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Abstract 
The use of tensegrity structures in soft robotics has seen an increased interest in recent years thanks to their 
mechanical properties, but the control of these systems remains an open problem. This paper presents a 
reconfiguration strategy for actuated multi-stage tensegrity structures. The algorithm works on the principle 
of using the infinitesimal mechanisms of the structure to generate a path of positions along which a multi-
stage tensegrity structure can change its shape while maintaining the self-equilibrium. Combining the force 
density method with a marching procedure, the solution to the equilibrium problem is given by a set of 
differential equations that define the kinematic constraints of the structure. Beginning from an initial stable 
position, the algorithm calculates a small displacement until a new stable configuration is reached, and 
recurrently repeats the process during a given interval of time. By means of three numerical examples, we 
show the efficacy of our algorithm for reconfiguring a two-stage tensegrity mast along different directions. 
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1 INTRODUCTION 

Tensegrity structures have received several definitions since their origin; however, they can be described as a 
special kind of spatial system, composed of compressive and tensile elements, in self-equilibrium. The unique 
arrangement of the members, where the compressive elements are not in contact between them, distributes the 
internal forces only along the axes of the elements thus removing the forces such as torque or bending from the design 
process. Thanks to their advantages of efficient force distribution, lightweight, and the possibility to apply control 
systems to some of its members, the use of tensegrity structures for soft robotics and smart structures has become an 
important research topic in recent years; some examples of these applications are the robotic icosahedrons (Bruce et 
al., 2014) (Ushigome et al., 2010) and snake-like crawling structures (Friesen et al., 2016). 

The use of tensegrities in the robotics field has motivated an increase in the study of how to find reliable methods 
for reshaping the tensegrity structures while maintaining the self-equilibrium. While several methods have been 
proposed for solving the form-finding and dynamics problems of these structures, the shape control remains an open 
research area. Different approaches have been presented, some of them using advanced computational techniques. 
Monte Carlo control policies for multiagent learning (Lessard et al., 2015), coevolutionary algorithms for generating 
evaluation functions (Iscen et al., 2015), optimization methods based on the null space of the equilibrium matrix 
(Caluwaerts and Carbajal, 2015) or algorithms that calculate the required tension for driving structures between two 
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positions (Henrickson et al., 2015) are some examples of the different methods that have been proposed. Some of 
these methods have already been successfully proven in real life applications (Geng et al., 2017). 

Another solution for the reconfiguration problem of tensegrity structures is the use of the infinitesimal 
mechanisms. Williams (2007) gave a mathematical approach by using the graph theory to characterize tensegrity 
structures and proposed a marching procedure that generates paths tangent to the infinitesimal mechanisms to obtain 
new stable configurations of the structure; this marching procedure was later studied from an engineering approach by 
combining the graph theory with rigidity theory by Micheletti and Williams (2007). Sultan (2014) demonstrated that 
the motions along the infinitesimal mechanisms of tensegrity structures present a zero-energy dissipation by linearly 
kinetic tendon damping; through the paper, he proposed a deployment algorithm that follows paths tangent to these 
mechanisms using the Lagrange equations of motion. Koohestani (2015) developed an iterative method for reshaping 
free standing and restrained tensegrity structures. Porta and Hernández-Juan (2016) proposed a method based on 
differential geometry for obtaining an equilibrium manifold from the infinitesimal mechanisms. However, there is no 
literature referring to these methods having been used in real applications. 

Amongst these methods, the marching procedure presents a more straightforward approach. The solution to the 
kinematic problem of tensegrity structures involves simpler and faster computations than the dynamic equations. At 
the same time, because the kinematics are only related to changes in position and speed, the physical properties of the 
materials, such as mass or elasticity, are omitted from the calculations. However, the mathematical approach from 
which it was first proposed makes some of its formulations time consuming. 

The purpose of this paper is twofold: first, to reformulate a marching procedure by using the force density method 
to obtain the static and kinematic expressions; second, to demonstrate, by simulations, that this procedure can 
effectively reconfigure a multi-stage tensegrity structure with fixed nodes from a stable initial position to another 
stable position, along different directions. The proposed method can represent an alternative for applications such as 
positioning, manipulation or simulation of human mechanics (Lessard et al., 2016). The structure of this paper is the 
following. First, the equilibrium expressions of tensegrity systems using the force density are reviewed. Next, the 
reconfiguration method is described, and the required algebraic equations are explained. Finally, three examples are 
given to verify the method; each example includes a simulation and an experimental result. 

2 MATHEMATICAL FORMULATIONS 

As described before, tensegrity structures are spatial systems composed of compressive elements (bars or struts) 
connected only by tensile elements (strings or cables). An important characteristic of these structures is that they are 
stable in the absence of external forces, known as self-equilibrium; the set of prestresses in the members that allows 
this condition is known as state of self-stress. 

(b)(a) (c)
x
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Figure 1: Types of tensegrity structures. (a) Tensegrity unit, (b) assembly of units, (c) two-stage structure. Black lines represent bars, 

blue lines represent cables and dashed blue lines are the extra cables. 
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The simplest tensegrity structure in three dimensions is the one shown in Figure 1a, composed of three bars and 
nine cables. In this kind of structure, known as tensegrity unit, the bottom endings of the bars are connected by cables, 
forming a regular polygon (a triangle for the case of the example shown above); the top endings of the bars are 
connected in the same way. Vertical cables connect the top plane with the bottom plane by linking bar endings. The 
geographical place where cables and bars are connected is known as node. 

Complex tensegrity structures can be constructed by assembling two or more tensegrity units; multi-stage 
tensegrities are tensegrity units stacked along their Z axis. However, these units require modifications to allow their 
interconnection. As shown in Figure 1b, some cables are removed, while others, dashed lines in Figure 1c, are added to 
allow the new structure to be stable. The two structures shown in Figure 1b receive the name of stages because, since 
some cables were removed, they are not in equilibrium anymore and thus cannot be called units. 

The topology of tensegrity structures in three dimensions, composed of m members and n nodes, is determined 
by two main parameters: the nodal coordinates and the connectivity between nodes. While the connectivity scheme 
can be determined in an arbitrary way, the location of the nodes should be defined through a form-finding process that 
can resolve a stable configuration. The problem of the form finding for tensegrity structures has been extensively 
studied over the recent decades, using different methods; in this paper, the approach for tensegrity masts by Tibert 
(2002) is used. 

The connectivity between nodes is described by the m×n connectivity matrix C, with zero entries in all its cells, 
except in those representing the initial and final nodes of the corresponding element. Zhang and Ohsaki (2015) 
described that if nodes i and j (i < j) represent the extreme nodes of a member mk, the entries i and j of the k-th row of 
C will be -1 or 1, respectively if 

 ,

1

1

0 other nodes
k p

p i

p jC
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By using the force density method, the non-linear system of equilibrium equations that describes a tensegrity 
structure is transformed into a linear system by using a force-to-length ratio (Motro, 2003). These values, or force 
densities, are arranged as the force density vector q (∈ ℝ𝑚𝑚), with one entry corresponding to the value of each one of 
the m members. Using this vector, and assuming no external forces, the equilibrium system of a tensegrity structure is 
represented by the relationship between the projected lengths of the members and the force densities 

0Aq   (2) 

where A (∈ ℝ3𝑛𝑛×𝑚𝑚) is the so-called equilibrium matrix. If N (∈ ℝ3×𝑛𝑛) is the matrix containing the nodal coordinates [x y 
z]T, Gómez Estrada et al. (2006) define A as 
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The rows of the matrix A correspond to the projections, along X, Y or Z axes, of the lengths lij of all the members 
that coincide at any node ni (Tran and Lee, 2010). Each column am of A, or the rows of AT, known as the compatibility 
matrix by Pellegrino (1993), represent the magnitude and direction of the projected distances between the ni and nj, i < 
j, nodes that compose each m member. In this paper, only tensegrity structures with the bottom nodes fixed to the 
ground are considered. When this condition is present, the rows of A corresponding to these nodes might be omitted 
from the matrix. In the same way, any column corresponding to a member consisting of two fixed nodes will also be 
removed from the matrix A. If n represents the total number of nodes of the structure, the number of free nodes will 
receive the name of nf; the coordinates of these nf nodes are arranged in the positions vector p (∈ ℝ3𝑛𝑛𝑓𝑓×1) as 
[𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛𝑓𝑓 𝑦𝑦1 ⋯ 𝑦𝑦𝑛𝑛𝑓𝑓 𝑧𝑧1 ⋯ 𝑧𝑧𝑛𝑛𝑓𝑓]𝑇𝑇. 

The self-balanced condition of tensegrity structures is reflected in the incompleteness of the rank rA of the 
equilibrium matrix A (Zhang and Ohsaki, 2007). The rank deficiency rD = rA - m ≥ 1, where m ≤ 3n, corresponds to the 
number of states of self-stress, or sets of force densities, that satisfy the equation (2). As explained in previous work of 
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the authors (González and Luo, 2018), the null space of the transpose of A contains the 3n-rA affine motions of the 
structure. These motions correspond to the 2×d rigid body motions (rotations and translations along X, Y and Z axes, 
and their combinations) and the vector of infinitesimal mechanisms v (∈ ℝ3𝑛𝑛𝑓𝑓×1) of the structure. This kind of 
mechanisms are sufficiently small nodal displacements that keep all member lengths unchanged (Zhang and Ohsaki, 
2015). 

The force densities of the members and the nodes of the structure can be related through the force density matrix 
D (∈ ℝ𝑛𝑛𝑓𝑓×𝑛𝑛𝑓𝑓) (Gómez Estrada et al., 2006) 

( )TdiagD C q C  (4) 

Connelly and Whiteley (1996) refer to this matrix as the reduced stress matrix; the expanded force density matrix 
DE ∈ ℝ3𝑛𝑛𝑓𝑓×3𝑛𝑛𝑓𝑓 will be given by 

3E  D I D  (5) 

As defined by Pellegrino and Calladine (1986), the kinematics of tensegrity structures are described by the relationship 
between the displacement d of the nodes and the resulting elongations e of some of the elements as 

T A d e  (6) 

It is evident that the coordinates of the free nodes in an actuated structure vary over time, it is then convenient to 
express p as a function of time t as p(t). By substituting d for p(t) in equation (6) and taking the derivative with respect 
to t, the expression becomes 

T A p  (7) 

where ṗ(t) (∈ ℝ3𝑛𝑛𝑓𝑓) is the vector of nodal velocities and δ (∈ ℝ3𝑛𝑛𝑓𝑓) is the vector containing the member lengthenings 
δm. For an infinitesimally displaced configuration, the matrix AT can be substituted by the matrix B, formed by the 
vectors 
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where wi represents the product forces vector of the structure (Pellegrino and Calladine, 1984) related to the vi 
infinitesimal mechanism, given by the expression 

i E iw D v  (9) 

For the case where only one state of self-stress is present, and only the lengthening of one member is defined, if 
equation (8) is input into equation (7), the simplest expression for the kinematic equation is stated as 
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 (10) 
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The solution to the system of differential equations brings the vector of nodal positions p(t) (∈ ℝ3𝑛𝑛𝑓𝑓) that forms a 
path along the rank deficiency manifold of the equilibrium matrix A. 

3 RECONFIGURATION ALGORITHM FOR TENSEGRITY STRUCTURES 

As explained in the previous section, not every configuration brings a stable tensegrity. If the length of just one of 
the members in a stable position is changed, a new location for the nodes must be calculated in order to obtain a new 
stable configuration for the structure. The reconfiguration method hereafter presented is based on the following 
assumptions: it is limited to tensegrity structures with only one state of self-stress and one affine motion, 
corresponding to the infinitesimal mechanism; the initial configuration must be a stable position. In this paper, the 
compressive elements are assumed to be rigid bars, and the actuation of the structure is carried out by changing the 
length of some of the cables only. 

3.1 Differential system of equations 

The main idea of the proposed method is that all the nodal distances must remain constant at any moment t, 
except those corresponding to the members that are being actuated; these conditions are represented by the rows of 
the equation (10). It is clear from this equation that the lengthening rate δi of only m-1 members can be defined in the 
vector δ. To assure their final configuration, it is required that all the members with constant length, or δi = 0, and the 
lengthening of one of the actuated members, are defined in these equations. The solution to the system of differential 
equations will bring a stable set of nodal coordinates that complies with these conditions and determines the 
lengthening of the non-defined members, that results in a stable configuration. 

For simplification purposes, the three-bar tensegrity unit in Figure 2 will be used as a reference; however, the 
equations can be extended to a multistage tensegrity without loss of generality. It will be assumed that the top cables 
4, 5 and 6 don’t change their length, while the actuated cables are the vertical cables 1, 2 and 3. The first step is to 
define which members will change their length, and the rate at which they will change. An arbitrary cable is chosen, 
and it is assigned a value of lengthening δi given by 

 2 2
, ,

1

2i i fin i int l l  
 (11) 

that is determined by the integration of the equation lil �i = δi (Micheletti and Williams, 2007); where li,fin and li,in refer to 
the initial and final length, respectively, of the chosen element. The next step is to setup the system of equations, 
composed of five different groups of equations corresponding to: the cables with independent lengthening, the cables 
with dependent lengthening, the cables that remain constant, the bars and the product forces. The first equation 
corresponds to the cable, called here cable 1, whose lengthening δ1 is independent 


1 1

Ta p   (12) 

while the cable whose final length is unknown will be the cable 2. 
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Figure 2: Three bars tensegrity unit. 
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The next equations of the system correspond to the cables whose change of length is dependent. This lengthening 
is called dependent because its value is unknown and depends on the solution of the differential equations. If it is 
known that the cables 1 (independent) and 2 (dependent) change their lengths in opposite way, the change rate of the 
other actuated cables can be described as proportional to any of these two as 

   0i ja a p    (13) 

where μ is an arbitrary proportional constant and ai is either 1 or 2, and aj is any j desired cable (j ≠ 1, 2). In the case of 
the unit shown in Figure 2, the change rate of cable 3 can be defined as proportional to 1 or 2, or to remain unchanged. 
If μ = 1, it is possible to assign the same lengthening rate to several cables, this can be useful for applications where 
symmetry is needed, such as the deployment of tensegrity masts. The next equations of the system correspond to the 
tensile members whose length is defined as constant 


 0T

ia p   (14) 

The following b equations correspond to the bars, whose elongation rate, as expected, is defined as zero 


 0

i

T
b

a p 
 (15) 

with i = 1, …, b. The final equation is obtained from solving the equation (9) using the information corresponding to the 
initial configuration of the structure. 

3.2 Implementation in MATLAB 

The solution to the system of differential equations that conform the reconfiguration method is obtained using 
the MATLAB function ode45, a tool that uses the Runge-Kutta method to solve nonstiff ODEs in the form of M(t, y) ẏ = 
f(t, y). If it is considered M as B and f as Δ, it is clear that the matrix B must be updated after every step, by calculating 
its components using the v and q for each new position p(t). Because δi is independent of p(t), Δ remains constant. 

The rank and null spaces of A and AT are obtained using the function SVD, it allows to compute the force density 
vector q and the infinitesimal mechanisms v. Because of the tolerance defined by the software, the MATLAB function 
rank considers these matrices as full rank in some cases, with no null space. For this reason, in this paper the SVD is 
used to inspect the singular values and determine an acceptable ratio between the two smallest singular values of 
1×10-6 or lower. The reconfiguration algorithm is resumed as the diagram shown in the Figure 3. 

Initial position
N, C

Calculate A, DE

Calculate q, v

Define actuated 
cables and δij

ode45 
(Runge-Kutta)

-Period [tin, tfin]
-Steps

p(t)

System of ODE

while t ≤ tfin

 
Figure 3: Reconfiguration method flowchart. 
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4 NUMERICAL EXAMPLES 

Numerical examples are presented for the reconfiguration of a two-stage tensegrity structure with three-bars per 
stage, using the software package MATLAB. Then, each of these examples is compared with an actuated two stage 
tensegrity mast built in the laboratory. Assuming the length of the top cables, saddle cables and bars as constant, the 
proposed algorithm is applied to reconfigure the tensegrity structure by changing the length of the vertical cables. The 
geometrical parameters are based on Tibert (2002) for a two-stage tensegrity structure with a bottom and top radius of 
75 mm, and a total height of 200 mm per stage; for these parameters, the vertical cables have an initial length of 200 
mm. 
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Figure 4: Motion of both stages in the same direction. (a) Initial position. (b) final position. Blue lines represent cables, red lines 

represent bars. 

Figure 4 presents a main schematic of the structure, where the assignment of the nodes and the orientation of the 
axes can be observed. The notation used for the members in this paper, and the connection between these elements is 
resumed in Table 1. 

Table 1: Notation and connectivity of the members of the structure. 

Cable 1 2 3 4 5 6 7 8 9 10 11 

Initial node 1 2 3 7 8 9 1 2 3 4 5 
Final node 6 4 5 11 12 10 7 8 9 11 12 

            

Cable 12 13 14 15 16 17 18 19 20 21  
Initial node 6 4 5 5 6 6 4 10 11 10  
Final node 10 8 8 9 9 7 7 11 12 12  

 

Bar 1 2 3 4 5 6 
Initial node 1 2 3 7 8 9 
Final node 4 5 6 10 11 12 

 
For the three examples here presented, the cable 1 is chosen as the one with an independent lengthening rate. 

Also, the cables 13 to 21 correspond to the ones with a fixed length, as described previously. 

4.1 Motion of both stages in the same direction 

The first example considers the case when both stages present motion in the same direction, by rotating around 
the Y-axis towards X-; this is achieved by lengthening the cables whose initial and final nodes are located in X+, and 
shortening the cables whose initial and final nodes are located in X-. By dividing the tensile members into three groups, 
a different length change rate can be assigned to each group. A lengthening rate of δ1 = 1.95×103 is assigned to the 
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cable 1 and the rest of the cables in group S1 = {1, 4, 6, 7, 9, 12}. The cables that will reduce their length, at an unknown 
rate, are grouped into S2 = {2, 3, 5, 8, 10, 11}; cables 9 and 10 are assigned to groups S1 and S2, respectively, by 
observation of Figure 4. The cables whose length remain constant are grouped into S3 = {13, 14, 15, 16, 17, 18, 19, 20, 
21}. 

The solution to this example is determined by the solution of the 27×27 system of equations 
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The parameters of the function ode45 in MATLAB are defined as an interval of 1 second and 10 steps; after this 
period, the ratio between the two smallest singular values is 1.89×10-9, that is lower than the tolerance defined for this 
experiment. Experimentally it was determined that longer intervals affect the convergence of the solution. 
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Figure 5: Motion of both stages in the same direction. (a) Initial position. (b) final position. Blue lines represent cables, red lines 

represent bars. 

Figure 5 shows the reconfiguration from the initial position (a) to the final position (b). It confirms that the cable 1, 
and the rest of members of the group S1, increased their length, while the members of S2 shortened; it is also noticed 
that there is no collision between elements. The coordinates given by the solution vector p(t) are used to calculate the 
changes of length of the actuated cables and to derive the corresponding rotations of the stepper motors for the 
reconfiguration of the tensegrity mast, as shown in Figure 6. 
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Figure 6: Test for motion in the same direction. The lines represent a 50×50 mm grid; the red dots point the location of the nodes. 

The evaluation of the force density vector for the final configuration confirms that all the members present forces 
with the correct sign, positive for tension and negative for compression. An inversion of a sign means that the 
corresponding member is under a wrong stress, and so the position is not obtainable. Figure 7 shows how the force in 
the different members changes for both positions. 

 
Figure 7: Axial forces of the members of the system. Orange bars correspond to initial position; blue, to the final position. Forces are 

normalized with respect to the maximum compression. 

4.2 Motion of both stages in different direction 

The case where both stages are assigned a motion with different direction is also evaluated. Specifically, it is 
considered the situation where one stage compensates the motion of the adjacent stage, to keep the top surface 
horizontal. This is done by rotating the bottom stage around Y-axis towards X-, while rotating the upper stage towards 
X+. As in the previous example, a lengthening rate of δ1 = 1.95×103 is assigned to the cable 1. The cables defined to 
lengthen are assigned to group S1 = {1, 5, 7, 9, 10, 11}, for the cables belonging to the lower stage located in X+, and the 
cables of the top stage located in X-. The cables that will reduce their length, at an unknown rate, are grouped into S2 = 
{2, 3, 4, 6, 8, 12}, corresponding to the remaining cables. The cables whose length remain constant are grouped into S3 
= {13, 14, 15, 16, 17, 18, 19, 20, 21}. The cables corresponding to this numbering can be observed from Table 1. The 
27×27 system of equations is given by 
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The solution parameters of the function ode45 are kept identical as the previous example, with an interval of 1 
second and 10 steps. This setup, and the desired δ bring a solution that presents a ratio between the two smallest 
singular values of 9.38×10-9, that is of the acceptable order of magnitude. Simulations with an interval of up to 2.5 
seconds converged to a solution, but the ratio between singular values was of the order of 10-1, making it 
unacceptable. 
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Figure 8: Motion of both stages in different direction. (a) Initial position. (b) final position. Blue lines represent cables, red lines 

represent bars. 

The Figure 8 confirms that the top plane of the structure remains horizontal, with just a small change in the overall 
height of the structure between the initial position (a) and the final position (b); however, the changes in length of the 
different cables are evident. When the data of the vector p(t) is applied to control the actuated tensegrity mast, the 
behavior of the system is analogous to the simulated graphic. Figure 9 shows how the top surface displaces from the 
original position (a) to the left (b) but continues in a horizontal position. 

 
Figure 9: Second experimental test; (a) initial position, (b) final position. The lines represent a 50×50 mm grid; the red dots point the 

location of the nodes. 
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It is important to notice the changes in the force distribution from Figure 10. While the tension in most of the 
cables decreased, the force in four of the members presents an increase of 194%. This value was of interest during the 
design process of the actuated system for the selection of the stepper motor and springs that compose it. The correct 
sign of the axial forces, and the absence of slack cables are also confirmed from this diagram. 

 
Figure 10: Axial forces of the members of the system. Orange bars correspond to initial position; blue, to the final position. Forces 

are normalized with respect to the maximum compression. 

4.3 Collapsing motion 

The symmetrical reconfiguration is also considered, as is the case of the deployment and collapsing motion. A 
lengthening of δ1 = 1.95×103 is assigned to the cable 1; the same value as the previous examples is assigned to allow a 
proper comparison between situations. Thanks to the symmetry of the original structure, the grouping of the cables is 
simple. The vertical cables of each stage, as seen in Figure 1b, are grouped into S1 = {1, 2, 3, 4, 5, 6} and defined to 
shorten at the same rate δ1, while the remaining cables are grouped into S2 = {7, 8, 9, 10, 11, 12} and will reduce their 
length, at a similar unknown rate. The cables whose length remain constant are grouped into S3 = {13, 14, 15, 16, 17, 
18, 19, 20, 21}. The 27×27 system of equations for the collapsing motion has the form 
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 (18) 

The values for the setup of the function ode45 are determined as the same values as before, an interval of 1 
second and 10 steps. For this configuration, the ratio between the two smallest singular values of is 8.77×10-9. The 
selected δ1 corresponds to a decrease in length of 35 mm, representing a 17.5%; during the simulations, it was found 
that the process can converge to a solution when the actuated vertical cables are shortened up to 20%. 
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Figure 11: Collapsing motion of a two-stage tensegrity structure. (a) Initial position. (b) final position. Blue lines represent cables, 

red lines represent bars. 

The collapsing symmetrical motion is clearly observed from Figure 11, where the structure reduced its height from 
300 mm (a) to 265 mm (b), by shortening the actuated cables 35 mm; this linear relationship is explained by the 
topological design of the current model. The experimental test also showed a smooth reconfiguration, from the top 
position, Figure 12a, to the desired compressed position, Figure 12b. 

 
Figure 12: Collapsing experimental test; (a) initial position, (b) final position. The lines represent a 50×50 mm grid; the red dots 

point the location of the nodes. 

Besides the correct sign of the axial forces, and the absence of slack cables in the final position of the 
reconfiguration, Figure 13 also brings two important results. First, the symmetry of the structure is maintained, 
confirmed by the fact that the different groups of members maintain the same force density values. At the same time, 
the forces in the members don’t present a significative change; however, the increase in the tension in the actuated 
cables represents a decisive factor for the selection of the stepper motor. 
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Figure 13: Axial forces of the members of the system. Orange bars correspond to initial position; blue, to the final position. Forces 

are normalized with respect to the maximum compression. 

5 CONCLUSIONS 

In this paper, a reconfiguration strategy for actuated multistage tensegrity structures has been presented. By 
using the force density method, the equilibrium and compatibility matrices are derived, and their vector spaces are 
obtained. The infinitesimal mechanism of the structure is then used for creating a kinematic expression composed of a 
system of differential equations. The solution to this system brings a set of stable positions over time that conform a 
reconfiguration path for the structure. 

Numerical examples are given to verify the reliability of the proposed reconfiguration method, and these are 
compared to experimental runs in an actuated tensegrity mast. It is proven that this method can effectively modify the 
shape of a two-stage tensegrity structure and achieve a new stable position by actuating some of its cables. The 
examples prove that different reconfiguration strategies can be adopted, by assigning different lengthening rates to the 
groups of cables. However, the simulations showed that the effectiveness of this method depends on the correct 
selection of two parameters: lengthening rate and time interval. It was determined that intervals of less than 1.5 
seconds produce acceptable results. 

The advantage of this reconfiguration method is its simplicity, that it is independent of the material of the 
structure, and that can be used for asymmetric motion. Further work should consider the application of this method to 
more complex tensegrity structures. 
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