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Abstract 
In this paper, a nonlinear H∞ state feedback control is designed for both orientation and altitude of a flying 
robot system in the presence of external disturbance. An analytical solution is proposed for Hamilton-
Jacobi-Isaac (HJI) equation. According to the quadrotor's orientation and altitude, a suitable storage 
function is considered and the appropriate robust control law is derived. The controller coefficients are 
tuned from Hamilton-Isaac-Jacobi inequality. The closed-loop nonlinear system with the proposed controller 
has L2–gain less than or equal to γ, and guarantee its asymptotic stability closed-loop nonlinear system with 
external disturbance. Simulations are provided with the model uncertainties and external disturbance to 
verify the robustness of the proposed controller. Simulation results confirm the effectiveness of the desired 
robust controller. 
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1 INTRODUCTION 

Flying robots have been become more and more important in the last few years. These kinds of robots are used in 
a variety of scopes, namely, film making, rescue mission, and crop spraying. Recently quadrotors have been attracted 
by researchers in different areas. Quadrotors have the ability of vertical landing and take-off and they are capable of 
hovering in the fixed location, which make them more efficient and safer to the fixed –wing aircrafts in usages (Min et al., 
2009). 

These kinds of flying robots are underactuated nonlinear systems and they are affected by external disturbances 
and parametric uncertainties. Therefore, they need robust controllers to attenuate the effect of external disturbance 
and overcome to parametric uncertainty. 

Different linear control strategies have been developed for a flying robots. For instance, PID controller and LQR in 
Bouabdallah et al. (2004) and Budiyono and Wibowo (2007), have been developed for flying robot, but they have 
limited to a special range of flight. A feedback linearization was designed for spacecraft attitude control with hardware-
in-the-loop simulations (Navabi et al. (2017), Navabi and Hosseini (2017)). In Bouabdallah (2005), two nonlinear control 
schemes developed for a quadrotor: sliding mode control and backstepping control. The model of quadrotor consists of 
two subsystems: the rotational dynamics and translational dynamics. These control strategies are used for rotational or 
translational dynamics. 

Linear H∞ controller has been developed for linearized model of quadrotor in some researchers. In Chen and 
Huzmezan (2003), a linear H∞ controller was used for stabilization of angular and vertical velocities. Then a similar 
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strategy was applied to the outer loop for yaw movement and altitude. In the last part, a predictive control was 
developed for tracking control. In Mokhtari and Benallegue (2006), a linear H∞ controller was designed for a desired 
trajectory following of a rotorcraft UAV involving model uncertainties and aerodynamics disturbances. For this 
purpose, a robust adaptive controller was developed by a Lyapunov-like energy function (Islam et al., 2015). A robust 
optimal adaptive trajectory tracking control was designed for a quadrotor helicopter (Navabi and Mirzaei, (2016), 
Navabi and Mirzaei, (2017)). A composite nonlinear robust controller scheme, variable structure control and 
backstepping approach has been developed for the position and yaw angle of a quadrotor (Chen et al., 2016). In Xu et al. 
(2017), a robust set-point tracking controller has been applied for a quadrotor aircraft involving uncertainties. 

Researchers have been developed many types of controllers on the quadrotor, however, most of the papers 
ignoring external disturbances and model uncertainties (Raffo et al., 2008). Nonlinear H∞ control has the ability of 
attenuating the influence of external disturbances and un-modeled dynamics. 

Nonlinear H∞ schemes successfully have been developed for many nonlinear systems. For instance, power 
converter (Kugi and Schlacher, 1999), rigid spacecraft (Kang,1995), robot manipulator (Chen et al.,1994), and chemical 
processes (Li and Zhang,1999). A nonlinear robust scheme using nonlinear H∞ was proposed for attitude stability of a 
flying robot and a backstepping control scheme was developed for path tracking (Guilheme et al., 2008). In (Jasim and 
Gu, 2014), a candidate storage function V(x) was considered for the rotational dynamics and developing a nonlinear H∞ 
scheme for the stability of the orientation of quadrotor. In Raffo et al. (2008), a composite control approach using 
backstepping technique and nonlinear H∞ were used to perform the robust tracking problem of a quadrotor. However, 
this scheme was able to provide robustness only in the rotational dynamics. 

In this paper, a nonlinear H∞ control scheme has been developed in the sense of L2 – gain for both orientation and 
altitude stabilizing of a flying robot. As far as our belief, the nonlinear H∞ control approach with an analytical solution 
of the HJI equation has not been introduced yet. The major contributions of the suggested controller in this paper are 
as follows: 

1. It is robust against parametric uncertainties in both altitude and orientation. Compared with the variable structure 
control which has the same property, but its switching logic cause the chattering phenomenon. 

2. Compared with the feedback linearization techniques which are effective in some specific cases, it guarantees the 
performance for a variety of operating conditions. 

The paper structured as follows. In the next section, a flying robot model is expressed based on Euler angles. The 
nonlinear H∞ controller of both orientation and altitude is developed in Section 3 along with mathematical proof of 
stability. The results of simulation are described in Section 4. At last, the paper is concluded in Section 5. 

2 MATHEMATICAL MODELING 

The quadrotor has four rotors in a cross configuration. The directions of rotation of diagonal rotors are clockwise 
while the directions of the other diagonal rotors are counter-clockwise to eliminate gyroscopic effects. This quadrotors 
controlled by the rotors' speed to produce the desired lift force. Any increase or decrease of four rotors' speed will vary 
the lift force and create the vertical motion of the system. Different speed in diagonal rotors causes yaw angle. 
Different speed in diagonal rotors along y-axis causes roll angle and different speed in diagonal rotors along x-axis 
causes pitch angle. 

The mathematical modeling of a quadrotor has been described by many researches such as Castillo et al. (2004a), 
Czyba and Szafranski (2013), and Fernando et al. (2013). The origin of the body frame (the moving frame) of the flying 
robot is attached to the centroid of the flying robot (See Figure 1). 



Nonlinear H∞ control scheme for a flying robot Vahid Razmavar et al. 

Latin American Journal of Solids and Structures, 2019, 16(4), e181 3/17 

 
Figure 1: Flying robot coordinates 

With the three components of Euler angles in the form [ ]Tη φ θ ψ= , the orientation of the quadrotor is 

obtained. The pitch and roll angles are restricted by
2 2
π π − 

 
, while the yaw angle is restricted by ( )π π− . The 

position of flying robot in the reference frame is shown by [ ]Tx y zξ = . We will consider the following 

assumptions: 
1) The flying robot has a rigid and symmetric structure. 
2) Neglecting air force because of low speed of the air. 
3) The flying robot has rigid propellers. 
The vector ξ measures the position of the flying robot in the moving frame. To transform ξ to the reference frame, 

the standard aeronautical matrix R is used: 

R( )

c c c s s c s c c s s s

c s s s s c c c s s c s

s c s c c

           
            

    

   
    
   

 

where .c  and .s  stand for ( )cos .  and ( )sin . , respectively. 

The kinematics for translational subsystem can be obtained as: 

 I BV R V  (1) 

where IV and BV are the centroid translational velocities in the reference frame and the moving frame, respectively. 

According to the relationship between ( )R η and its derivatives (Olfati-Saber, 2001), the rotational kinematics is given 

by: 
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where 
T

x y zω ω ω ω =   represents the three components of rotational velocity respect to moving frame and tθ

is stand for ( )tan θ . The thrust and moment generated by each propeller is described by: 

 2
i if bω=  

2 , 1, 2,3, 4i id iτ ω= =  

where iω is the angular speed of ith motor, b is the positive thrust constant, and d is the positive drag constant. The 
moments created by the motors along the three body axes, xB, yB, and zB, can be written as 

   2 2
1 4 2 4 2( ) ( )u l f f bl ω ω= − = −  

 2 2
2 3 4 3 1( ) ( )u l f f bl ω ω= − = −  

3 2 4 1 3u τ τ τ τ= + − −  

2 2 2 2
2 4 1 3( )d ω ω ω ω= + − −  

 4 1 2 3 4u f f f f= + + +  

where l is the distance from the motor to the center of mass.  
The dynamical model, ignoring aerodynamics effects and gyroscopic moments is given by (Castillo et al., 2004b): 

( )
( )

( )

1 1 1

1
3

r

t

T
J s J J u J d

ge m R u

η η ω
ω ω ω

ξ ν
ν η

− − −

−

 =
 = − + +
 =
 = −









  (3) 

where 

[ ] [ ] [ ] [ ]3 1 2 3 40 0 1 , , 0 0 , , ,
TT T T T

r t x y ze u u u u u u v x y zν ν ν ξ = = = = =   

[ ] ( ),
0

0
0

z y
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y x
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ω ω

ω ω ω
ω ω

 −
 = −
− 

= 


and J is the inertia matrix given by 

0 0
0 0
0 0

x

y

z

I
J I

I

 
 =  
  

, d is the 

disturbance input vector and [ ]r tu u u= . 

By defining [ ]Tx η ω ξ ν= , equation (3) is expressed via the following form: 
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( ) ( ) ( )1 2x f x g x u g x d= + +   (4) 

where 

( )

( )
( ) ( )

( )

( )

3 3 3 3
1 11

1 2
3 3 3 3

1
3 33 1

0 0

, ,
0 0

00
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     −     = =
     
     

    

  

3 THE PROPOSED CONTROL STRUCTURE FOR THE FLYING ROBOT 

3.1 Nonlinear H∞ control theory 

Nonlinear H∞ scheme provides a method for driving robust controllers for nonlinear dynamics with external 
disturbances and parametric uncertainties. The formulation of nonlinear H∞ control is derived from the dissipativity 
concept. Dissipativity indicates the way energy is stored and dissipated in a nonlinear system around on equilibrium 
point. 

In spite of fully development of the nonlinear H∞ control theory, the HJI equation has not any general analytical 
solution and usually difficult to solve for a special nonlinear system. So, this is the major problem for practical 
applications. 

Consider nonlinear affine system with external disturbance in the form (Isidori and Astolfi (1992), Van der Schaft 
(1992), Bianchini et al. (2004)): 

 
( ) ( ) ( )
( ) ( )

1 2

T

x f x g x g x d

z h x u x

= + +

 =  



  (5) 

where nx R∈ and mu R∈ are the state vector and the control input respectively, while d is the external disturbance 

and qz R∈ is the regulated output and ( )h x is state weighting function and 1 2, , ,f g g h are approximately 

dimensioned smooth function of states with ( ) ( )0 0, 0 0f h= = . 

The goal of sub-optimal H∞ problem is to obtain a 1C controller, ( )u x which can satisfy the following inequality: 

[ ]

2 22

0 0

2

( (0))

0 , 0

T T

z dt d dt V x

d L T T

γ≤ +

∀ ∈ ∀ >

∫ ∫   (6) 

where 1γ >  and a nonnegative storage function, ( )V x should be constructed which ( )0x shows the initial states. 

The following Lemma helps us to design the ( )u x . 

Lemma 3.1 (Van der Schaft, 2017). Define the following HJI partial differential inequality 

( ) ( ) ( ) ( ) ( )
1 2

2 2

2
1 1 1 0
2 2 2

TT T
v f g gH L V x L V x L V x h x h x

γ
= − + + <   (7) 

where 1 2, , ,iL i f g g= represent the Lie derivatives. 
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If a 1C storage function with ( )0 0V = , ( ) 0, 0V x x> ≠ exists which satisfies (7), then we have an L2-gain <γ for 

the closed-loop system. 

Moreover, when (5) is zero-state detectable, its asymptotic stability is satisfied and ( )u x  

is obtained by: 

( ) ( ) ( )1
T

Xu x g x V x= −   (8) 

to satisfy the L2-gain.  

It is obvious that finding of the storage function ( )V x is the hardest stage of this control approach. 

In summary, for the system was described in (4), we want to find a controller such that satisfying 

2

2

z
d

γ≤  

where γ is a positive scalar. 

3.2 Controller design 

The nonlinear H∞ control tries to keep both orientation and altitude of the quadrotor aligned with the reference 
frame involving external disturbance and parametric uncertainty. Hence the cost function is defined as follows: 

( ) ( ) T
z h x u x =     (9) 

Which contains two parts: the first part pertaining to the attitude and altitude control performance, and the other 

part is the amount of control input. The ( )h x is considered as the following form: 

( ) ( ) ( )( ) ( ) ( )
1
22 31 2 ,

2 2 2
Taa ah x T N R Iω η ν ξ ν ξ = + + + + 

 
  (10) 

where the first part of (10) shows the amount of rotational kinetic energy, the second part shows that how two frames 
are far from each other and the third part is a measure of linear momentum and potential energy. 

( )( ),N R Iη is the geodesic metric on ( )3SO  (Samson, 1991): 

( )( )
( )( )1

1
, 2cos

2

Tr R
N R I

η
η −

 + =
 
 

  (11) 

where ( )R η is the rotation matrix given in Section 2. The third part is a combination of translational kinetic energy and 

linear momentum and potential energy. It can be seen that ( ) 0h x = yields 0x = which guarantees the coincidence 

of the reference frame and the body frame. 
Let us define (Kang, 1995): 

( ) ( )( )3Q Tr Rη η= −   (12) 
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and 

( )
( )

( )
( )

1
s s c s c c

Y s c c s s
c s s s c c

ψ θ φ φ ψ θ
η θ ψ φ ψ φ

ψ θ φ ψ φ θ

 − +
 = − + − 
 − + 

  (13) 

Moreover: 

( ) 1
2

TT v mv v=   (14) 

( ) 1
2

TK ξ ξ ξ=   (15) 

Where ( )Q η  represents the distance between the rotation matrix and identity matrix in a different appearance, ( )Y η
is a vector that will be used in H∞ feedback. 

Lemma 3.2 (AliAbbasi et al., 2002). We have the following relations: 

6TY Y Q≤   (16) 

TQ Y Y≤   (17) 

 ( )( )2 , 4 TN R I Y Yη ≤   (18) 

Lemma 3.3. Consider (5), the following equation hold: 

( ) ( ) 0fa L T ω =  

( ) ( )
1

T
gb L T ω ω=  

( ) ( )
2

T
gc L T ω ω=  

( ) ( ) 0fd L T v =  

( ) ( )
1

T
ge L v v R=  

( ) ( )
2

T
gf L T v v R=  

( ) ( ) T
fg L Q Yη ω= −  

( ) ( )
1

0gh L Q η =  
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( ) ( )
2

T
gi L Q v Rη =  

( ) ( ) ( ) ( )T T T
f

Yj L JY Y s J J Tω ω ω ω η ω
ψ θ φ
∂

= +
∂ ∂ ∂

 

( ) ( )1

T T
gk L JY Yω =  

( ) ( )2

T
gl L JYω  

( ) ( ) T
fm L K vξ ξ=  

( ) ( )
1

0gn L K ξ =  

( ) ( )
2

0go L K ξ =  

( ) ( )T T
fp L mv mv vξ  

( ) ( )1

1
2

T T
gq L mv Rξ ξ=  

( ) ( )2
0T

gr L mv ξ =  

( ) ( ) 4Ys T η
ψ θ φ
∂

≤
∂ ∂ ∂

 

( ) ( )3,t Y s ω ω= =  

where ω  and v are rotational and translational velocities in the moving frame respectively, m and J are the mass 
and the inertia matrix of the flying robot respectively and R is the rotation matrix which defined in the second section. 
The lemma can be proved by direct calculations and omitted for the sake of brevity. 

As it pointed out in the previous subsection, the construction of ( )V x is a crucial step in the nonlinear H∞ control 

approach. Because HJI equation is a nonlinear first order PDE which has not a general solution. To this end, the 
candidate storage function is considered as follows: 

( ) 1 2 3 4 5 6
1 1 1 1
2 2 2 2

T T T T T TV x a J a mv v aY Y a a JY a mvω ω ξ ξ ω ξ= + + + − −   (19) 

The following relation can be found: 

( ) 1 2 3 4 5 6
1 1 1 1
2 2 2 2

T T T T T TV x a J a mv v aY Y a a JY a mvω ω ξ ξ ω ξ≥ + + + − −  

Hence, the storage function can be written as: 
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3 5

5 3

4 6

6 2

0 0
0 01

0 02
0 0

T T T T

a I a J Y
a J a J

Y v
a I a mI
a mI a mI v

ω
ω ξ

ξ

   
   
         −
   −   

 (20) 

The conditions for positive definiteness of (20) can be easily written as: 

 2
1 3 5a a I a J>   (21) 

 2
2 4 6a a a m>   (22) 

where I is an ( )3 3× identity matrix. 

Now, we have to show that the candidate storage function satisfies the HJI inequality (7): 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 2

2 2

2

2
3 5 5 1 52

2 31 2
1 2

1 1 1
2 2 2

1 13 1
2

,
2 2 2

TT T
v f g g

T T T

T

H L V x L V x L V x h x h x

YaY aY s J a J T a aY

aa aT N R I m v v A A

γ

ω ω ω ω η ω ω
ψ θ φ γ

ω ξ ξ

= − + + =

  ∂
− − − + − −  ∂ ∂ ∂   
 + + + + + = + 
 

  (23) 

where 

( ) ( )

( ) ( )

1 3 5 5

21 2
1 52

3

1 1 1 ,
2 2 2

T T T YA aY aY s J a J T

a aT a aY N R I

ω ω ω ω η ω
ψ θ φ

ω ω
γ

 ∂
= − − − ∂ ∂ ∂ 

 
+ + − − + 

 

 

and 

22 22 6
2 4 3 6 22 2

2 23 3

1 1 1
2 2

2 2

T T T TaA a v a m v a m v a R v R
m

a am v m

ξ ξ ξ
γ

ξ

 
= + − + − − 

 

+ +

 

Now, by choosing 

2 1
3 2

11
3

a aa
γ

 
= − 

 
  (24) 

The condition for non-positiveness of 1A  are: 
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2
5

22
1 1 2 0

2
a a

γ
 

− + < 
 

  (25) 

For 2A  to be non-positive, the following relations should be hold: 

4 3 0a a m+ =   (26) 

3 0a <   (27) 

Hence, to make vH non-positiveness, the inequalities (24), (25), (26), and (27) should be hold. Now, according to 
lemma 3.1 and employing (8) the control law can be obtained as: 

 
( ) ( ) ( )

3

1 51 1
1 3 3 3 3

4 6

2 6

1
1 5 2 6

0 0T
x

aY
a J a JY

u x g x V x J m R
a a mv
a mv a

a aY a Rv a m R

ω
ξ

ξ

ω ξ

− −
× ×

−

− 
 −  = − = −    +
 + 

= + + +

  (28) 

where R , ξ and v are defined in the second section and Y is defined in (13). Control input, ( )u x is considered as: 

( ) [ ]Tr tu x u u=  

where ru and tu are defined in the second section. Hence, the control inputs for [ ]1 2 3
T

ru u u u= are given by: 

( )( )
( )( )

( )( )

1 1 5

2 1 5

3 1 5

1
x

y

z

u a a s c c s c c

u a a s c c s s

u a a c s s s s c

ω ψ θ φ φ ψ θ

ω θ ψ φ ψ φ

ω ψ θ φ ψ φ θ

= − + − +

= − + − + −

= − + − +

  (29) 

and 4u  in [ ]40 0 T
tu u= is given by: 

( )( ) ( )( ) ( )( )1 1 1
4 6 6 6x y zu c c s s s v a m x c s s s s v a m y c c v a m zφ ψ θ φ ψ φ θ ψ ψ φ θ φ− − − = − + + + − + + +    (30) 

4 SIMULATION RESULTS 

Through computer simulation with model uncertainties and external disturbances, we demonstrate that the 
proposed approach is effective. The closed-loop system (4) and (28) was simulated using MATLAB. The numerical 
values for the parameters of flying robot are used for simulation are adopted from (Raffo et al., 2010): 

20.74 , 9.81 mm kg g
s

= =  
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2

0.004 0 0
0 0.004 0 .
0 0 0.004

J kg m
 
 =  
  

 

The initial conditions of flying robot are: 

[ ]0 0.25 0.25 0.25 T radη =  

[ ] 1
0 10.8982 1.6821 0.1 .T rad sη −= −  

[ ]0 0 0.5 0.5 T mξ =  

[ ] 1
0 0 0 0 .T m sξ −=  

The proposed controller gains have been tuned with the following parameters: 

 1 2 5 62, 2.1708, 1, 20, 0.74a a a aγ = = = = =  

The following moment disturbances were used: 

 ( )1 0.005 0.005sin(0.024 ) 0.01sin(1.32 )d t t tπ π= + +  .N m   (31) 

 ( )2 0.01 0.01sin(0.024 ) 0.05sin(1.32 )d t t tπ π= + + .N m   (32) 

The proposed controller was tested for different disturbances consist of the model uncertainties (mass and 
moment of inertia) and moment disturbances. The simulation for PID controller obtained in (Comert and Kasnakoglu 
(2017)) was also tested for comparative study. Figure 2 shows the performance of Euler angles (orientation) and 
altitude using nonlinear H∞ controller with that of nonlinear H∞ controller under action of the designed control law 
compared with ±40% model parameter uncertainties and the moment disturbances are shown in (31) and (32). The 
performance of angular velocities under the use of nonlinear H∞ controller and nonlinear H∞ controller with the 
effect of disturbances and model parameter uncertainties is shown in Figure 3. 

 The result of simulation using PID controller and PID controller with ±40% model parameter uncertainties and the 
moment disturbances are depicted in Figure 4. Figure 5 shows the angular velocities performance using PID controller 
and PID controller with the effect of disturbances and parameter uncertainties. 

It can be seen that the proposed controller can reject disturbances and cover the changes in parameters 
uncertainties and remains asymptotically stable, while the PID controller cannot reject the disturbances and has a big 
noise. 
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Figure 2: Orientation and altitude, nonlinear H∞ controller. 
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The comparisons between Figure 3 and Figure 5 illustrates that the angular performance using the proposed 
controller achieves the stability conditions faster than that of using PID controller. 

In general, with nonlinear H∞ controller obtained a good result compared with that of the PID controller in terms 
of time-consuming, disturbance rejection and model parameter uncertainties change cover. 

 
Figure 3: Angular velocities, nonlinear H∞ controller 
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Figure 4: Orientation and altitude, PID controller. 
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Figure 5: Angular velocities, PID controller 

5 CONCLUSIONS 

In the present study, a nonlinear H∞ approach is applied for both orientation and altitude stabilization problem in 
the presence of disturbance. An analytical solution of HJI inequality was presented for a quadrotor. By considering a 

candidate storage function, ( )V x for both orientation and altitude dynamics and using L2-gain analysis, the nonlinear 
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H∞ control scheme was obtained and applied. Finally, the proposed controller has been evaluated by simulation results 
to show the stabilization of orientation and altitude, in the presence of the moment of inertia uncertainty and external 
disturbances. 
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