
10(2013) 349 – 390	
  

Abstract 
This paper presents effects of boundary conditions and axial loading 
on frequency characteristics of rotating laminated conical shells with 
meridional and circumferential stiffeners, i.e., stringers and rings, 
using Generalized Differential Quadrature Method (GDQM). Hamil-
ton’s principle is applied when the stiffeners are treated as discrete 
elements. The conical shells are stiffened at uniform intervals and it 
is assumed that the stiffeners have similar material and geometric 
properties. Equations of motion as well as equations of the boundary 
condition are transformed into a set of algebraic equations by apply-
ing the GDQM. Obtained results discuss the effects of parameters 
such as rotating velocities, depth to width ratios of the stiffeners, 
number of stiffeners, cone angles, and boundary conditions on natural 
frequency of the shell. The results will then be compared with those 
of other published works particularly with a non-stiffened conical 
shell and a special case where angle of the stiffened conical shell 
approaches zero, i.e. a stiffened cylindrical shell. In addition, another 
comparison is made with present FE method for a non-rotating stiff-
ened conical shell. These comparisons confirm reliability of the pre-
sent work as a measure to approximate solutions to the problem of 
rotating stiffened conical shells. 
 
Keywords 
Rotating laminated conical shells, Stringer/ring stiffener, Natural 
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1 INTRODUCTION 

Circular and conical shell structures are widely being used in many branches of engineering. Vi-
bration of these structures has been also extensively studied [1-3]. Meanwhile, rotating cylindrical 
and conical shells were studied by many researchers.  
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Nomenclature 
    
Aij extensional stiffness Ns(or r) number of stringers (or rings) 

As(or r) 
cross sectional area of stringers (or 
rings) Qij reduced stiffness matrix 

A* defined by Eq. (51) ijQ  transformed reduced stiffness 
matrix 

a minor radius of conical shell R defined by Eq. (39) 

Bij coupling stiffness rx 
radius at any coordinate 
point x , θ, z  

B* defined by Eq. (51) r
r  displacement vector 

b major radius of conical shell Sij stiffness matrix 
bs(or r) width of stiffener Tij transformation matrix 
Cij

s weighting coefficients (Eq. (30)) T kinetic energy 
Dij bending stiffness T* defined by Eq. (39) 
ds(or r) depth of stiffener t time 
E modulus of Young’s elasticity U strain energy 
e middle surface strain U** defined by Eq. (40) 

Gij gyroscope matrix of shell u, v, w displacement of shell in x, θ 
and z directions 

h thickness of shell U, V, W unknown functions in x, y and z 
directions (Eq. (36)) 

Gs(or r) 
shear modulus of stringers (or 
rings) us, vs, ws 

displacement of stiffeners in x, 
θ and z directions 

I identity matrix   


V  velocity vector 

Js(or r) polar moment of stiffener z distance of a point in stiffener 
from shell middle surface 

Kij equivalent stiffness matrix  α cone angle 
L length of shell β orientation of fibers 
Lij differential operator (Eq. (28)) κ middle surface curvatures 
Mij mass matrix of shell ν Poisson’s ratio 

Mx resultant moment in x direction εsx 
strain of stringers in meridional 
direction 

N number of grid points εrθ 
strain of rings in  
circumferential direction 

n circumferential wave number ρ mass density 
Nl number of layers  ω natural frequency in rad/s 
Nθ initial hoop tension Π energy functional 
Na

x axial load   
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They include works by Lam et al. on rotating composites and sandwich-type cylindrical shells [4-
5], a comparison study on different thin shell theories in addition to a discussion on the effect of 
boundary conditions on rotating cylindrical shells [6-7]. Chen et al. used a nine nodes curvilinear 
super-parametric finite element to solve problems of vibrations in shells rotating at high speeds 
about their longitudinal axis [8]. A combined theoretical and experimental study on resonant fre-
quencies and associated mode shapes of truncated conical shells over a wide range of geometrical 
and modal parameters was carried out by Lindholm and Hu [9]. Lam and Hua analyzed the free 
vibration of rotating circular conical shell with simply-supported boundary conditions based on 
Love's first approximation theory [10]. The effect of boundary conditions on free vibration of con-
ical shells, considering the Ritz method, has been studied by Lim and Liew [11]. 
 Although the rotating stiffened conical shell is increasingly being used in many industries, 
most studies were restricted to the vibration analysis of cylindrical shell. Zhao et al. presented the 
free vibration analysis of simply supported rotating cross-ply laminated cylindrical shells with 
axial and circumferential stiffeners, using an energy approach [12]. The effects of these stiffeners 
were evaluated via two methods: stiffeners treated as discrete elements; and stiffeners with prop-
erties being averaged over the shell surface by smearing method. Jafari and Bagheri investigated 
the free vibration analysis of simply supported rotating cylindrical shells with circumferential 
stiffeners, namely rings with non-uniform eccentricity of stiffeners, and non-uniform spacing dis-
tribution of stiffeners [13]. 
 In Spite of the widespread use of stiffened conical shells as a base structures of many industrial 
processes such as water crafts, drive shafts of gas turbines, high-speed centrifugal separators, mo-
tors and rotor systems, a few researches are found on this field [14-22]. Besides, these few re-
searches just focus on non-rotating conical shells and the stiffeners have been modeled using 
smearing method except the work directed by Talebitooti et al. [22]. They assessed natural fre-
quency of rotating stiffened conical shell in which the stiffeners are modeled by discrete elements. 
Crenwelge and Muster analyzed conical shells with stringers and rings using an equivalent ortho-
tropic shell model, and compared the frequencies with experimental results [14]. Rao and Reddy 
studied the optimum design of stiffened conical shells with natural frequency constraint with the 
aid of averaging method [15]. Langley developed a dynamic stiffness technique to investigate the 
stiffened shell structures [16]. This method is based on a singly curved orthogonally stiffened shell 
element having a constant radius of curvature which is simply supported along the curved edges. 
The stiffeners are taken to be smeared over surface of the element. “Branched shell approach” has 
been employed by Raj et al. to examine the effects of rings on the vibration of conical shells con-
sidering both theoretical and experimental methods [17]. Mecitoğlu concentrated on the free vi-
brations of conical shells with orthogonal stiffeners through the orthotropic material approach 
[18]. More recently, Goldfeld [19], and Jabareen and Sheinman [20] studied the elastic buckling of 
stiffened conical shells. Farkas et al. analyzed the optimum design of a ring-stiffened conical shell 
loaded by external pressure with buckling load constraint [21]. 
All the previous studies used to only deal with stiffened rotating cylindrical shells, rotating non-
stiffened conical shells or non-rotating stiffened conical shells while the effects of stiffeners in con-
ical shells were evaluated by an averaging method. Dynamic analysis of rotating stiffened conical 
shells is rather complex and the common methods used for cylindrical shells are unable to solve 
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these problems. The Generalized Differential Quadrature Method (GDQM) is an efficient numeri-
cal technique which is based on the Differential Quadrature (DQ) method. The mathematical 
fundamentals and recent developments of the GDQ method as well as its major applications in 
engineering are discussed in detail by Shu [23]. It is worthwhile to note that the increasing inter-
est of researches [24–31] in this procedure is mainly due to its great simplicity and versatility.  
 In this paper, the governing equations of motion are a set of partial differential equations with 
variable coefficients. These fundamental equations are expressed in terms of kinematic parameters 
and can be extracted by applying Hamilton’s principle to the energy function while stiffeners are 
treated as discrete element. Referring to the formulation for equations of motion and the terms of 
mid-surface displacements and rotations, the system of second-order linear partial differential 
equations will be transformed to a set of ordinary differential equations. With the aid of GDQM, 
governing equations of dynamic equilibrium are transformed to a set of linear algebraic equations. 
Having imposed the given boundary conditions, numerical eigenvalue equation for the free vibra-
tion of the rotating composite conical shell is derived and then solved. Based on the eigensolution, 
results are obtained to discuss the effect of boundary conditions on the frequency characteristics. 
Variations of frequency parameter with circumferential wave number are also considered for dif-
ferent rotating velocities. Moreover, it is investigated how the number of stiffeners affects the 
frequency characteristics. Comparing the results in special cases with those available in the litera-
ture and also from FE results, the accuracy of the present analysis will be confirmed. 
 

 

2 PROBLEM FORMULATION 

2.1 Geometr ical conf igurat ion 

The stiffened conical shell, as shown in Fig. 1, is considered to be thin, laminated and composed 
of an arbitrary number of layers. In this figure,  α  is the cone angle,  L  is the length, h is the 
thickness,  a  and  b  are the radii at two ends, and  Ω  is the constant angular velocity of conical 
shell about its symmetrical and horizontal axis.  
Reference surface of the conical shell is taken to be at its middle surface where an orthogonal co-
ordinate system 

    
x,θ,z( )  is fixed, and 

  
rx = rx x( )  is a radius at any co-ordinate point 

    
x,θ,z( ) . 

Displacement of the shell in  x ,  θ  and  z  directions are denoted by u , v  and w , respectively. 
Depth and width of the stiffeners are symbolized by 

  
ds or  r( )  and 

  
bs or  r( ) , respectively and the ring 

intervals are denoted by s. Subscripts 
   
s,r( )  indicate the stringer and ring stiffeners, respectively. 

Displacements from the middle surface of shell to any point located on the stiffeners are ad-
dressed by  z . 
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Figure 1   Geometry of stiffened rotating conical shell structure 
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2.2. Strain energies of shel l  

The strain energy of the laminated composite conical shell is expressed as: 
 

    
Uε =

1
2

εT S⎡⎣
⎤
⎦ εrx dθdx

0

2π

∫
0

L

∫  (01) 

 
where 

    
rx x( ) = a + x sinα  and the strain vector ( ε ) can be written as: 

 

    
εT = e1 e2 e12 κ1 κ2 κ12{ }  (02) 

 
where symbols   e1 ,   e2  and   e12  are middle surface strains and symbols   κ1 ,   κ2  and   κ12  are middle 
surface curvatures (the subscripts 1 and 2 denote fiber direction and orthogonal direction, respec-
tively). Geometric relations of deformation for the reference surface of the conical shell can be 
written as [10]: 
 

   
e1 =

∂u
∂x

, 
    
e2 =

1
rx

∂v
∂θ

+
u sinα+ w cosα

rx
, 
    
e12 =

1
rx

∂u
∂θ

+
∂v
∂x
−

v sinα
rx

 

    
κ1 = −

∂2w

∂x 2
, 

    
κ2 = −

1

rx
2

∂2w

∂θ2
+

cosα
rx

2

∂v
∂θ
−

sinα
rx

∂w
∂x

 

    
κ12 = 2 −

1
rx

∂2w
∂x ∂θ

+
sinα
rx

2

∂w
∂θ

+
cosα
rx

∂v
∂x
−

v sinαcosα
rx

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 

 

(03) 

 
 It is assumed that the displacements are continuous functions of the thickness coordinate, 
which results in continuous transverse strains. 
Meanwhile, stiffness matrix 

  
S⎡⎣
⎤
⎦  for a cross-ply laminated shell is given by: 

 

   

S⎡⎣
⎤
⎦ =

A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26

A61 A62 A66 B61 B62 B66

B11 B12 B16 D11 D12 D16

B21 B22 B26 D 21 D 22 D26

B61 B62 B66 D61 D62 D 66

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (04) 

 
where 

   
A = [Aij ] ,    

B = [Bij ]  and 
   
D = [Dij ]     

i, j = 1,2,6( )  are extensional, coupling and bending 

stiffness matrices, respectively. For an arbitrary laminated composite shell, they can be rewritten 
as: 
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Aij = Qij
k(hk − hk+1

k=1

Nl

∑ )

Bij =
1
2

Qij
k(hk

2 − hk+1
2

k=1

Nl

∑ )

Dij =
1
3

Qij
k(hk

3 − hk+1
3

k=1

Nl

∑ )

 (05) 

 
where  Nl  is the total number of layers in the laminated composite conical shell. Parameters  hk  

and 
   
hk+1  denote distance from the shell reference surface to the outer and inner surface of  kth  

layer as shown in Fig. 2. 
 

 
Qij

k is the element of transformed reduced stiffness matrix for the thk  layer and it is defined as: 

 

   Q
k = T−1QkT  (06) 

 
where 

  
T⎡⎣
⎤
⎦ is transformation matrix of the principal material coordinate and the shell coordinates 

system, and is defined as [3]: 
 

    

T⎡⎣
⎤
⎦ =

cos2 β sin2 β 2cosβ sinβ

sin2 β cos2 β −2cosβ sinβ

−cosβ sinβ cosβ sinβ cos2 β − sin2 β

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
 (07) 

 
where  β  is orientation of the fibers and 

  
Q⎡⎣
⎤
⎦ is reduced stiffness matrix defined as: 

 

   

Q⎡⎣
⎤
⎦ =

Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
 (07) 

 
 Moreover, material constants in the reduced stiffness matrix 

  
Q⎡⎣
⎤
⎦  are defined as: 

 

    

Q11 =
E11

1− υ12υ21
, Q12 = Q21 =

υ12E22

1− υ12υ21
,

Q22 =
E22

1− υ12υ21
, Q66 = G12

 (09) 

 
where   E11  and   E22  are the elastic moduli,   G12  is the shear modulus, and   υ12  and   υ21  are the 
Poisson’s ratios.  
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Figure 2   Cross-sectional view of the laminated conical shell 

 
 It should be noted that the work is carried out on the shell due to centrifugal force generated 
by rotation. The work done on the shell can be written as [22]: 
 

    

Uh =
1
2

Nθ
v cosα

rx
−

1
rx

∂w
∂θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

+
1
rx

∂v
∂θ

+
w cosα

rx

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

2π

∫
0

L

∫ rxdxdθ  (10) 

 
where Nq  is the initial hoop stress due to centrifugal force which is given by: 
 

    
Nθ = ρhΩ2rx

2 x( )  (11) 
 
  Besides, the work done on the shell due to axial forced is described as:  
 

    
UNa

= Na
x 1

2
∂w
∂x

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2

r(x,z)dx dθ
0

L

∫
0

2π

∫  (12) 

 
where  Na

x  is the axial load on edge of shell in x direction. The effect of   Na
θ  and  Na

z  are null for 
both simply supported and clamped boundary conditions [32]. 
 
2.3 Kinetic energy of the shel l  

Kinetic energy of the rotating conical shell is expressed as: 
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Tsh =

1
2
ρh


V .


V rx dx dθ
0

L

∫
0

2π

∫  (13) 

 
where   


V  is the velocity vector at any point of the shell given by: 

 

     


V =

r + Ωcosα

i −Ω sinα


k( )× r  (14) 

 
 Here, 

 
⋅( )  presents differentiation with respect to time. 

 In Eq. (14) the displacement vector is written as: 
 

   

r = u


i + v


j + w


k  (15) 

 
where   


i ,   

j  and   


k  respectively denote the unit vectors in  x ,  θ  and  z directions for nonrotating 

frame. 
 Having substituted Eqs. (14) and (15) into Eq. (13), the kinetic energy expression of the shell 
can be expanded in the form below: 
 

     

Tsh =
1
2
ρh

u2 + v2 + w2⎡
⎣⎢

⎤
⎦⎥ + Ω

2 v2 + w cosα+ u sinα( )2⎡
⎣
⎢

⎤
⎦
⎥

+2Ω sinα vu − uv⎡
⎣

⎤
⎦ + 2Ωcosα vw − wv⎡

⎣
⎤
⎦

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

rx dx dθ
0

L

∫
0

2π

∫  (16) 

 
2.4 Stif fener energies 

The stiffener-to-shell joints are the significant technology issues, either adhesively bonded or me-
chanically fastened to the shell or more recently fabricated without fasteners by co-curing the 
stringers and co-bonding the rings. In all of the abovementioned technologies the shell and the 
stiffener have same displacements. Therefore, the stiffeners (rings and stringers) are assumed to 
be an integral part of the shell. Meanwhile, when stiffeners of equal strength are closely and even-
ly spaced, the stiffened shell can be modeled as an equivalent orthotropic shell (smearing meth-
od). However, as the stiffener spacing increases or the wavelength of vibration becomes smaller 
than the stiffener spacing, determination of dynamic characteristics for the stiffened shell cannot 
be accurate anymore. Thus, a more general model needs the stiffeners to be treated as discrete 
elements. When modeled in this respect, it is advantageous to use non-uniform eccentricity, une-
qually spaced and different materials for stiffener stiffeners. In order to maintain displacement 
compatibility between the stiffeners and the stiffened shell, a special transformation is used which 
includes coupling effects due to eccentric placement of the stiffener. It should be also noted that 
the displacements vary through depth of the stiffeners. Therefore, displacement of a point at dis-
tance z  from the shell middle surface can be explained by shell displacement function [15]: 
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us or r( ) = u − z

∂w
∂x

, vs or r( ) = v −
z
rx

∂w
∂θ

, ws or r( ) = w −
z
rx

∂v
∂θ

 (17) 

 
 The strain of stringers in the meridional direction and the strain of rings in the circumferential 
direction are respectively defined as: 
 

    
εsx =

∂u
∂x
− z
∂2w

∂x 2
 (18) 

 

    
εrθ =

1
rx

∂v
∂θ
−

z
rx

∂2w

∂θ2
+ u sinα− z sinα

∂w
∂x

+ w cosα−
z cosα

rx

∂v
∂θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 (19) 

 
 Using discrete stiffener theory, the strain energy for the stringer can be written as [22]: 
 

    

Us =
1
2

Esk εsx
2 dAsk dx

Ask

∫
0

L

∫
k=1

Ns

∑

+
1
2

GskJsk
1

rxk
2

∂2ws

∂x ∂θ
−

2sinα
rxk

2

∂w
∂θ
−

cosα
rxk

∂v
∂x

+
2sinαcosα

rxk
2

v
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

dx
0

L

∫
k=1

Ns

∑

 (20) 

 
where  GskJsk  and  Ask  are torsional stiffness and cross sectional area of the  kth  stringer, respec-

tively, with  Ns  being the number of stringers. 
 The strain energy of the ring can be written as [22]: 
 

    

Ur =
1
2

Erk εrθ
2 dArkrxk dθ +

1
2

Ark

∫
0

2π

∫
k=1

Nr

∑ GrkJrk
1

rxk
2

∂2ws

∂θ∂x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

2⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥0

2π

∫ rxkdθ
k=1

Nr

∑  (21) 

 
where  GrkJrk  and  Ark  are torsional stiffness and cross sectional area of the  kth  ring, respectively, 
while Nr  is the number of rings. 
 The kinetic energy for stringers and rings may be written as: 
 

     

Ts =
1
2
ρsk

us
2 + vs

2 + ws
2 + Ω2vs

2

+2Ω sinα vsus − usvs( )
+2Ωcosα vsws − wsvs( )
+Ω2 ws cosα+ us sinα( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ask

∫
0

L

∫
k=1

Ns

∑  dAskdx  (22) 
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Tr =
1
2
ρrk

ur
2 + vr

2 + wr
2 + Ω2vr

2

+2Ω sinα vrur − urvr( )
+2Ωcosα vrwr − wrvr( )
+Ω2 wr cosα+ ur sinα( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ark

∫
0

2π

∫
k=1

Nr

∑  rxkdArkdθ  (23) 

 
where 

   
ρs(or r)k  is density of the  kth  stringer (or ring). 

 In the case of stringers, the hoop stress created due to centrifugal force is negligible. However, 
the work done on the ring by this hoop stress can be calculated in a similar way to that of the 
shell itself. Therefore, the work expressions for the stringer and ring would be: 
 

   Ush = 0  (24) 
 

    

Urh =
1
2

Nθ

vr cosα
rx

−
1
rx

∂wr

∂θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

+
1
rx

∂vr

∂θ
+

wr cosα
rx

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ark

∫
0

2π

∫
k=1

Nr

∑  rxkdArkdθ  (25) 

 
2.5. Governing Equations of motion 

The governing differential equations of motion can be derived using Hamilton’s principle: 
 

    

δΠ( )
t1

t2

∫  dt = 0  (26) 

 
where   δΠ  is variation of the energy functional and t denotes the time. The energy functional of a 
stiffened rotating conical shell can thus be written as: 
 

   
Π = T +Tr +Ts −Uh −Uε −Us −Ur −Urh −UNa

 (27) 
 
 Substituting Eqs. (1), (10), (12), (16), (20-23) and (25) into Eq. (27), followed by applying 
Hamilton’s principle to the energy function yields the matrix relationship below: 
 

   

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

u
v
w

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

= 0  (28) 

 

where the coefficients 
   
Lij  i, j = 1, 2, 3( )  are differential operators of  u v w{ }T

. 



     M. Talebitooti et al. / Dynamic Analysis and Critical Speed of Rotating Laminated Conical Shells with Orthogonal Stiffeners	
  

 
Latin American Journal of Solids and Structures 10(2013) 349 – 390 

360 

2.6 Assumed-mode method and GDQM solut ion of the governing equations 

The GDQM is based on a simple mathematical concept that any sufficiently smooth function in a 

domain can be expressed approximately as an 
   
N −1( )th  order polynomial in the overall domain. 

In other words, at a discrete mesh point in a domain, the derivative of a sufficiently smooth func-
tion with respect to a coordinate direction can be approximated by taking a weighted linear sum 
of the functional values at all discrete mesh points in coordinate direction. Thus the partial deriv-
atives of a function    f (xi,θi) as an example, at a point ( , )i ix q are expressed as [23]: 
 

    

∂ s f x,θ( )
∂xs

x=xi

= Cij
s

j=1

N

∑ f xi,θj( ) , i = 1,2,...,N .  (29) 

 
where  N  is the number of grid points and f  can be taken as either u, v or w; and parameters of 

 
Cij

s  are respective weighting coefficients related to the  sth order derivatives which are obtained as 

follows: 
 If    s = 1 , namely for the first order derivative, then: 
 

   

Cij
1 =

M (1) xi( )
xi − xj( )M (1) xj( )

for i ≠ j and i, j = 1,2,...N  (30) 

 
 and: 
 

   

Cii
1 = − Cij

1 for
j=1 j≠i( )

N

∑ i = 1,2,...,N  (31) 

 
 where 

   
M (1) x( )  is the first derivative of 

  
M x( )  and can be defined as: 

 

   

M x( ) = x − xj( )
j=1

N

∏ M (1) xk( ) = xk − xj( )
j=1 j≠k( )

N

∏  (32) 

 
 If    s > 1 , namely for second and higher order derivatives, the weighting coefficients are ob-
tained using the following simple recurrence relationship: 
 

   

Cij
s = r Cij

1 ⋅Cii
s−1 −

Cij
s−1

xi − xj

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
for i ≠ j and i, j = 1,2,...,N ;

s = 2,3,...,N −1

 (33) 
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and: 
 

   

Cii
s = − Cij

s

j=1 j≠i( )

N

∑ for i = 1,2,...,N  (34) 

 
 Since the coordinate distribution and the number of discrete grid points can be arbitrarily 
chosen in the implementation of GDQM, following distributions of the grid points toward meridi-
onal x  direction will be used in this formulation: 
 

   
xi =

i −1
N −1

L , i = 1,2,...,N  (35) 

 
 It is noteworthy that the grid points should be distributed in such a way that one grid point is 
provided in every ring location.    
 Vibration modes of the laminated circular conical shell are characterized by  n , the number of 
circumferential waves and the natural frequency,  ω . A general expression for displacement field 
is assumed to have the form of a product with unknown continuous smooth functions in the me-
ridional direction and trigonometric function along the circumferential direction, that is to say 
[27]: 
 

    

u x,θ,t( ) =U x( )cos nθ + ω t( )
v x,θ,t( ) =V x( )sin nθ + ω t( )
w x,θ,t( ) =W x( )cos nθ + ω t( )

 (36) 

 
 By substituting the displacement field (36) into the set of partial differential governing equa-
tions (28) in temporal-spatial domain, a set of ordinary differential equations with variable coeffi-
cients toward meridional  x  direction is produced as: 
 

0=* *UΤ  (37) 

 
where 

    
U*T = U x( ) ,V x( ) ,W x( ){ }  is an unknown spatial function vector of mode shape which 

describes the distribution of vibrational amplitude in meridional x  direction, while 

   
T * = Tij

*⎡
⎣⎢
⎤
⎦⎥ , i, j = 1,2,3( )  is a   3×3 differential operator matrix of  U*  and is defined as: 

 

    

T * =

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
ω2 +

G11 G12 G13

G21 G22 G23

G31 G32 G33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
ω +

K11 K12 K13

K21 K22 K23

K31 K32 K33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
 (38) 
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where coefficients of 
  
Mi,j , Gi,j  and 

   
Ki,j  i, j = 1, 2, 3, 4, 5( )  are given in detail in Appendix A. 

 With imposing Eq. (29) on Eq. (37) and rearrangement of the Eq. (37) with respect to the 
order of derivative, the approximate governing equations in the form of linear discrete algebraic 
equations are obtained as follows: 
 

    
T * U*

x=xi

= R5X15 U15X1
**

x=xi

= 0 i = 1,2,3,...,N( )  (39) 

 
where N  is the number of total discrete grid points in meridional x  direction and **U  is given 
by: 
 

    

U**T
x=xi

= {U xi( ),U (1) xi( ),U (2) xi( ),U (3) xi( ),U (4) xi( ),

V xi( ),V (1) xi( ),V (2) xi( ),V (3) xi( ),V (4) xi( ),
W xi( ),W (1) xi( ),W (2) xi( ),W (3) xi( ),W (4) xi( )}

 (40) 

 
where: 
 

   

U (s) xi( ) = Cij
sU xj( )

j=1

N

∑ ,

V (s) xi( ) = Cij
sV xj( )

j=1

N

∑ ,

W (s) xi( ) = Cij
sW xj( ),

j=1

N

∑ s = 1,2,3, 4( )

 (41) 

 
 Thus, the whole system of differential equation has been discretized and the the following set 
of linear algebraic equations will be produced from general combination of these equations: 
 

    
M⎡⎣
⎤
⎦ ω

2{ } d{ } + G⎡⎣
⎤
⎦ ω{ } d{ } + Kdd

⎡
⎣

⎤
⎦ d{ } + Kdb

⎡
⎣
⎤
⎦ b{ } = 0  (42) 

 
 In the above equations, vectors { }d and { }b  with dimensions 3 8N -­‐  and 8 , denote the 

unknowns at the sampling points within interior domain and those on the boundary, respectively 
and can be written as: 
 

{ } ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

2 3 2 1

2 3 2 1

3 4 3 2

, ,..., , ,
, ,..., , ,

, ,..., ,

T
N N

N N
T

N N

d U x U x U x U x
V x V x V x V x

W x W x W x W x

-­‐ -­‐

-­‐ -­‐

-­‐ -­‐

=
 (43) 
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b{ }T
= U x1( ),V x1( ),W x1( ),W x2( ),{

              U xN( ),V xN( ),W xN−1( ),W xN( )}T
 (44) 

 
 The dimensions of 

  
M⎡⎣
⎤
⎦ ,   Kdd
⎡
⎣

⎤
⎦  and 

  
G⎡⎣
⎤
⎦  are 

   
3N − 8( )× 3N − 8( )  and dimension of 

  
Kdb
⎡
⎣
⎤
⎦  is 

   
3N − 8( )×8 . 

 Similarly, discretized form of the boundary conditions becomes: 
 

   
Kbd
⎡
⎣
⎤
⎦ d{ } + Kbb

⎡
⎣
⎤
⎦ b{ } = 0   (45) 

 
 The dimension of 

  
Kbd
⎡
⎣
⎤
⎦  is    8× 3N − 8( )  and dimension of 

  
Kbb
⎡
⎣
⎤
⎦  is   8×8 . 

 In current application of GDQM, five boundary conditions are considered for rotating conical 
shells, namely: 
 
a) Clamped at both edges (Cs-Cl): 
 

   
u = 0, v = 0, w = 0,

∂w
∂x

= 0 at x = 0 and L  (46) 

 
b) Simply supported at both edges (Ss-Sl): 
 

   v = 0, w = 0, Nx = 0, Mx = 0 at x = 0 and L  (47) 
 
c) Simply supported at small edge - clamped at large edge (Ss-Cl): 
 

   

v = 0, w = 0, Nx = 0, Mx = 0 at x = 0

u = 0, v = 0, w = 0,
∂w
∂x

= 0 at x = L
 (48) 

 
d) Clamped at small edge - simply supported at large edge (Cs-Sl): 
 

   

u = 0, v = 0, w = 0,
∂w
∂x

= 0 at x = 0

v = 0, w = 0, Nx = 0, Mx = 0 at x = L
 (49) 

 
e) Free at both edges (Fs-Fl): 
 

    Nx = 0, Nxθ =, Mx = 0, Mxθ = 0 at x = 0 and L  (50) 
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 Using Eq. (45) to eliminate boundary degrees of freedom { }b  from Eq. (44), it can be con-

cluded that: 
 
 

    
M⎡⎣
⎤
⎦ ω

2{ } d{ } + G⎡⎣
⎤
⎦ ω{ } d{ } + Kdd

⎡
⎣

⎤
⎦ − Kdb
⎡
⎣
⎤
⎦ Kbb
⎡
⎣
⎤
⎦
−1

Kbd
⎡
⎣
⎤
⎦{ } d{ } = 0  (51) 

 
 
 Eq. (51) is a non-standard eigenvalue equation. For a given frequency, it can be equivalently 
transformed into a standard form of eigenvalue equation as [27]: 
 
 

     

0 I
−K −G

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A*
  

− I 0
0 M

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B*
  

ω

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

d
ωd

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

= 0      (52) 

 
 
where I is a 

   
3N − 8( )× 3N − 8( )  identity matrix. 

 Using a conventional eigenvalue approach, the standard eigenvalue equation (52) can be 
solved, and 

   
6N −16( )  eigenvalues are obtained. From these eigenvalues, the two eigenvalues are 

chosen for which the absolute of real values are the smallest. One of these eigenvalues is negative 
and corresponds to backward wave, and the other one is positive and corresponds to forward 
wave. In the case of a stationary conical shell, these two eigenvalues are identical and the vibra-
tion of the conical shell is a standing wave motion. 
 
 
3 NUMERICAL RESULTS 

In the presentation of results shown by figures, the backward and forward waves are presented as 
a solid line and a dashed line, respectively, with the unit of rotating speed W being in rps (revo-
lutions per second). In addition, five boundary conditions are considered here for the rotating 
conical shell. These boundary conditions include fully clamped (Cs-Cl), fully simply supported 
(Ss-Sl), fully unsupported (Fs-Fl), simply supported at small edge - clamped at large edge (Ss-Cl), 
and clamped at small edge - simply supported at large edge (Cs-Sl). Material properties of the 
shells used in this study are given in Table 1. In addition, unless otherwise stated, geometrical 
dimensions and material properties of the stiffeners used in the present study are given in Table 
2. 
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Table 1   Mechanical properties of the material 
 

 
Modulus of Elasticity 

(GPa) 
Poisson's Ratio 

Modulus of Rigidity 
(GPa) 

Density 
(kg/m3) 

Isotropic E=7.6 υ=0.3 G=2.9 ρ=1643 

Orthotropic 
E22=7.6 

E11=2.5 E22 
υ12=0.26 G12=4.1 ρ=1643 

 
Table 2   Geometrical parameters and material properties of the stiffeners used in this study 

 
Ring Stringer Stiffener Type 

8 8 Depth (mm) 
2 2 Width (mm) 

3.0E11 3.0E11 E (N/m2) 
0.3 0.3 υ 

1643 1643 3( / )kg mr  

 
 The GDQM is especially suitable for considering global characteristics such as free vibration or 
buckling analyses. Numerical accuracy of the GDQM, with excellent weighting characteristics, is 
highly reliable, and its implementation is both simple and efficient. To show versatility and effi-
ciency of the present analysis, three comparisons are made with the available results in the exist-
ing literature. The initial comparisons are made with Refs. [33-34] for a non-rotating conical shell 
with Ss-Sl boundary condition and also the one with Cs-Cl boundary condition by taking Ω=0 
into the present formulations as shown in Table 3 and Table 4, respectively.  
 

Table 3   Comparison of frequency parameter 
    
f = ωb 1− υ2( )ρ / E  for a non-rotating isotropic conical shell with Ss-Sl 

boundary condition (m=1, υ=0.3, h/b=0.01, Lsinα/b=0.25) 
 

α=45o  α=30o  
Present 
(ABAQUS) 

Present 
(GDQM) 

LAM 
[34] 

Irie 
[33] 

 Present 
(ABAQUS) 

Present 
(GDQM) 

LAM 
[34] 

Irie 
[33] 

n 

0.6874 0.7639 0.7655 0.6879  0.7907 0.8405 0.8420 0.7910 2 
0.6965 0.7204 0.7212 0.6973  0.7280 0.7374 0.7376 0.7248 3 
0.6652 0.6738 0.6739 0.6664  0.6345 0.6367 0.6362 0.6352 4 
0.6286 0.6327 0.6323 0.6304  0.5519 0.5535 0.5528 0.5531 5 
0.6007 0.6041 0.6035 0.6032  0.4932 0.4955 0.4950 0.4949 6 
0.5884 0.5926 0.5921 0.5918  0.4630 0.4663 0.4661 0.4653 7 
0.5948 0.6003 0.6001 0.5992  0.4614 0.4656 0.4660 0.4654 8 
0.6203 0.6272 0.6273 0.6257  0.4855 0.4907 0.4916 0.4892 9 
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Table 4   Comparison of frequency parameter ( )21 /f b Ew u r= -­‐  for a non-rotating isotropic conical shell with Cs-Cl 

boundary condition (m=1, υ=0.3, h/b=0.01, Lsinα/b=0.5) 
 

 α=60o   α=45o  
Present 
(ABAQUS) 

Present 
(GDQM) 

LAM 
[34] 

Irie 
[33] 

 Present 
(ABAQUS) 

Present 
(GDQM) 

LAM 
[34] 

Irie 
[33] 

n 

0.6312 0.6324 0.6449 0.6316  0.8117 0.8128 0.8452 0.8120 1 
0.5520 0.5535 0.5568 0.5523  0.6693 0.6713 0.6803 0.6696 2 
0.4780 0.4798 0.4818 0.4785  0.5425 0.5449 0.5553 0.5430 3 
0.4290 0.4308 0.4361 0.4298  0.4561 0.4588 0.4778 0.4570 4 
0.4082 0.4098 0.4202 0.4093  0.4093 0.4108 0.4395 0.4095 5 
0.4144 0.4113 ─ ─  0.3954 0.3959 ─ ─ 6 
0.4447 0.4385 ─ ─  0.4131 0.4054 ─ ─ 7 
0.4949 0.4834 ─ ─  0.4553 0.4442 ─ ─ 8 
0.5611 0.5496 ─ ─  0.5157 0.5033 ─ ─ 9 

 
  
The secondary comparisons are listed in Tables 5-6 in order to verify the natural frequencies us-
ing GDQ and FE techniques for non-rotating stiffened isotropic conical shell of fully clamped and 
simply supported boundary conditions, respectively. Stiffened shell is modeled with the aid of 
commercial FEM software ABAQUS, in which elements of S8R and C3D20R types are used to 
model the shell and stiffeners, respectively.  
 
 

Table 5   Comparison of frequency for a non-rotating stiffened isotropic conical shell with Cs-Cl boundary condition (m=1, υ=0.3, 
h=2mm, L=1m, a=0.5m, α=20o) 

 

Nr=4, Ns=6  Nr=0, Ns=6  Nr=5, Ns=0  
Present 
(ABAQUS) 

Present 
(GDQM) 

 Present 
(ABAQUS) 

Present 
(GDQM) 

 Present 
(ABAQUS) 

Present 
(GDQM) 

n 

340.72 339.89  337.15 338.53  355.71 357.22 1 
245.13 246.00  248.14 248.90  245.50 246.71 2 
177.20 176.17  179.82 178.26  176.69 177.73 3 
133.12 133.46  134.53 134.71  133.24 134.10 4 
105.13 105.05  104.83 105.03  105.31 105.86 5 
87.764 86.55  84.449 84.391  88.412 88.317 6 
79.515 77.58  71.541 71.834  80.668 79.483 7 
78.712 75.31  64.074 64.354  80.655 78.166 8 
83.660 78.51  61.195 61.4068  86.295 82.785 9 
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Table 6   Comparison of frequency for a non-rotating stiffened isotropic conical shell with Ss-Sl boundary condition (m=1, υ=0.3, 

h=2mm, L=1m, a=0.5m, α=20o) 
 

Nr=4, Ns=6  Nr=0, Ns=6  Nr=5, Ns=0  
Present 
(ABAQUS) 

Present 
(GDQM) 

 Present 
(ABAQUS) 

Present 
(GDQM) 

 Present 
(ABAQUS) 

Present 
(GDQM) 

n 

231.75 234.39  236.02 237.52  232.33 234.98 2 
149.01 150.57  151.59 152.66  148.56 151.89 3 
99.751 102.25  101.07 103.32  99.618 102.71 4 
72.429 74.309  71.681 73.844  72.498 74.94 5 
59.587 59.902  54.856 56.535  60.240 61.42 6 
57.689 56.446  46.504 48.299  59.097 58.54 7 
63.096 60.002  44.378 45.944  65.204 63.13 8 
72.336 67.588  47.207 47.856  74.750 71.92 9 

 
 The third comparison, as depicted in Fig. 3, is related to a rotating stiffened laminated cylin-
drical shell with fully simply supported boundary condition by taking α=0 into the present for-
mulations.  
 

 
 

Figure 3   Variation of natural frequencies for the rotating orthogonally stiffened composite cylindrical shell with circumferential wave 
number in comparison between results of the present study and those reported in Ref. [12]. (L=2m, a=0.5m, h=2.5mm, m=1, 

Ω=10rev/s, Ns=5, Nr=15, [0o/90o/0o]) 
 

1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

Circumferential Wave Number (n)

N
at

ur
al

 F
re

qu
en

cy
 (H

z)

m=1,h=2.5,R=0.5,L=2,Ns=5,Nr=10

 

 
Ref. [12]
present



     M. Talebitooti et al. / Dynamic Analysis and Critical Speed of Rotating Laminated Conical Shells with Orthogonal Stiffeners	
  

 
Latin American Journal of Solids and Structures 10(2013) 349 – 390 

368 

 
Figure 4   Variation of natural frequencies for the rotating orthogonally stiffened composite conical shell with circumferential wave 
number in comparison between results of the present study and those reported in Ref. [22]. (L/a=10, h/a=0.002, α=15o, m=1, 

Ω=10rev/s, Ns=20, Nr=10, [0o/90o/0o]) 
 
 The last comparison is made with Ref. [22] for a rotating stiffened laminated conical shell be-
ing simply supported at both edges as shown in Fig. 4. With numerical comparisons shown in 
Tables 3-6 and Figs. 3-4, it is evident that the presented results are in a good agreement with the 
data available in the literature and FE results, which demonstrates accuracy of the current work. 

In addition, the computed frequency parameter 
    
f = ωb ρ 1− υ2( ) / E  for non-rotating un-

stiffened isotropic conical shell with free boundary conditions were compared to those obtained 
experimentally from Ref. [9] as shown in Fig(5). Comparing the present results with those of ex-
periments reveals an excellent agreement. The slight divergence is attributed to satisfaction of the 
assumed boundary conditions among these two methods. 

 
Figure 5   Variation of natural frequencies for the un-stiffened isotropic conical shell with circumferential wave number in comparison 

between results of the present study and those reported in Ref. [9]. (L/a=2.53, h/a=0.00127, α=30.2o, m=1, Ω=0rev/s) 
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In Fig. (6), an additional comparison is made between the theoretically and experimentally pro-
duced natural frequencies of orthogonal stiffened non-rotating conical shell by Ref. [14] and the 
theory proposed here. The present theory estimates more accurate results than the smearing 
method, since the former assumes the stiffeners as discrete elements while the latter considers the 
properties of the stiffeners averaged throughout the shell. Moreover, the present theory is in good 
agreement with the experimental results. In higher modes ( 8n ≥ ) the difference is occurred be-
tween the present theory and the experimental results. This seems to occur because the shell stiff-
ened with widely separated stiffeners is less rigid upon bending than expected before. On the oth-
er hand, in present method the stiffener is expected to be moved with structure as an integral 
part which may be different from a real structure in experiments. There may be also some other 
parameters such as the effects of boundary condition and the errors of experimental setup which 
cause discrepancy. However, the present method is found more reliable than the smearing meth-
od. There is just 10% of discrepancy comparing the present work with those of experiment, 
whereas the inconsistency of 41% was presented by Ref. [14], comparing the experimental results 
with those of smearing method. 
 

 
Figure 6   Variation of natural frequencies for the orthogonally stiffened isotropic conical shell with circumferential wave number in 
comparison between results of the present study and those reported in Ref. [14]. (L/a=3.06, h/a=0.0292, α=10o, m=1, Ω=0rev/s, 

Ns=6, Nr=3) 
 
Fig. 7 (a-b) demonstrates that, for different boundary conditions considered here, variation of the 
frequency for unstiffened and stiffened conical shell decreases rapidly at first, and then raised 
monotonically by increasing the circumferential wave number, n. The Cs-Cl conical shell has the 
highest frequency, followed by the Ss-Cl , Cs-Sl and S-S shells. This behavior was simply ex-
pected before, as Cs-Cl is a fully restrained boundary condition. At lower circumferential wave 
numbers, relatively considerable differences between frequencies of the four boundary conditions 
are observed, implying that the influence of boundary condition is significant. At higher circum-
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ferential wave numbers, the natural frequencies of Ss-Cl and Cs-Cl, and also those of  Cs-Sl and 
Ss-Sl boundary conditions converge as a result of shortening the wavelengths. It should be noted 
that the effects of boundary condition are more significant for the unstiffened shell where the 
results of different boundary conditions are getting closer at mode number 8, though this oc-
curred for the stiffened shell at mode number 6.  

 

 
Figure 7   Variation of natural frequencies for the composite conical shell having circumferential wave number for dif-
ferent boundary conditions, (a) unstiffened shell, (b) stiffened shell Ns=Nr=10. (L=3m, a=0.5m, h=3mm, α=30o, 

m=1, Ω=0, [0o/90o/0o]) 
 
 Fig. 8 highlights the effects arisen from number of rings on frequencies of the stiffened non-
rotating conical shell at fully clamped boundary conditions. No stringers are used in this case. It 
can be observed from this figure that at lower circumferential wave numbers, the number of rings 
demonstrates no significant effect. However, in high circumferential wave numbers, the frequency 
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is raised by increasing the number of rings, whereas the increasing rate of gradient becomes small. 
However, the number of circumferential waves with occurrence of the fundamental frequency de-
creases when the number of rings is enhanced. For example, the fundamental frequency occurred 
at n=8 for Nr=0, and at n=5 for Nr=30.  

 
Figure 8   Variation of natural frequencies for the composite conical shell with circumferential wave number at various numbers of 

rings (L=3m, a=0.5m, h=3mm, α=20o, m=1, Ω=0, [0o/90o/0o], Cs-Cl) 
 
 Fig. 9 depicts the effects from number of stringers on natural frequency of the non-rotating 
stringer-stiffened conical shell. In this case, the numbers of stringers are 0, 10 and 20, where no 
rings are applied. It can be observed that the effect of stringers is negligible at great numbers of 
circumferential wave. However, at lower circumferential wave numbers, particularly in frequencies 
smaller than the fundamental one, the frequency decreases slightly by increasing the number of 
stringers. This is because inertial terms of the stiffened shell are more considerable than those of 
the stiffness. 

 
Figure 9   Variation of natural frequencies for the composite conical shell with circumferential wave number in various numbers of 

stringers (L=3m, a=0.5m, h=3mm, α=20o, m=1, Ω=0, [0o/90o/0o], Cs-Cl) 
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 The effects of cone angles on natural frequency of the conical shells stiffened with rings and 
stringers at different circumferential wave numbers is listed in Tables 7 and 8, respectively. It is 
noteworthy that the number of rings in lower circumferential wave numbers, namely, n=2, are 
negligible for all cone angles. However, at greater number of circumferential wave the results are 
affected by the ring numbers. This occurrence is not the same in different cone angles. In smaller 
cone angles, the increasing rate is very significant. For instance, the natural frequencies are en-
hanced up to 304% in α=0o when Nr is increased to 15. However, this effect is rather reduced for 
large cone angles; as in α=70o the results are increased 108%. This is mainly due to the fact that 
flexural rigidity of the ring elements decreases at greater radius, while the terms of mass inertial 
increase. With greater number of the stringers a slight reduction is seen in natural frequency as 
listed in Table 8. This descending rate is more considerable at lower circumferential wave number 
and smaller cone angle. Therefore, the use of stringer is not recommended unless the buckling 
phenomenon is significant. The trend of results for natural frequency with respect to the cone 
angles in lower circumferential wave numbers contain a maximum point beyond which the trend 
will become descending. 
 
 
Table 7   Variation of natural frequency for laminated conical shell with respect to number of rings and cone angles at various circum-

ferential wave number (L=3m, a=0.5m, h=2mm, Ω=0, [0o/90o/0o], Ss-Sl) 
 
  cone angle (αo) 
  0o 10o 20o 30o 40o 50o 60o 70o 

 Nr         

n=2 

0 53.2 73.6 85.8 89.9 86.3 75.4 59.1 39.9 
5 53.4 73.2 85.4 89.6 86.1 75.5 59.4 40.3 
10 53.6 72.8 84.9 89.2 85.9 75.5 59.6 40.6 
15 53.8 72.5 84.5 88.8 85.6 75.5 59.8 40.8 

          

n=5 

0 22.1 21.0 24.5 26.1 25.9 23.5 19.4 13.9 
5 53.9 30.7 28.3 28.1 27.0 24.5 20.3 15.0 
10 71.2 36.7 31.1 29.6 28.0 25.2 21.0 15.7 
15 83.6 41.1 33.2 30.8 28.8 25.8 21.6 16.3 

          

n=10 

0 81.4 31.4 21.1 17.6 15.3 13.2 10.9 8.5 
5 211.1 71.2 40.5 29.4 24.0 20.1 16.8 13.6 
10 279.9 90.0 51.0 35.5 28.3 23.6 19.6 16.0 
15 329.5 101.6 58.7 40.0 31.4 25.9 21.6 17.7 
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Table 8   Variation of natural frequency for laminated conical shell with respect to number of stringers and cone angles at various 
circumferential wave number (L=3m, a=0.5m, h=2mm, Ω=0, [0o/90o/0o], Ss-Sl) 

 
  cone angle (αo) 
  0o 10o 20o 30o 40o 50o 60o 70o 

 Ns         

n=2 

0 53.2 73.6 85.8 89.9 86.3 75.4 59.1 39.9 
5 50.7 71.8 84.6 89.2 85.8 75.1 58.8 39.7 
10 48.0 69.9 83.4 88.4 85.3 74.7 58.6 39.4 
15 45.3 68.0 82.1 87.6 84.8 74.4 58.3 39.1 

          

n=5 

0 22.1 21.0 24.5 26.1 25.9 23.5 19.4 13.9 
5 21.7 20.8 24.2 25.9 25.6 23.4 19.4 13.9 
10 21.4 20.5 24.0 25.8 25.5 23.3 19.3 13.9 
15 21.0 20.3 23.8 25.6 25.3 23.2 19.2 13.9 

          

n=10 

0 81.4 31.4 21.1 17.6 15.3 13.2 10.9 8.5 
5 80.4 31.2 21.0 17.5 15.3 13.1 10.9 8.5 
10 79.4 31.0 20.9 17.5 15.2 13.1 10.9 8.5 
15 78.5 30.8 20.8 17.4 15.1 13.0 10.8 8.5 

 
 Table 9 summarizes the effect of various shell lengths on natural frequency of the ring-
stiffened shells with similar interval at different wave numbers. As mentioned above, natural fre-
quencies are diminished by increasing the shell length as expected before. There is an exception 
for α=0o, where for greater wave numbers, particularly n=15, increasing the shell length leads to 
enhanced corresponding natural frequencies. It is also noteworthy that fundamental wave num-
bers of the conical shell with α=0o, 15o are reduced monotonically with enlargement of the length. 
Although the trend is rather different at α=45o, 60o. 
 
Table 9   Variation of natural frequency (Hz) for the laminated conical shell with respect to length of shells and cone angles in various 

circumferential wave number (a=1m, h=1mm, Ω=0, [0o/90o/0o], Cs-Cl) 
 

L(m) 2 5 8 
α n=1 n=nf

* n=15 n=1 n=nf n=15 n=1 n=nf n=15 

0o 247.8 
50.7 
(n=7) 145.9 102.5 23.1 (n=5) 157.3 59.4 

14.9 
(n=4) 160.1 

15o 227.5 
44.6 
(n=8) 

84.0 104.7 19.0 (n=7) 43.6 67.2 
12.2 
(n=6) 

25.2 

30o 188.4 38.9 
(n=9) 

58.7 94.9 16.1 (n=8) 23.2 63.2 9.8 (n=9) 12.7 

45o 134.6 
32.8 
(n=9) 

45.2 71.5 13.2 (n=9) 16.2 48.4 
7.8 
(n=11) 

8.7 

60o 84.4 
26.0 
(n=9) 

35.9 44.5 
10.1 
(n=10) 

12.1 30.1 
5.8 
(n=11) 

6.4 
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 Fig. 10(a-d) illustrates the effects of depth and width of ring cross-section on natural frequen-
cies of backward waves for stiffened rotating conical shells having different cone angles. It is ob-
served that at great circumferential wave numbers, frequencies of the shells generally increase 
with depth of the ring in both forward and backward waves. Moreover, the difference between 
curves becomes insignificant when the cone angle is raised. This is due to the fact that, inertia 
terms of the rings become more significant than the stiffening terms influenced by long depth of 
the rings where effective radius of the shell is increased.  
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Figure 10 (continued) Variation of natural frequencies for the rotating ring-stiffened composite conical shell with circumferential wave 
number at various depth to width ratios, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=3m, a=0.5m, h=3mm, m=1, Nr =10, 

Ar=30mm2, Ω=10rev/sec, [0o/90o/0o], Cs-Sl) 
 

 

 
 

Figure 10   Variation of natural frequencies for the rotating ring-stiffened composite conical shell with circumferential wave number at 
various depth to width ratios, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=3m, a=0.5m, h=3mm, m=1, Nr =10, Ar=30mm2, 

Ω=10rev/sec, [0o/90o/0o], Cs-Sl) 
 
 The phenomenon of critical speed of the shell is illustrated in Fig. 11. The critical speed of the 
rotating shell corresponds to rotational speed of the shell at which the forward wave intersects 
abscissa. At this inter-section, an unstable phenomenon possibly appears as the forward wave 
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backward mode. At this critical speed, any residual unbalance will be synchronized with the rota-
tion and magnify whirling amplitude.  
 For various cone angles, α, the relationship between frequency and rotating speed at mode (1, 
1) in the case of Ss-Sl boundary condition, is shown in Fig. 11. Contrary to cylindrical shell, vari-
ation of the natural frequency with rotating speed shows non-linearity in conical shell. This non-
linearity is intensified with increased cone angle. Furthermore, critical speeds of the conical shell 
are enhanced due to greater cone angles, but there is no general rule to compare natural frequen-
cies of the shells. 

 
Figure 11   Variation of natural frequency of the rotating stiffened laminated conical shell with rotating speed at various cone angles 

(L=3m, a=0.5m, h=3mm, m=n=1, Ns=Nr=10, [0o/90o/0o], Ss-Sl) 
 
 Variations of natural frequency with rotating speed at different circumferential wave numbers 
are shown in Fig. 12(a-d) for various cone angles of the rotating stiffened conical shell with simp-
ly supported boundary conditions at both edges. The results in Fig. 12(a) indicate that critical 
speed of the cylindrical shell occurs in mode n=1, but, as can be seen in Fig. 12(b-d), the phe-
nomenon of critical speed of the conical shell is observed for all circumferential wave numbers. 
Having compared the effects of rotating speed on the natural frequency, a significant difference 
between conical and cylindrical shells is noticed. It is noteworthy that the critical speed for n=1 
increases for greater values of the cone angle, contrary to all other circumferential wave numbers 
where the critical speeds decrease rapidly. For example, the critical speed of the conical shell at 
n=1 is enhanced from 107(rev/sec) to 115(rev/sec) when the cone angles are altered from 30o to 
45o. On the other hand, the critical speeds at n=2 are suddenly reduced from 359(rev/sec) to 
270(rev/sec). 
 There is also another important discrepancy between rotating cylindrical and conical shells 
which is called divergence instability here. As seen from Fig. 12(a), the difference between fre-
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quencies of backward and forward waves would increase when the rotating speed is raised. In the 
case of the conical shell, although the difference between frequencies of forward and backward 
waves increases initially, it decreases then. These two curves tend to overlap in a specific range of 
rotating speed. The divergence instability of the rotating shell corresponds to rotational speed of 
the shell where the frequencies of forward and backward waves are the same. The rotating speeds 
of divergence instability are generally higher than those of the critical one. This phenomenon is 
illustrated in Fig. 12(b-d). As can be clearly seen, raising the cone angle imposes a reduction in 
the rotating speed at which the divergence instability is occurred.  
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Figure 12 (continued) Variation of natural frequencies for the rotating stiffened composite conical shell with rotating speed at various 
cone angles, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=5m, a=0.5m, h=3mm, m=n=1, Ns=Nr=10, [0o/90o/0o], Ss-Sl) 

 

 

 
Figure 12   Variation of natural frequencies for the rotating stiffened composite conical shell with rotating speed at various cone an-

gles, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=5m, a=0.5m, h=3mm, m=n=1, Ns=Nr=10, [0o/90o/0o], Ss-Sl) 
 
 In Fig. 13(a-d), four configurations of the conical shell, namely at α=0o, 15o, 30o and 45o, are 
used to investigate the effect of axial load on natural frequency. In this figure,  Ncr

x  is used to 
address critical global buckling load of the conical shell, while axial compressive and tensile loads 
are represented by negative and positive signs, respectively. It is important to note that the com-
pressive axial load must be a fraction of static critical global buckling load. To achieve the static 
critical global buckling load, the global buckling differential equations could be produced by ne-
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glecting the terms involving Ω and ω in Eq. (52). The responses to both compressive and tensile 
axial loads are generally predictable for all modes having a downward and upward shift, respec-
tively. This is expected since tensile axial load causes the shell to become stiffer. Noteworthy is 
that the effect of axial load on fundamental frequency is more significant than others. Moreover, 
the sensitivity rate of natural frequency to compressive load is greater than that of natural fre-
quency to the tensile load.  
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Figure 13 (continued) Variation of natural frequencies for the non-rotating stiffened composite conical shell with circumferential wave 

number at various cone angles, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=1m, a=0.25m, h=3mm, m=1, Ns=Nr=5, 
[0o/90o/0o], Cs-Cl) 

 
 

 
 

 
Figure 13   Variation of natural frequencies for the non-rotating stiffened composite conical shell with circumferential wave number at 
various cone angles, (a) α=0o, (b) α=15o, (c) α=30o, (d) α=45o. (L=1m, a=0.25m, h=3mm, m=1, Ns=Nr=5, [0o/90o/0o], Cs-Cl) 
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4. CONCLUSIONS  

Generalized Differential Quadrature Method has been used in this paper to study free vibration 
and critical speed of the rotating stiffened laminated conical shells by treating the stiffeners as 
discrete elements. In addition, the FEM code was developed by the commercial FE software, 
ABAQUS. The results obtained from GDQM are validated in special cases with the results of 
present FE model and also those of other researchers. Discussions are made on the effects of 
boundary conditions, number of stiffeners, axial load, cone angle and rotating speed. Finally, the 
following results have been obtained: 
1- The effect arisen from number of rings on natural frequency at lower circumferential wave 
numbers is negligible for all cone angles. However, in higher modes the results are affected by ring 
numbers with the variety of results having different cone angles being recognized. The natural 
frequencies are enhanced 304% at α=0o, while Nr is increased to 15. However, this rate will be 
reduced for high cone angles as in α=70o the results are increased just 108%. 
2- The trend of results for natural frequency with respect to cone angles at lower circumferential 
wave numbers contains a maximum point in which the trend for higher wave numbers becomes 
descending. 
3-  The present method is in agreement with the experiments. There is only an average of 10% 
discrepancy between the present work and those of experimental results for a widely stiffened 
conical shell from n=2 to n=9.  However the inconsistency of 41% was reported by other re-
searchers with the results of smearing method. 
4- By increasing the number of stringers, a slight reduction is noticed in natural frequency. 
Therefore, application of stringer is not recommended unless the buckling phenomenon is signifi-
cant.  
5- The fundamental wave numbers of the conical shell with α=0o, 15o are monotonically reduced 
with increasing the length, whereas a rather adverse trend is found at α=45o, 60o. 
6- Contrary to cylindrical shell, the variation of natural frequency with rotating speed behaves 
non-linearly in conical shell. In addition, the critical speed is recorded at all circumferential wave 
numbers. Moreover, the critical speeds of conical shell are enhanced due to increasing the cone 
angles.  
7- Contrary to cylindrical shell, the phenomenon of divergence instability is occurred for rotating 
conical shell. Also, increasing the cone angle seems to impose reductions in rotating speed at 
which the divergence instability is occurred. 
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   M12 = M21 = M23 = M32 = G11 = 0  (A23) 

 where 
    
λ =

mπ
L
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