A bending element for isotropic, multilayered and
piezoelectric plates

Abstract: In this paper, a new 12-node triangular element is developed for the analysis of
composite plates. Moreover, the stress-strain relations of laminated bending plates, along with
the characteristics of composite and piezoelectric materials have also been investigated.
Following this, a finite element formulation for smart composite bending plates is proposed. The
capability of the suggested element in analyzing both composite plates and smart ones is
studied via numerical examples. These analyses demonstrate that the proposed element is
capable of yielding accurate results for the given problems. In addition, it is also concluded that
in comparison to the elements developed by other researchers, this new formulation leads to

more pI'E‘CiSG outcomes.
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1. Introduction

Due to the prominent role of plates in civil, aerospace and mechanical structures, extensive
research has been conducted on their behavior and their analytical formulation during the last
decades. With the advancement of technology, new kinds of material have been introduced into
construction. For example, composite materials are now used in the production of multi-layered
bending plates.

The discovery of the piezoelectric effect goes back to the beginning of the nineteenth century.
However, piezoelectric materials were not practically used until the First World War.
Piezoelectric material comprises one of the main categories of smart materials which are
implemented in the construction of smart structures. Smart structures have the capability to
sense changes and adapt to them [1]. Piezoelectricity is an electro-mechanical phenomenon



which is exhibited in materials with certain chemical structures. These materials contain
particles that can acquire electric charges and have the characteristics of electrical polarization.
Two forms of piezoelectric behavior are defined for these materials; direct and converse. Direct
piezoelectricity is when mechanical straining of a material causes the formation of electric poles
in that material. While in converse piezoelectricity, the material will experience mechanical
strains when subjected to an electric field.

Structural members such as beams, plates, shells and laminated elements, which constitute
the active material, create a class of structures known as smart structures. Various definitions of
this kind of structures exist. By Newnham'’s description, smart structures are ones that
actuators and sensors, with the ability of sensing and taking corrective action, have been
implemented inside or on the surface of the structure [2]. The process of designing a
piezoelectric laminated plate, with a number of sensors and actuators distributed on its surface,
is developed by Lee [3]. Lee also obtained the interactive relations between a laminated plate
and the smart material. Experimental research has been carried out by Lazarus on smart
structures with plate elements subjected to strain excitations [4]. In 1991, a piezoelectric brick
element with three degrees of freedom was proposed by Tzou et al [5]. Ha et al. proposed an 8-
node hybrid brick element [6]. They investigated the response of laminated composite
structures composed of piezoelectric ceramics under mechanical and electrical loading. In 1993,
a 4-node flexural plate element with twelve electrical degrees of freedom was developed by
Park et al [7]. Detwiler used the finite element method to analyze laminated composite
structures with sensors and actuators distributed on their surface [8]. Wang et al. developed the
governing equilibrium equations of smart structures comprised of piezoelectric sensors and
actuators [9]. Based on classic analytical methods, they formulated a 4-node bending plate
element with a single electrical degree of freedom on each node.

Circular and rectangular shaped plates are commonly used in civil, mechanical and aerospace
engineering. Hence, these structural elements have been extensively studied during the last
decades [10-12]. Many articles have been presented on the elastic and elasto-plastic response of
these structures [13-15]. On the other hand, researchers have widely investigated the behavior
of composite structures [16-18]. An instance of these studies is the deformational analysis of
plates with reinforcement fibers [19-21]. Salehi and Sobhani presented a comprehensive range
of analytical results on small and large deformations of fiber-reinforced plates [22]. Moreover, a
vast amount of research has also been carried out on the analysis of banding plate using the
finite element method [23-25].

The construction of smart composite structures is expanding due to the articles published to
this day. Therefore, researchers are in need of new elements for their analyses. In this paper, a
12-node triangular element is developed for the analysis of composite plates. The authors state
the assumptions and explain the formulation in detail during the process and also elaborate on
the stress-strain relation of multi-layered structures. The characteristics of composite and
piezoelectric materials are given afterwards. Concluding this, the suggested finite element
formulation is presented for smart composite plate structures. In this process, Mindlin’s

first-order shear deformation theory is utilized. The proposed formulation is capable of



analyzing both thin and thick plates. Finally, the competence of this new element is examined
via numerical analyses.

2. Piezoelectric material equations

A laminated composite plate with integrated sensors and actuators is shown in Fig. 1.

A

// N
o A«\\\\\\W
- / / censor

Fig. 1: A laminated composite plate with integrated sensors and actuators
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It will be assumed that each layer of the plate a plane of elastic, symmetry parallel to the
X—Y plane. For the k —th layer’s, the direct and converse piezoelectric equations can be

expressed by the next formulas [26]:
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In the former equations, Qi i éi j and gi i are, respectively, the elements of the plane-stress

reduced stiffness matrix, the piezoelectric constants and the permittivity coefficients of the

k—th lamina in its material coordinate system. Whereby, oj, ¢j, Ej and Dj respectively

correspond to the stress, strain, electric field and electric displacements of the element in the

material coordinate system. The plane stress elastic constants, Qi joareas follows:
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Certain components of the stresses, strains and electric displacements in the plate

coordinates can be used to write the layered piezoelectric equations as below:
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These equations can also be rewritten in the following form:
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3. Finite element formulation
The triangular element of Fig. 2 will be used in the proceeding formulation. This element lies

in the X—Yy plane with the zaxis in the direction of its thickness. Using the Mindlin's

formulation, the displacements U, v, and W at a point (X, Y, Z) from the median surface can be

written as a function of mid plane displacements uo, \/0 and w and the independent rotations

0x and ¢9y inthe X—Z2 and Y — Z planes, respectively.



u(x, y,,t)=u0(x, y.t)+ 2oy (x, y,t),
V(% y,2,t)=vO0(x,y,t)+ gy (x, y.1)

w(x,y,z,t)=w(x,y,t)
(8)
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Fig. 2: 12-node triangular element and multi-layered plate

With the assumption of small deformations and the introduction of shear deformations, the

strain vector can be written the following form:

te}={em)+ zlep) )
In this equation, gy is the membrane strain, and ¢|y is bending strain, which can be obtained

by the following relations:
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It should be noted that for linear analysis, gy = an. In addition, the transverse shear strain

vector has the next form:
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In general, the electric field, {E}, can be assumed in the below shape:
T T
{E}={Ex Ey Ez} =—{¢X Py ¢z} (15)

The present triangular element has 12-node with 15 degrees of freedom and one electrical
degree of freedom per piezoelectric. It can be assumed that in an element, the electric potential
is constant over an element piezoelectric layer and has a linear variation in the direction of the
piezoelectric layer’s thickness. Therefore, the electric field of the piezoelectric sensor and

actuator layers is obtained as:

0 o
0 0
E}=[Bglo)= ]/;S g {Z;} (16)
0 0
| 0 Yt

In this equation, tg and tg are the thicknesses of the piezoelectric sensor and actuator layers,

respectively. Using standard discretization techniques in an element, the following relationships
can be obtained:
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Where {5e}j corresponding to the j—th node and N are the shape functions [27, 28]. The

membrane strains {g m}, bending strain {gb} and shear strain {gs} take the following form:

(lem{ent fest)= (Bml B0} [BS]{ 4}, (20)

The relations between the nodal deformations and the membrane bending and shear stresses

are established by the strain matrices [B m], [B b]and [B S]' respectively.



4. Potential energy equation

Based on material properties, the stress-strain relation for piezoelectric composite plates can
be written as:
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Here the piezoelectric sensor and actuator layers are considered as an additional layer of a
composite laminate. The second term of Eq. (2) corresponds to these piezoelectric layers. In this
equation, F is the membrane force vector in the mid-plane, M is the bending moment vector

and S is the transverse shear force vector.
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The relation between the forces and the membrane strains, {gm}, and the bending strains,

{gb}, are given as follows:
{F}:[Aijkgm}+[|3ij]{€b}—ftp[e]T {Ejoz (26)

{M}I[Bij]{é‘m}+[Dij]{8b}—ftpz[e]T {Ejdz (27)

In this equation, tp is the thickness of the piezoelectric layer. The matrices [AUJ [B |JJ and

lD 'JJ (i, j= 1,2,3) are extensional, bending extensional and bending stiffness coefficients for the

combination of layers, respectively. These matrices are defined next [29]:
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The transverse shear stress of the kK —th lamina can be written as follows:

tex oyl - [5ij]k{8s}k (29)



Thus, the shear force vector S, which appears in all the shear-strain related equations, takes the

following form:

1= r?//zz{rxz}dz—[Eu]{gs (30)

E ij (i, j= 4,5) are transverse shear stiffness coefficient, can be obtained by using the following

equation.
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In this equation, k,j and kaj are the shear correction factors. Based on the Reissner’s

variation method, one can assume k2 = k2 = 5/6 [30]. According to the variation principles,

the strain energy equation will take the following form:
V= %jA[{Sm}T [Aij]{em}+ {Sm}T [Bij]{eb}+ {Eb}T [Bij]{gm}+ {Sb}T [Dij]{eb}+ {es}T [E ij]{gs}}dA -
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where A is the area of the element, and V p denotes the volume of the piezoelectric layer in an

element. Substituting {g m}, {gb} and {g S} leads to the next relation:
V= é{ s} : IA|:[Bm]T [AijIBm]+ [Bm]T [BijIBb]+ [Bb]T [BijIBm]+ [Bb]T [DijIBb]+ [Bs]T [EijIBs]:|dA{ s} .
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(33)
It should be noted that [K uu] represents the element stiffness matrix and |_K U(pJ is the element

elastic-electric stiffness matrix.

5. Electrical potential equation

Using constitutive relations, strain displacement and electric-field electric-potential relations,

the element electrical energy can be written as follows:
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In this equation, ([K (DU]: [K U(P]Tj represents the elastic electric stiffness matrix and lK ¢¢J

is element electric stiffness matrix.

6. Work done by the external forces and the electrical charge

The virtual work has two components. One component is due to the surface loads and the
other component corresponds to the density of the electric charge. These components are

calculated by the following equations:
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where {f S} and {q} are the surface force intensity and surface electric charge density,

respectively. The areas where the surface loads and the electric charge are applied to are

denoted by s1 and sp respectively. Eq. (35) can be rewritten in the following form:

aws = {80} igInu]" 1t s {80} | ToBfalds = (a0} L {F s}, +{a0} ] {Fq}, 36)

In this equation, {F 5}e represents the mechanical surface load vector, while {F q}e denotes

the electrical charge in an element.

7. Kinetic energy equation

The element kinetic energy is calculated using the following equation:
T Z%IA{P(UOZJFVOZJFWZ}F I(9)2(+9'§,)}dA (37)

where N is the number of layers, P:ZE :1jm<1k_1pdz and | :ZE :1m|ﬁk_lzzpdz.Eq.

(37) can be rewritten in the following form:
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In this equation, [N] corresponds to the shape functions and [M uu] is the element mass matrix.



8. Equations of motion

Using Hamilton'’s principal, an element’s equation of motion can be written in the following

form:
[Muu]e{g}e+[Kuu]e{5}e+[Ku¢]e{¢}e:{FS}e (39)
[KW]e{g}e+[K¢§0]e{¢}e:{Fq}e (40)

n this equation, represents the element mass matrix, is the element stiffness
In this equat Muu]g rep ts the el t t Kuu], is the el t stiff

T
matrix, ([K (P“]e = [K (ou]e j is the element elastic electric stiffness matrix and [K (0¢l

denotes the element electric stiffness matrix [31]. The mechanical force vector and electric

charge vector for an element have been previously defined and are denoted by{FS}e and

{F q}e , respectively. Substituting Eq. (40) into (39) leads to:

[M uu]e{g} ot [[KUU]B‘[Kuw]e[wa]e—l[Kw]J{‘s} o {Fs}e - [Kuw]e[Kw]e_l{Fq}e (41)

Eq. (40) is utilized for the sensors when the external charge is equal to zero. Therefore, the

input voltage will be equal to:

{oste =K ool [kl o {6} (42)

Subscript s, denotes the sensor layer. The global equations of motion can be obtained by

assembling the elemental equations and is given in the following form:

(M uu]{5}+ lc uu]{5}+ [[K uul- [K U(D][K gogo]_l[K (puﬂ{5} ={Fs)- [K U¢]{(/’a} (43)

In the last equation, {goa} is the actuator voltage vector, and [C uu] represents Rayleigh’s

damping [32].
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9. Numerical examples

The capabilities of the proposed element, as well as its accuracy in analyzing various single-
layer bending plate is examined in this section. For this purpose, multiple problems with
different geometries, layers, boundary conditions and loads will be analyzed. The result of each
problem will be compared to the elastic solution as well as the results given in other researches.
The response of single-layer plates will be examined at first, followed by composite plates and
then smart composite plates. In these examples, unless stated otherwise, it is assumed that all

the layers of a composite plate have the same thickness.

9.1. Square plate with fixed supports

In the first benchmark problem, a square plate with fixed supports and linear behavior will

be considered (Fig. 3). The plate will be under a uniform load of (. The length of each side of the
plate isequal to L.
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Fig. 3: Square plate with fixed supports

Fig. 4 lllustrates the different finite element meshes utilized in the analyses.

2 elements 8 elements 18 elements

32 elements 50 elements 128 elements

Fig. 4: Finite element meshes of the square bending plate
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Due to symmetry, only a quarter of this structure will be analyzed. Thus, the boundary

conditions will take the following form:

Along the X and Y axes: @ =0 , @ =0 , w=0
0 oX
Along the X axis: ow =0
oy
Along the Y axis: w =0
OX

Using classic plate theory, the deflection of the plate’s center is calculated as [33]:

4
we =0.126x10™ 2%

In the above equation, ( represents the intensity of the uniform load, Lis the length of the

plate and D is the flexural stiffness of the plate. The deflection ratio of the plate obtained by
using the proposed element and elements developed by other researchers is given in Table 1. In
addition, the error of the center deflection obtained by each of these elements is calculated and
their convergence is shown in Fig. 5. In Fig. 5, the horizontal axis represents the number of
elements, while the vertical axis represents the error. Utilizing the same elements presented in

Table 1, the convergence of a similar plate under a concentrated load is illustrated in Fig. 6.

Table 1: deflection ratio for the center of the square plate with fixed supports and uniform loading

Number of elements

Element 2 8 18 32 50 128 Reference
Present study | 0.11307 | 0.11891 | 0.12266 | 0.12508 | 0.12542 | 0.12551

DST-BK 0.1369 | 0.13175 | 0.12939 | 0.12834 | 0.12723 | 0.12684 [34]
RT9 0.14271 | 0.1356 | 013186 | 0.12897 | 0.12755 | 0.12703 [35]
TUBA 0.14053 | 0.13274 | 0.12846 | 0.12764 | 0.12708 | 0.12629 [36]
Zhong 011143 | 011724 | 012189 | 0.1234 | 0.12392 | 0.12479 [37]
IR12 0.11472 | 0.12025 | 0.12304 | 0.12445 | 0.12497 | 0.12532 [38]
Exact 0.126 [39]
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Fig. 5: convergence of the square plate under a uniform load analyzed by different elements
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Fig. 6: convergence of the square plate under a concentrated loading analyzed by different elements




It is evident from Table 1 and Figs. (5) and (6) that the proposed element is capable of
resulting in fairly accurate results. However, in order to make a more comprehensive

assessment of the capabilities of the element, more complex problems should also be solved.

9.2. Inclined plate with fixed edges

A plate with a 300 inclination will be considered in this section. As illustrated in Fig. 7, this
structure is fixed along two sides the X axis and parallel to the X axis and is free along the
other two sides. The concentrated load P is applied at the center of the plate. Boundary

conditions corresponding to the fixed edges are as follows:
g ow
OX oy

Fig. 8 illustrates the different finite element meshes used for linear analysis of the inclined

w=0 ,

plate. The deflection of the plate’s center point is calculated by the following equation:

2
we = 0.759x10~ 1%

v
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\\\\\\\\\\\\T\{ =
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Fig. 7: inclined plate with fixed supports
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Fig. 8: Finite element mesh for the inclined plate
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Center point deflections are given in Table 2. The convergence of the deflection and the error

are shown in Fig. 9.

Table 2: deflection ratio for the center point of the inclined plate with fixed supports under concentrated
loading

Number of elements

Element 8 32 72 128 200 Reference

Presentstudy | 0.69714 | 0.70602 | 0.73441 | 0.74746

Sengupta 0.8315 | 0.8168 | 0.8166 [39]
Zhong 0.83915 | 0.81054 | 0.79095 | 0.77494 | 0.76545 [37]
Exact 0.759 [39]
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Fig. 9: convergence of the center point deflection for the inclined plate with supports under concentrated
loading

It should be mentioned that having an acute angle of 309 makes this plate one of the most

complicated structures in bending plate analysis. Many elements which converge to satisfactory
results in simple problems are incapable of providing reasonable results for the present
problem. However, the data given in Table 2 and Fig. 9 indicate that the proposed element has

15



effectively converged to the correct solution. This feature demonstrates the effectiveness of the
proposed formulation.

9.3. Circular bending plate

Fig. 10 illustrates the finite element mesh used for the analysis of the fixed circular plate. This
circular plate has a radius of aand is subjected to a uniform load (. Due to symmetry, only a
quarter of the circle will be considered in the analysis. A linear analysis will be carried out for
this structure. The center point deflection of the structure is calculated by the following

equation [33]:
4
We = 1.00228%

Fig. 10 illustrates the finite element meshes used in the analysis of this structure. The
obtained center point deflections are given in Table 3, while the convergence graphs of the

deflection are shown in Fig. 11.

9 elements 36 elements 64 elements

Fig. 10: Finite element meshes used for the analysis of the circular bending plate

Table 3: deflection ratio for the center point of the circular bending plate

Number of elements
Element 3 9 12 36 64 Reference
Present study 0.94234 | 0.97792 | 0.99095 | 0.99997
Roufaeil 1.07555 | 1.04418 | 1.0127 | 1.0111. 1.0091 [40]
Zhong 1.07765 | 1.0546 | 1.03846 [37]
AFSIQ 1.18394 | 1.11985 | 1.0557 | 1.03566 | 1.01561 [41]
Exact 1.00228 [42]
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Fig. 11: convergence of the center point deflection for circular bending plate

The results given in Table 3 and Fig. 11 demonstrate the ability of the proposed element in
solving this complicated benchmark problem. Fig. 11 illustrates the convergence of the center
point deflection. It should be added that in comparison to elements suggested by other
researchers, the proposed element leads to the least error. To this point, it can be deduced that

the proposed element is quite effective in analyzing single-layer bending plates.

9.4. 4-layer composite cross plate

In the proceeding text, a number of composite plates will be analyzed. All of these composite

El:ﬂ:25 %:%:0.5 and%:O-z-

plates will have the following properties: —=

E2 E3 E2 E3 E3
Poisson’s ratio is taken as V12:V12:V12:0-25 and the elastic modulus is set

to Ep = 6.89GPa =j|_06 psi. An 8x8 finite element mesh is used to analyze all plates. The

deflection and the stresses are calculated using the following values. The intensity of the
uniform load or the sinusoidal load is P(y and the plate length dimension is setto a.

100t2E 5 t2 t
m1=—4 , m2 = 2 ’ m3

Ppa Ppa Poa

In a square plate, the location of the critical values displacement as well as the normal and shear

stresses are as follows:

1. Coordinates of the critical transverse displacement (w): (0.5a,0.5a,0)
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2. Coordinates of the critical in-plane normal stress (o- X): (O.4718a,0.4718a,1/2t)

3. Coordinates of the critical in-plane normal stress (Gy): (0.4718a,0.4718a, top/bottom

surface)

4. Coordinates of the critical in-plane shear stress 7 yy : (0.0282a,0.0282a,1/2t)

5. Coordinates of the critical transverse shear stress 7y, : (0.05282,0.4472a,0)

6. Coordinates of the critical transverse shear stress 7y : (0.4472a,0.0528a,0)

The first numerical example constitutes a 4-layer laminated cross-ply composite plate with

simple supported. The arrangement of the layers is [00/900/900/00J with all layers having a

equally thickness of (ti :1/4t,i :1,...,4). In addition, a distributed sinusoidal load is applied

normal to the surface of the plate. The plate will we analyzed for two cases where a/t =10 and

a/t =100. The results of the analyses are given in Tables 4 and 5. The results depict that the

central displacement show rather quick convergence. In other words, finer meshes are needed

for the convergence of stress values.

Table 4: convergence of deflections and stresses in a simple supports 4-layer cross-ply (a/ t= 10)

Source Mesh Wy XMy | goxXmy | Sy XMy | T, X m. Ty X My Ty X 105
2x2 0.7295 0.5736 0.3182 0.02672 0.1983 0.0982
x4 0.7277 0.5698 0.3296 0.02755 0.2659 0.1029

Present study
6x6 0.7265 0.5632 0.3271 0.02726 0.3005 0.1198
8x8 0.7252 0.5593 0.3258 0.02693 0.3180 0.1247
3D elasticity [42] 0.7370 0.5590 0.4010 0.02750 0.3010 0.1960

Table 5: convergence of deflections and stresses in a simple supports 4-layer cross-ply (a/ t= 100)

Source Mesh Wy X my Oy 3 M. Oy X 1My Tey X My Tyy X Mg Tyy X MM
2x 2 0.4379 0.5438 0.2429 0.02015 0.1868 0.0918
4w 4 0.4364 0.5462 0.2472 0.02029 0.2031 0.1294
Present study
6x6 0.4351 0.5426 0.2453 0.02018 0.2217 0.1362
Bx8 0.4346 0.5355 0.2435 0.02005 0.2294 0.1418
3D elasticity [42] 0.4347 0.5390 0.2710 0.02140 0.3390 0.1390

18




The results of analyzing multi-layered composite plates with different length to height ratios,
demonstrates that the proposed element effectively converges to the 3-dimentional elastic
response of the structure [42].

9.5. Comparison between the proposed element and other elements

The effectiveness of the proposed formulation is investigated in this section. For this purpose,
a 4-layer composite plate with simple supports is considered. The layers of this plate have equal
thicknesses (ti =1/4t,i = 1,...,4) and are arranged as |_00/900/900/OOJ. The plate is analyzed

under the application of a distributed sinusoidal load and comparison will be made between the
results obtained by the proposed formulation and other methods. In addition, the acquired data
are also compared against the outcome of a 3-dimensional elastic analysis. Numerical results

are presented in Table 6.

Table 6: Deflection and stresses attained of a simply supported 4-layer cross-ply

Source alt | wyxm, | opxm, | GpXmy | 1o xm, | 1, xmy | Ty Xm
3D elasticity [42] 10 0.7370 0.5590 0.4010 0.02750 0.3010 0.1960
Present study 0.7252 0.5593 0.3258 0.02693 0.3180 0.1418
Higher-order theory [43] 0.7263 0.5591 0.3888 0.02723 0.3040 0.1531
First-order theory [43] 0.6628 0.4989 0.3615 0.02410 0.1667 0.1292
3D elasticity [42] 100 0.4347 0.5390 0.2710 0.02140 0.3390 0.1390
Present study 0.4346 0.5355 0.2435 0.02005 0.2294 0.1418
Higher-order theory [43] 0.4347 0.5387 0.2708 0.02130 0.2897 0.1317
First-order theory [43] 0.4337 0.5382 0.2705 0.02130 0.1780 0.1009
3D elasticity [42] 4 1.9368 0.7200 0.6630 0.04670 0.2190 0.2920
Present study 1.8729 0.6286 0.6005 0.0423 0.1926 0.2152
Higher-order theory [43] 1.8937 0.6651 0.6322 0.0440 0.2064 0.2389
First-order theory [43] 1.7100 0.4059 0.5765 0.03080 0.1398 0.1963

It is evident from the data given in Table 6 that for thin plates(a/t =100), the proposed
method yields results closer to the 3-dimensional elastic solution. Nevertheless, the values

obtained for thick plates (a/t = 4) are also considerably accurate.
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9.6. 8-layer square plate

A simple supported 8-layer unidirectional square laminate with length
a=30.48cm(12in) and thickness t=0.35cm(0.138in) subjected a uniformly load is

analyze.  Structural properties are: E1=3.0x 106 psi, Ep=1.28x 106 psi,

G12=G13=Gp3=37 ><105 psi and y12=0.32. The structure is analyzed using the

proposed element, the CPT element [44] which is suitable for thin plates and the 3-node
multi-layer triangular element by Argyris [45]. Fig. 12 shows the variation of center
point deflection against load intensity for all of the analyses as well as experimental
results [44].
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Fig. 12: Center point deflection of the simply supported 8-layer unidirectional square laminate

It is observed from Fig. 12 that the proposed element effectively traces the experimental
curve. This response indicates that the suggested formulation is quite capable of analyzing

multi-layer plates.

9.7. Smart composite cantilever plate

The 4-layer cantilevered laminated composite plate in Fig. 13 is analyzed in this section. The

layers of this 0.5mx 0.05m x 0.01m plate are made of T 300/976 graphite epoxy and each has a

thickness of 2.5mm. The arrangement of these layers is as |_00/900/900/OOJ. The top and

bottom of this structure are each covered with a 0.1mm thick piezoelectric layer PZTG1195N .

The effect of the cohesive layers will be neglected in the analysis.
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Fig. 13: 4-layer composite cantilever plate with PZT sensors and actuators

The structure is analyzed by using different elements and meshes and the displacement of the
free edge is evaluated. The error of the displacements obtained in these analyses is presented in
Fig 14.
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Fig 14: Displacement error (percent) in the free edge of the 4-layer smart cantilever plate
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The effectiveness of the purposed element in analyzing the 4-layer smart plate is evident

from Fig. 14. This figure also indicates the advantage of the proposed element over the QUAD4,
DST — BK, HOST and Tri elements.

10. Conclusion

A 12-node triangular element was formulated for the analysis of multi-layered bending
plates. The formulation was based on the Mindlin’s first-order shear deformation theory, and an
elastic piezoelectric behavior is considered for the material. The developed relations are
capable of effectively analyzing both thin and thick plates. Several benchmark problems were
analyzed using the proposed element. It was demonstrated via numerical analysis that this new
element can be utilized for the analysis of single- and multi-layered plates with and without a
piezoelectric layer. Moreover, the numerical results indicate that the suggested element is
capable of converging to the exact solution. In comparison to the results given by other

researchers, it was deduced that the authors' formulation leads to faster convergence.
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