2

1 1
k j i k j i l k j i l s k j i s

l s

E q C q . (15) 

 

 Thus, as a result of adopting a constant length of kx  elements, the stiffness matrix of electrode 

k is calculated only for 1,  ... ,  kj m , because the stiffness matrices of elements , ,k j i  of the 

single strip are identical. 

The kinetic energy of an element may be calculated with the following formula: 
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TT T( ) ( ) ( )( ) ( )1 1 1
2 2 2

u v pp pT u M u v M v q M q , (16) 

 

 where ( ) ( ),u vM M  are matrices with dimensions of 6 x 6 while ( )pM  is the matrix with dimen-

sions of 12 12  with constant elements. 

 If the definition of vectors of nodal displacements as described in (8) is taken into consideration, 

then, after a proper rearrangement that runs analogically as in the case of the C stiffness matrix, 

the expression for the kinetic energy of an element can be recorded in the following form: 

 
4 4

T T1 1
,2 2

1 1

,l l s s
l s

T q M q q M q  (17) 

 

 where ,l sM  are the matrices with dimensions of 6 6  with constant elements. 

 As is in the case of formulae for strain energy, the expression for the kinetic energy of element 

, ,k j i  may be presented in the following form: 

 
4 4

T1
, , , , , , , , , , , ,2

1 1
k j i k j i l k j i l s k j i s

l s

T q M q . (18) 

 

 In the computational model, the nodal displacements, expressed not in local systems but in a 

global co-ordinate system (5), are adopted as generalised coordinates.  

 

Figure 5. Element , ,k j i . 

 

 Let us define the following vectors: 

 
T

, , , , , , , , , , , ,k j i s k j i s k j i s k j i su v wΔ , 
T

, , , , , , , , , , , ,k j i s k j i s k j i s k j i su v wΔ , (19a) 

 

 
T

, , , , , , , , , , , ,k j i s k j i s k j i s k j i sΦ , 
T

, , , , , , , , , , , ,k j i s k j i s k j i s k j i sΦ , (19a) 
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 where , , ,k j i sΔ , , , ,k j i sΦ  are the vectors of nodal displacements and rotations in the , ,k j i  sys-

tem; , , ,k j i sΔ , , , ,k j i sΦ are the vectors of nodal displacements and rotations in the , ,k j i  system, 

with axes parallel to the axis of the  global system and a beginning that coincides with the 

beginning of the , ,k j i system. The following relations exist between them: 

 
T

, , , , , , , , , , , , , ,k j i s k j k j i s k j i s k j k j i sR RΔ Δ Δ Δ ,  (20a) 

 
T

, , , , , , , , , , , , , ,k j i s k j k j i s k j i s k j k j i sR RΦ Φ Φ Φ ,  (20b) 

 

 where , , ,

, ,

1 0 0

0 cos sin .

0 sin cos
k j k j k j

k j k j

R  

  

 Vectors , , ,k j i sq  and , , ,k j i sq , may be presented in the following forms: 

 
TT T

, , , , , , , , ,k j i s k j i s k j i sq Δ Φ ,  (21a) 

 
TT T

, , , , , , , , ,k j i s k j i s k j i sq Δ Φ ,  (21b) 

 

 and the relations between them are described by the formulae: 

 

, , , , , , ,k j i s k j k j i sq R q ,  (22a) 

 
T

, , , , , , ,k j i s k j k j i sq R q ,  (22b) 

 

 where ,
,

,

0
.

0
k j

k j
k j

R
R

R
 

 Thus, formulae (18) and (15), which describe the kinetic and strain energy of element ( , , )k j i , 

may be presented in the following forms: 

 
4 4

TT T1
, , , , , , , , , , , , , ,2

1 1
4 4

T1
, , , , , , , , , ,2

1 1

k j i k j k j i l k j i l s k j k j i s
l s

k j i l k j i l s k j i s
l s

T R q M R q

q M q

  (23) 
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4 4
TT1

, , , , , , , , , , , , ,2
1 1

4 4
T1
, , , , , , , , , ,2

1 1

k j i k j k j i l k j i l s k j i s
l s

k j i l k j i l s k j i s
l s

E R q C q

q C q

 (24) 

 

 where T
, , , , , , , , , ,k j i l s k j k j i l s k jM R M R  and T

, , , , , , , , , ,k j i l s k j k j i l s k jC R C R . 

 There are also gravity forces that influence the electrodes in the system, and they should be 

taken into consideration when formulating the equations of motion. Generalised forces that come 

from gravity forces may be presented in the following form: 

 
( )

, , , , , , , , , for 1,2,3,4u
k j i s k j i k j u s sG N H , (25) 

 

 where  

,

( ) ( )
, , , ,

k j

u u
k j i k j i

F

gh dFN N , ( ) ( )( )
, ,
u uu
k j k jN N A , ( ) 2 21 ( ) ( )u x y x y y x yN , ( )

,
u
k jA  

is a matrix with constant elements,  
, , , ,

, , ,
2 2 2 2
k j k j k j k j

k j

x x b b
F  is the area of ele-

ment (k,j,i), ,k jx  and ,k jb  are described in Fig. 5, and , , ,k j u sH  is a matrix with constant coeffi-

cients. 

 

2.2  Model of beam elements 

When modelling the upper and lower suspension beams, the classical rigid finite element method 

(RFEM) was applied [9]. Fig. 6 presents the general scheme of the system. The upper beam was 

simply supported, while the bottom beam was rigidly connected with the electrodes and loaded with 

point force, as in Fig. 2c. 

 

 

Figure 6. Geometric parameters of the electrode system. 

 

 There is a certain segment of beams ka  assigned to each plate. The length of the beam segment 

is generally longer than the width of plate k. The upper and lower beams are connected to the elec-

trodes with the help of e
un  and e

bn  spring-damping elements, respectively. In practice, it is usually 
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assumed that 1e
un and 2e

bn . The way of dividing the upper and lower beams into massless 

and non-dimensional stiffness-damping elements (sde) and rigid finite elements (rfe) is very similar. 

That is why the way of dividing elements into sde and rfe is presented with a general description of 

the beam with the symbol ,u b . Fig. 7 presents the primary and secondary division of beam

. 

 

 

Figure 7. Division of beams into rfe and sde: a) primary, b) secondary. 

 

 It was assumed that each of the segments 1 pa a  is divided into the same number of elements 

s  in the primary division. Moreover, segments 0a  and 1pa , which are usually much shorter 

than 1 pa a , are not divided into smaller elements. Then, in the secondary division, the sde are 

placed in the central points of the sections. The elements lying between sde are treated as rigid 

solids (Fig. 8). 

 
Figure 8. Generalised coordinates of rfe i: , ,a a a

i i ix y z  are translational displacements of the mass centre of rfe i , and 

,i i i  are the rotational displacements of rfe i. 

 

 The mass parameters and coordinates of the mass centres, and thereby coordinates of sde, 

change when additional bodies (reinforcements, cross-bars, bushes, anvil, etc.) are added to the rfe 

of the upper or lower beams. In a computer implementation of the models presented here, it was 

assumed that the added bodies may be represented by concentrated masses. An equation of motion 

for the free beam may be presented in the following form: 

 

M q C q G Q  (26) 
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 where 
TT T T

1 i n
q q q q  and 

T

i i i i i i ix y zq  is a vector of the 

generalised coordinates rfe i, as in Fig. 8, M  are the diagonal mass matrices with constant coeffi-

cients, C  are the stiffness matrices with constant coefficients, G  is the vector of gravity forces 

and Q  is the vector of external generalised forces. It is worth mentioning that the mass matrices 

M  of the beams are diagonal and the stiffness matrices C  are rare matrices. 

Aggregation of equations 

 The equations of motion of the upper and lower beams and of the electrodes, treated as free 

(before connecting them in a system with the help of sde), may be presented in the following form:  

 
( ) ( ) ( ) ( ) ( )u u u u uM q C q G , (27) 

 
( ) ( ) ( ) ( ) ( ) for 1, ,k k k k k k pM q C q G , (28) 

 
( ) ( ) ( ) ( ) ( ) ( )b b b b b bM q C q G Q F , (29) 

 

 where ( )uM  and ( )bM  are the mass matrices of the upper and lower beam (diagonal), ( )uC  and 
( )bC  are the stiffness matrices of the upper and lower beam (rare, symmetric, with 18 non-zeroing 

elements at the most in each column, ( )uG  and ( )bG  are the gravity force vectors of the upper and 

lower beam, ( )bQ F  is the vector of generalised forces induced by the action of a striking force of 

the beater hitting the anvil of the lower beam, with 6 non-zeroing elements at the most, ( )kM and 
( )kC  are the mass and stiffness matrices of the kth electrode (rare, symmetric with 54 non-zeroing 

elements at the most in each column), ( )kG  is the vector of gravity forces of electrode k,  

T( ) T T
0 u

u u u
n

q q q , 
T( )u u u u u u u

i i i i i i ix y zq , ( )

T
( ) T T

,1 , k
w

k
k k n

q q q , 

T

, , , , , , ,k i k i k i k i k i k i k ix y zq , 
T( ) T T

0 b
b b b

n
q q q , and 

T( )b b b b b b b
i i i i i i ix y zq . 

 

 The introduction of flexible connections of electrodes with beams results in feedbacks between 

vectors ( )uq  and ( )kq  as well as between vectors ( )kq  and ( )bq . 

 In the present paper it was assumed that the connection of electrodes and beams is made with 

the help of sde. Fig. 9 presents the connection of the electrode element with number , ,k j i  with 

rfe e  of beam . In structural solutions known to the author, there are always connections of 

beams and electrodes used in which the axes are parallel to the axis of global system { } and, 

thereby, parallel to the axis of systems i  and , , , ,k j i k j i . Such a solution eliminates 
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the need to take the rotation matrix into consideration in any further discussion. The vector of 

strain of sde h may be described with the formula: 

 
4

, , ,
1

ses mes
h h e h k j i s

s

A q A qΔ , (30) 

 

 where ses
hA , mes

hA  are matrices of 6 6  with constant coefficients. The strain energy may be 

described as: 

 

T1

2h h h hV CΔ Δ , (31) 

 

 where yx z
h h h h h h hdiag c c c c c cC  is the matrix of the coefficient of connection stiff-

ness. 

 

 
Figure 9. Stiffness-damping connection h of element , ,k j i  of plate k with rfe e of beam . 

 

 Differentiating (31) with regard to the generalised coordinates eq  and , , ,k j i sq , one may deter-

mine the additional elements (matrices 6 x 6) that may be added to the stiffness matrix of electrode 

k and beam α. Having taken the connections into account, the equations of the system’s motion 

take the following form: 
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( ) ( )

(1) (1)

( ) ( )

( ) ( )

( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

u u

k k

p p

b b

M

M q

M q

M q

M q

M q

q

 

( ) ( )( ) ( ) ( )
1

(1)(1) (1) (1)

( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )
1

0

0 0

0 0

0 0

0

u uu u u
k p

u b

k kk k
u b

pp p
u b

b b b b
k p

C

C C C C q

C C C q

qC C C

C C C

C C C C

( )

(1)

( )

( ) ( )

( ) ( ) ( )

u

k

p p

b b b

q f

G

G

G

q G

q G Q

, 

(32) 

 

 or in general form: 

 

Mq Cq f . (33) 

 

 The equations of motion (33) were integrated with the Newmark method with a constant inte-

gration step. 

 

3 MODEL VERIFICATION AND VALIDATION 

The FEM model presented in the previous chapter was implemented into VibroESPan calculation 

software. The verification presented in sub-chapter 3.1 is an indirect verification that consists of 

performing a simulation in the VibroESPan software and of comparing the results with those re-

ceived when using the Abaqus commercial package. Validation is performed by comparing the re-

sults of numerical simulations (achieved with the help of VibroESPan software) with the results of 

measurements on the test stand. The process of model validation is described in sub-chapter 3.2. 

Both during verification and validation, the system is loaded by gravitational force and the force 

impulse F(t) applied to the anvil. 

 Peak value MaxW  and root-mean-square value RMSW were used to evaluate signals in the domain 

of amplitudes. These values are expressed with the following relationships: 

 

, , , , ,
0
max

a
Max s s i s s i

t t
W a , (34a) 
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1

2
2

, , , , ,

0

1 at

RMS s s i s s i
a

W a dt
t

, (34b) 

 

 where at  is the time of analysis, s  is the index that takes the value n  if signal , ,s s ia  was deter-

mined as the result of numerical calculations in the FEM model, or p  if it was received in the ABQ 

model (in the verification process), or if it was received as the result of measurements (in the vali-

dation process), and i is the number of checkpoints. In the above formulae it was assumed that 

, ,s s ia  may be one of the following values: 

 

, ,

, ,

2 2
, , , , , , , ,

, , , ,

- acceleration in the direction of axis ,

- acceleration in the direction of axis ,

- tangential acceleration in plane ,

- normal acceler

x s i

y s i

s s i s i x s i y s i

s i z s i

a

a

a a a a

a a

x

y

xy

2 2 2
, , , , , , , ,

ation to plane ,

- total acceleration,c s i x s i y s i z s ia a a a

xy

 

 

 which means that , , , ,s x y c . 

 The verifiability indicators FAC2 were used as the error measure both in the process of verifica-

tion and in the process of validation: 

 

1

1
2

pn
f
i

ip

FAC N
n

 (35a) 

 

, , ,

, , ,

1
1 for  2

2

0 otherwise

i i

i i

s n s n
f
i s p s p

W a

N W a  (35b) 

 

 where , ,is s
W  and , ,is s

W  are calculated in accordance with (34), ,Max RMS , and pn  is 

the number of checkpoints. The hit rate ( )sq a  is defined as: 

 

1

1 pn
q
i

ip

q N
n

 (36a) 

 



34     Andrzej Nowak / Numerical verification and experimental validation of the FEM model of collecting electrodes in a dry electrostatic precipitator 

 

 

Latin American Journal of Solids and Structures 10(2013) 19 – 38 

, , , , , , , ,, , , ,

, , , ,, ,

1 for      or  

0 otherwise

i i i ii i i i

i ii i

s n s p s n s ps n s p s n s p
q
i s p s ns p s n

W a W a W a W a

N W a W a  (36b) 

 

 where  is the allowable error.  

 

3.1  Computational verification 

The FEM model presented in Fig. 10 was applied during the remaining stages of verification and 

validation.  The configuration of checkpoints presented in Fig. 10 corresponds to the arrangement of 

acceleration sensors on the test stand. Verification of the model with indicators FAC2 and q is exe-

cuted for 28pn  checkpoints and  = 0.4.  

 

 
Figure 10. Model scheme with an electrode system used in verification and validation. 

 

 The values of the model’s indicators calculated with reference to the results obtained from the 

Abaqus commercial software (ABQ model) are presented in Fig. 11. The difference in results of 

simulations between the FEM model and the ABQ model fluctuated between 3% and 23%, depend-

ing on the analysed acceleration (normal a , tangential a  and total ca ) and the indicator. 
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Figure 11. Verification: indicators 2 sFAC a  and sq a . 

 

 The comparative analysis of amplitudes presents good conformity of both models in the scope of 

the RMSW  values of accelerations, especially the values of total acceleration ca . In the latter case, in 

86% of the checkpoints, the values of RMSW  are within the acceptable range of hit rate RMS cq a  

and as much as 97% within the permissible range of the value of the 2RMS cFAC a  indicator. 

 

3.2  Measuring Validation 

Verification carried out as described above allowed for an exclusion of errors in the implementation 

of algorithms applied in the presented model. However, a model verified with a positive result does 

not necessarily have to be a model that correctly describes a real object. That is why the second 

stage of the model’s evaluation should be performed. This consists in validation that describes the 

correctness of the model with reference to the results of the measurements. Validation is carried out 

by comparing the results of numerical simulations with the results of measurements achieved on the 

test-bench. Conformity of the model with the object is performed by analysing the ,Max s sW a  and 

,RMS s sW a  values and taking the index 2 sFAC a  and hit rate sq a  as error measures. Fig. 

12 presents a combination of the values of 2 sFAC a  and sq a . 
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Figure 12. Validation: indexes 2 sFAC a  and sq a . 

 

 High values of verifiability index 2FAC  are obtained. For 2MaxFAC a , only 2 checkpoints 

are not within the acceptable range, whereas in the case of index 2RMS cFAC a  – only one check-

point was outside the range. The values of index sq a  look slightly worse – in this case the dif-

ferences in the values fluctuate between 4% and 25% (1 to 7 points). Such differences may result 

from the fact that the acceleration measurements themselves are burdened with errors that result 

indirectly or directly from the accuracy of the sensors, linearity and distortions generated by the 

recorder in the output signal, from the precision of positioning the sensors in the test stand, accu-

racy of signal synchronisation in the measurement sequences and accuracy of measurements of the 

force impulse. In addition, simplifications in the modelling of electrodes can be the reasons for the 

differences in calculations and measurement results. 

 

4 CONCLUSIONS 

The procedure applied in the present paper, in which sub-systems (beams and electrodes) are con-

nected not with the help of equations of constraints, but through stiffness-damping elements, has its 

advantages and disadvantages. An advantage is the fact that there is no need to define additional 

unknowns (Lagrange’s coefficients – constraint reactions). Its disadvantage is the lack of a general 

method of selecting the translation and rotational stiffness coefficients, sde, that join the sub-

systems. 

The results of verification and validation of the model allow to state that the model correctly re-

flects the dynamic phenomena that appear in the system of collecting electrodes during the vibra-

tions generated in them by an impulse of the force coming from the hammer of the rapping system. 

This verification and validation demonstrates some differences between the model and measurement 

results, but they are within the range of values accepted in engineering practice. Moreover, the re-

sults are characterised by precision comparable to the precision achieved in commercial models, yet 

reached at considerably smaller computational costs [11]. Computer implementation of the model, 

as presented in the paper, has found application in the design office of one of Poland’s producers of 

electrostatic precipitators. 

The overall conclusion is that the process of vibration excitation and wave propagation in the sys-

tem of electrodes is the result of many factors [14]. This process depends not only on the impact 

force, but also on the physical parameters, geometry and construction of all the elements that make 

up this system [10]. In this respect the model presented in this paper is an important novelty, since 

using the testing calculations can help predict the properties of a future structure as early as in its 

design stage. 

The author is aware of the imperfections in the presented models and results. It is the author’s 

opinion that future research should take into consideration: 

 

 formulation of a model element in the FEM which would better reproduce rotational stiffness, 

e.g. through the application of elements with a larger number of nodes, 
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 developing a method of choosing the coefficients of stiffness of the collecting electrode connec-

tions and beams, or replacing them with constraint equations, 

 applying the wave equations for the analysis of phenomena occurring in the system of the col-

lecting electrodes. 
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