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Abstract 
Static analysis of skew composite shells is presented by develop-
ing a C0 finite element (FE) model based on higher order shear 
deformation theory (HSDT). In this theory the transverse shear 
stresses are taken as zero at the shell top and bottom. A realistic 
parabolic variation of transverse shear strains through the shell 
thickness is assumed and the use of shear correction factor is 
avoided. Sander’s approximations are considered to include the 
effect of three curvature terms in the strain components of com-
posite shells. The C0 finite element formulation has been done 
quite efficiently to overcome the problem of C1 continuity associ-
ated with the HSDT. The isoparametric FE used in the present 
model consists of nine nodes with seven nodal unknowns per 
node. Since there is no result available in the literature on the 
problem of skew composite shell based on HSDT, present results 
are validated with few results available on composite 
plates/shells. Many new results are presented on the static re-
sponse of laminated composite skew shells considering different 
geometry, boundary conditions, ply orientation, loadings and 
skew angles. Shell forms considered in this study include spheri-
cal, conical, cylindrical and hypar shells. 
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1 INTRODUCTION 

Laminated composite shell structures are widely used in civil, mechanical, aerospace and other en-
gineering applications. Laminated composites materials are becoming popular because of their high 
strength to weight and strength to stiffness ratios.  The most important feature for the analysis of 
composite structures is that the material (composite) is weak in shear compared to extensional ri-
gidity. Due to this reason transverse shear deformation of the composite shell has to be modeled 
very efficiently. 
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Nomenclature 

a = Length of the mappedshell panel parallel to x-axis in plan  

α = Angle between skewed edge of mapped shell panel with respect to y-axis measured in plan  

b = Width of the mapped shell panel parallel to y-axis in plan  

h = Total height of the shell panel  

N x N = FE mesh divison denoted as (Number of divisions in X-direction) x (Number of divisions 

in Y-direction).  

L = Total number of layers in a lamination scheme 

S = Ratio of length to total height of shell panel (a/h) 
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Classical theories originally developed for thin elastic shells are based on the Love- Kirchhoff as-
sumptions. These theories neglect the effect of transverse shear deformations. However, application 
of such theories to laminated composite shells where shear deformation is very significant, may lead 
to errors in calculating deflections, stresses and frequencies. 

In subsequent development of shell theories transverse shear deformation was included in a 
manner where the shear strain is uniform throughout the thickness of the shell. These theories are 
known as first order shear deformation theory (FSDT). In this theory a shear correction factors are 
required for the analysis and these factors should be calculated based on the orientations of different 
layers in different directions. 

The effects of transverse shear and normal stresses in shells were considered by Hildebrand, 
Reissner and Thomas [18], Lure [25], and Reissner [35]. The effect of transverse shear deformation 
and transverse isotropy, as well as thermal expansion through the thickness of cylindrical shells 
were considered by Gulati and Essenberg [16], Zukas and Vinson [43], Dong et al. [12, 13], Hsu and 
Wang [19], and Whitney and Sun [37, 38]. The higher-order shell theories presented in [37, 38] are 
based on a displacement field in which the displacements in the surface of the shell are expanded as 
linear functions of the thickness coordinate and the transverse displacement is expanded as a quad-
ratic function of the thickness coordinate. These higher-order shell theories are cumbersome and 
computationally more demanding, because, with each additional power of the thickness co-ordinates, 
an additional dependent unknown is introduced into the theory. 

Reddy and Liu [33] presented a simple higher-order shear deformation theory (HSDT) for the 
analysis of laminated shells. It contains the same dependent unknowns as in the first-order shear 
deformation theory (FSDT) in which the displacements of the middle surface are expanded as linear 
functions of the thickness coordinate and the transverse deflection is assumed to be constant 
through the thickness. The theory is based on a displacement field in which the displacements of 
the middle surface are expanded as cubic functions of the thickness coordinate and the transverse 
displacement is assumed to be constant through the thickness. The additional dependent unknowns 
introduced with the quadratic and cubic powers of the thickness coordinate are evaluated in terms 
of the derivatives of the transverse displacement and the rotations of the normals at the middle 
surface. This displacement field leads to the parabolic distribution of the transverse shear stresses 
(and zero transverse normal strain) and therefore no shear correction factors are used. Huang [20] 
presented modified Reddy’s theory and further improved the accuracy. Xiao-ping [39] presented a 
shell theory based on Love’s first-order geometric approximation and Donnell’s simplification for 
shallow shells. The theory improves the in-plane displacement (u, v) distribution through thickness 
by ensuring the continuity of interlaminar transverse shear stresses and zero transverse shear strains 
on the surface. The theory contains then same dependent unknown and the same order of governing 
equations as in the first-order shear deformation theory. Without the need for shear correction fac-
tors, the theory predicts more accurate responses than first-order theory and some higher-order 
theories, and the solutions are very close to the elasticity solutions. However, these theories [33, 39] 
demand C1 continuity of transverse displacements during finite element implementations. 

Yang [41] developed a higher-order shell element with three constant radii of curvature, two 
principal radii, orthogonal to each other and one twist radius. The displacement functions u, v and 
w are composed of products of one-dimensional Hermite interpolation formulae. Shu and Sun [40] 
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developed an improved higher-order theory for laminated composite plates. This theory satisfies the 
stress continuity across each layer interface and also includes the influence of different materials and 
ply-up patterns on the displacement field. Liew and Lim [24] proposed a higher-order theory by 
considering the Lame´ parameter (1+z/Rx) and (1+z/Ry) for the transverse strains, which were 
neglected by Reddy and Liu [33]. This theory accounts for cubic distribution (non-even terms) of 
the transverse shear strains through the shell thickness in contrast with the parabolic shear distri-
bution (even-terms) of Reddy and Liu [33]. Kant and Khare [21] presented a higher-order facet 
quadrilateral composite shell element. Bhimaraddi [4], Mallikarjuna and Kant [26], Cho et al. [8] are 
among the others to develop higher-order shear deformable shell theory. It is observed that except 
for the theory of Yang [41], remaining higher-order theories do not account for twist curvature 
(1/Rxy), which is essential while analyzing shell forms like hypar and conoid shells. 

Analyses of composite shell panels were carried out by many researchers [1, 4, 6, 7, 9, 14, 15, 22, 
24, 27, 29, 30, 33 and 36] in the past few decades mainly based on FSDT. 

However, application of higher-order theory for studying the behavior of laminated composite 
shells with the combination of all three radii of curvature is very limited in literature. Pradyumna 
and Bandyopadhyay [31] studied the behavior of laminated composite shells based on a higher-order 
shear deformation theory (HSDT) developed by Kant and Khare [21]. They also [21] also extended 
the theory to the shells to include all three radii of curvature. However, this theory [21] contains 
some nodal unknowns which are not having any physical significance and therefore, incorporation of 
appropriate boundary conditions becomes a problem. 

It is also observed that there is no literature available on the analysis of composite skew shell us-
ing HSDT while very few publications are available on the problem using FSDT [17] for isotropic 
materials only. 

In view of the above, a new finite element model has been developed in the present study for 
static analysis of composite skew shell panels using a simple higher order shear deformation theory 
[33]. The problem of C1 continuity associated with theory has been overcome in this model and an 
existing C0 isoparametric finite element has been utilized for this purpose. The element contains 
nine nodes with seven nodal unknowns at each node. The analysis has been performed considering 
shallow shell assumptions. The effect of all the three radii of curvature is also included in the for-
mulation. The present finite element model based on HSDT is applied to solve many problems of 
composite skew shells considering different shell geometries, boundary conditions, loadings and oth-
er parameters. The present results are also validated with some published results. 
 
2 THEORY AND FORMULATION 

A laminated shell element made of a finite number of uniformly thick orthotropic layers oriented 
arbitrarily with respect to the shell co-ordinates (x, y, z) is shown in Figure 1. The reference 
plane (i.e., mid plane) is defined at at z = 0. 
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Figure 1   Laminated composite doubly curved shell element 

 
In the present formulation the in-plane displacement components u (x, y, z) and v (x, y, z) at 

any point in the shell space are expanded in Taylor’s series in terms of the thickness co- ordinates 
while the transverse displacement, w(x, y) is taken as constant throughout the shell thickness. As 
the transverse shear stresses actually vary parabolically through the shell thickness the in-plane 
displacement fields are expanded as cubic functions of the thickness co-ordinate. The displace-
ment fields are assumed in the form as given by Reddy [32] which satisfy the abovecriteria and 
may be expressed as below: 

 
u(x, y, z) = u (x, y) + zθ (x, y) + z 2ξ (x, y) + z3ζ  (x, y) 
v(x, y, z) = v (x, y) + zθ (x, y) + z 2ξ (x, y) + z3ζ  (x, y) 

w(x, y) = w0 (x, y) 
(1) 

 
where u, v and w are the displacements of a general point (x, y, z) in an element of the laminate 
along x, y and z directions, respectively. The parameters u0, v0, and w0  denote the displacements 
of a point (x ,y) on the mid plane, and   and   are the rotations of normals with respect to the 
mid plane about the y and x axes, respectively. The functions ξx ,ζx , ξy and ζy can be determined 
using the conditions that the transverse shear strains, γxz  and γyz  vanish at the top and bottom 
surfaces of the shell. We have 
 

γ xz =
∂u
∂z

+ ∂w
∂x

=θ x + 2zξx + 3z
2ζ x +

∂w
∂x  

γ yz =
∂v
∂z

+ ∂w
∂y

=θ y + 2zξ y + 3z
2ζ y +

∂w
∂y

 
(2) 

 

Setting 
  
γ xz (x, y,± h

2
) and γ yz (x, y,±

h
2
) to zero, we obtain 
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ξx = 0 ,  ξ y = 0  

ζ x = − 4
3h2

(θ x +
∂w
∂x
) , ζ y = − 4

3h2
(θ y +

∂w
∂y
)  

(3) 

 
The displacement field in equation (1) becomes 
 
 

u = u0 + zθ x (1−
4z2

3h2
) − 4z

3

3h2
(∂w
∂x
) = u0 + zθ x (1−

4z2

3h2
) − 4z

3

3h2
ψ x
*  

v = v0 + zθ y (1−
4z2

3h2
) − 4z

3

3h2
(∂w
∂y
) = v0 + zθ y (1−

4z2

3h2
) − 4z

3

3h2
ψ y
*  

w = w0  

(4) 

          
The linear strain-displacement relations according to Sanders’ approximation are: 
 

ε x =
∂u
∂x

+ w
Rx

, ε y =
∂v
∂y

+ w
Ry

,γ xy =
∂v
∂x

+ ∂u
∂y

+ 2w
Rxy

 

γ xz =
∂u
∂z

+ ∂w
∂x

− A1
u
Rx

− A1
v
Rxy

γ yz =
∂v
∂z

+ ∂w
∂y

− A1
v
Ry

− A1
u
Rxy

 

(5) 

 
Substituting equation (4) in equation (5): 
 

ε x = ε x0 + zKx (1−
4z2

3h2
) − 4z

3

3h2
Kx
*  

ε y = ε y0 + zKy (1−
4z2

3h2
) − 4z

3

3h2
Ky
*  

γ xy = γ xy0 + zKxy (1−
4z2

3h2
) − 4z

3

3h2
Kxy
*  

γ xz = φx + zKxz (1−
4z2

3h2
) − 4z

3

3h2
Kxz
* − 4z

3

3h2
Kxz
**  

γ yz = φ y + zKyz (1−
4z2

3h2
) − 4z

3

3h2
Kyz
* − 4z

3

3h2
Kyz
**  

(6) 
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where, 
 

ε x0 ,ε y0 ,γ xy0{ } = ∂u0
∂x

+
w0
Rx
,
∂v0
∂y

+
w0
Ry
,
∂u0
∂y

+
∂v0
∂x

+
2w0
Rxy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

φx ,φ y{ } = ∂w
∂x

+θ x − A1
u0
Rx

− A1
v0
Rxy
, ∂w
∂y

+θ y − A1
v0
Ry

− A1
u0
Rxy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

Kx ,Ky ,Kxy ,Kx
*,Ky

*,Kxy
*{ } = ∂θ x

∂x
,
∂θ y
∂y
,
∂θ x
∂y

+
∂θ y
∂x
,
∂ψ x

*

∂x
,
∂ψ y

*

∂y
,
∂ψ x

*

∂y
+
∂ψ y

*

∂x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

Kxz ,Kyz ,Kxz
* ,Kyz

*{ } = −A1
θ x
Rx

− A1
θ y
Rxy
,−A1

θ y
Ry

− A1
θ x
Rxy
,−A1

ψ x
*

Rx
− A1

ψ y
*

Rxy
,−A1

ψ y
*

Ry
− A1

ψ x
*

Rxy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

Kxz
**,Kyz

**{ } = θ x +ψ x
*,θ y +ψ y

*{ }  

(7) 

 
A1 is a tracer by which the analysis can be reduced to that of shear deformable Love’s first ap-
proximation. A1 is important factor as it helps to incorporate the shear part which plays a critical 
role in failure analysis of composite laminates. Hence, A1 must be chosen cautiously accordingly 
to shear deformation theory used to analyze the composites. 

The constitutive relations for a typical lamina (k-th) with reference to the material axis may 
be written as:  
 

σ 1

σ 2

τ12
τ13
τ 23

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪k

=

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥k

ε1
ε2
γ 12
γ 13
γ 23

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪k

 (8) 

    
or, in matrix form: 
 
σ{ }k = Q[ ]k ε{ }k  

 
where, Q11 = E1 / 1-ν12 ν21, Q12 = ν12 E2 / 1-ν12 ν21 , Q22 = E2 / 1-ν12 ν21, Q66 = G12, Q44 = G13,   
Q55 = G23 and  

ν!"
!!
= ν!"

!!
 

After that, we need to transform the lamina stiffness matrix into a global form using the 
transformed coefficient.  In global form, lamina with different angles and thickness of each layer 
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are computed.  Hence, the transformed stiffness matrix Qij   can be calculated. The stress-strain 

relations for a lamina about the structure axis system (x, y, z) may be written as below after 
doing the necessary transformation, 

 

σ x

σ y

τ xy

τ xz

τ yz

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪
k

=

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
k

ε1
ε2
ε12
ε13
ε23

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪k

 (9) 

 
Integrating the stresses through the laminate thickness, the resultant forces and moments act-

ing on the laminate may be obtained as below, 
 

N[ ] =
Nx

Ny

Nxy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

σ x

σ y

τ xy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥Zk

Zk+1

∫
k=1

NL

∑ dz  

M[ ] =
Mx Mx

*

My My
*

Mxy Mxy
*

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
σ x

σ y

τ xy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥Zk

Zk+1

∫
k=1

NL

∑ z, z3⎡⎣ ⎤⎦dz  

Q,S,S*,S**⎡⎣ ⎤⎦ =
Qx Sx Sx

*

Qy Sy Sy
*

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Qx Sx Sx
* Sx

**

Qy Sy Sy
* Sy

**

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

τ xz

τ yz

⎡

⎣
⎢

⎤

⎦
⎥

Zk

Zk+1

∫
k=1

NL

∑ 1, z, z2, z3⎡⎣ ⎤⎦dz  

(10) 

  
or σ{ } = D⎡⎣ ⎤⎦ ε{ } , where 

 

 

 

and 𝐷  is the rigidity matrix of size 17x17. 
 
 
 
 

{ } * * * * * ** **, , , , , , , , , , , , , , , ,
T

x y xy x y xy x y xy x y x y x y x yN N N M M M M M M S S S S S Sσ θ θ⎡ ⎤= ⎣ ⎦

{ } * * * * * ** **
0 0 0, , , , , , , , , , , , , , , ,

T

x y xy x y xy x y xy x y xz yz xz yz xz yzK K K K K K K K K K K Kε ε ε γ φ φ⎡ ⎤= ⎣ ⎦



A. Kumar  et al. /Analysis of laminated composite skew shells using   higher order shear deformation theory      899 

	
  

Latin American Journal of Solids and Structures 10(2013) 891 – 919 

 

2.1 Finite element formulation 

A nine-noded isoparametric C0 element with seven unknowns per node developed by Singh et. al 
[34] is used in the present finite element model. The nodal unknown vector {d} on the mid-
surface of a typical element is given by: 
 

 (11) 

 
where {di} is the nodal unknown vector corresponding to node i and Ni is the interpolating shape 
function associated with the node i. The problem of a skew shell as shown in Figure [2] is studied 
by using the proposed finite element model. 
 

 
 

Figure 2   Mappedskewshell panel 

 
As the sides AB and DC are inclined to global axis by an angle, α, necessary transformation is 

made to express the degrees of freedom of the nodes on these two sides.  
After getting the generalized nodal unknown vector {d} within an element, the generalized mid-

surface strains at any point of the shell (Eq.: 6), can be expressed in terms of global displacements 
as shown below, 
 

 (12) 

 
where [Bi] is the differential operator matrix of interpolation functions which may be obtained 
from Equation (6). 
The element stiffness matrix for an element (say, e-th), which includes membrane, flexure, 

thetransverse shear effects and their couplings may be expressed by the following equation: 
 

 (13) 

{ } { }
9

1
( , )i i

i
d N x y d

=

=∑

{ } [ ]{ }
9

1
i i

i
B dε

=

=∑

[ ] [ ] [ ][ ]
1 1

1 1

T
eK B D B jdrds

− −

= ∫ ∫
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A 3 × 3 Gaussian Quadrature scheme has been used in all numerical integrations. The element  
matrices are then assembled to obtain the global stiffness matrix, [K] by following the standard 
procedure of finite element method [10]. 
 
3 RESULTS AND DISCUSSION 

In this section many problems of laminated composite shells are solved for normal as well as skew 
configurations using the present finite element model based on HSDT. A computer code is devel-
oped based on the above formulation for the implementation of the above model. As there is no 
result available in the literature in the present problem of laminated composite skew shell, the 
results obtained by the proposed model are validated by some published results on laminated 
composite shells of normal geometry. A mapped skew shell is shown in Figure 2. To validate the 
results for skew geometry, the present finite element results are first compared with some results 
of isotropic and composite skew plates. Then the results obtained by the present model are com-
pared with some limited published results of skew shells using isotropic material. Many new re-
sults are generated for the benefit of the future researchers. The shell forms mainly considered for 
validation are spherical, conical, cylindrical and hypar shells while the problems of skew shells are 
restricted to cylindrical and hypar geometry. 

The elastic properties of the lamina with respective to the material axes has been taken as 
E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2 and ν12 = 0.25, unless mentioned otherwise. 

The following boundary conditions are used in the present analysis: 
1. Simply supported (SSSS): 

 

 

 
 
2. Clamped (CCCC):  
 

 
 
3. Simply supported-Clamped (SCSC): 
 

at  and  at  

at  and at  

 
3.1 Validation of the Present Formulation 

In order to validate the present formulation, some problems are solved which are already reported 
in the literature. 
 
3.1.1 Convergence Study 

Convergence study is carried out in order to determine the required mesh size N × N at which 
the displacement values converge. Table 1 shows the convergence of the results of a simply sup-
ported cross-ply spherical shell subjected to uniform loading with a/b=1 and Rx=Ry=R with the 

0,  at  = 0, ay yv w xθ ψ= = = =
0 at  = 0, bx xu w yθ ψ= = = =

0,  at  = 0, a and  = 0, bx y x yu v w x yθ θ ψ ψ= = = = = = =

0,y yv w θ ψ= = = = 0x = 0x xu w θ ψ= = = = 0y =
0,x y x yu v w θ θ ψ ψ= = = = = = = x a= y b=
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orthotropic elastic properties as mentioned earlier. Three different lamination schemes (00/900, 
00/900/900 and 00/900/900/00) are considered.  

 
Table 1 Non-dimensional central deflections w( )  

of a simply supported cross-ply laminated spherical shell under uniform load 
 
R/a Theory Lamination scheme 

00/900 00/900/00 00/900/900/00 
a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 

5 

Present (4 × 4) 1.7884 17.6364 1.5295 10.4708 1.5531 10.5789 
Present (6 × 6) 1.7668 17.6685 1.5168 10.4189 1.5426 10.5578 
Present (8 × 8) 1.7594 17.6797 1.5141 10.4165 1.5389 10.5590 
Present (12 × 12) 1.7527 17.6845 1.5116 10.4153 1.5355 10.5592 
Present (16 × 16) 1.7527 17.6845 1.5116 10.4153 1.5355 10.5592 
Reddy and Liu[33] 1.7519 17.566 1.5092 10.332 1.5332 10.476 

3 Present (12 × 12) 0.6441 15.5328 0.6223 9.6498 0.6245 9.7766 
4 Present (12 × 12) 1.1410 16.9436 1.0441 10.1608 1.0559 10.2989 

10 Reddy and Liu[33] 5.5388 18.744 3.6426 10.752 3.7195 10.904 
Present (12 × 12) 5.5255 18.7762 3.6438 10.7743 3.7164 10.9266 

20 Reddy and Liu[33] 11.268 19.064 5.5503 10.862 5.666 11.017 
Present (12 × 12) 11.1806 19.0699 5.5321 10.8678 5.6425 11.0223 

50 Reddy and Liu[33] 15.711 19.155 6.4895 10.893 6.6234 11.049 
Present (12 × 12) 15.4844 19.1537 6.4394 10.8942 6.5726 11.0493 

100 Reddy and Liu[33] 16.642 19.168 6.6496 10.898 6.7866 11.053 
Present (12 × 12) 16.3754 19.1658 6.6083 10.8980 6.7455 11.0532 

 
The mesh divison parameter N  is varied from 4 to 16. It may be observed in Table 1, that the 

values of non-dimensional central deflections, w = −wh3E2 / qa
4( )  converge for N=12. All subse-

quent analysis is carried out using the uniform mesh divison 12 X 12. It is found that the present 
results are in good agreement with HSDT results of Reddy and Liu [33]. 
 
3.1.2 Comparison of Results 

3.1.2.1 Cross-ply laminated spherical shell 

A cross-ply laminated spherical shell with a/b=1 and Rx=Ry=R with simply supported bounda-

ries subjected to sinusoidal loading q = q0 sin
π x
a
sin

π y
b

⎛
⎝⎜

⎞
⎠⎟  

is considered for the analysis. This 

problem is earlier solved by Reddy and Liu [33]. The lamination schemes are taken as in the pre-
vious example.   It is found that the present results are in close agreement with the results of 
Reddy and Liu [33] based on HSDT. The non-dimensional central displacements are obtained as,

w = − wh
3e2

qa4
⎛
⎝⎜

⎞
⎠⎟
103 . 
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Table 2 Non-dimensional central deflections of simply supported cross-ply laminated spherical shells under sinusoidally distributed load 
(a/b=1, Rx=Ry=R) 

 

R/a Theory 

Lamination Scheme 

00/900 00/900/00 00/900/900/00 

a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 

5 
Reddy and Liu[33] 1.1937 11.166 1.0321 6.7688 1.0264 6.7865 

Present 1.1907 11.2403 1.0321 6.8201 1.0254 6.8380 

10 
Reddy and Liu[33] 3.5733 11.896 2.4099 7.0325 2.4024 7.0536 

Present 3.5378 11.9161 2.4020 7.0459 2.3866 7.0670 

20 
Reddy and Liu[33] 7.1236 12.094 3.6170 7.1016 3.6133 7.1237 

Present 7.0046 12.0978 3.5717 7.1047 3.5603 7.1267 

50 
Reddy and Liu[33] 9.8692 12.150 4.2071 7.1212 4.2071 7.1436 

Present 9.5681 12.1498 4.1249 7.1213 4.1284 7.1436 

100 
Reddy and Liu[33] 10.444 12.158 4.3074 7.1240 4.3082 7.1464 

Present 10.1042 12.1571 4.2603 7.1237 4.2418 7.1459 

 

3.1.2.2 Conical shell with different boundary conditions 

A laminated (00/900/00) conical shell panel is considered in this example with a slant edge L, 
radii at top and bottom Rt and Rb, respectively. The shell is subjected to uniform lateral pressure 
p. 12 X 12mesh is used to discretise the shell. The material properties considered are as follows: 
EL = 2.0 X 1011 Pa, EL/ET = 2, 10, 20 and 30, G12= G13=0.5 X ET, G23= 0.2 X ET, ν12= ν13 = ν23 
= 0.25. 

The central deflections (Table 3) based on the present theory were found to be in good agree-
ment with those obtained by Bhaskar and Varadan [3] based on HSDT for clamped boundary 
conditions. New results for boundary conditions like SSSS, SSCC and SCSC are also presented in 
Table 3. It can be observed that as the ratio EL/ET  increases the deflection values decrease. On 
the other hand as the ratio Rb/h is increased from 10 to 100 there is considerable decrease in de-
flection. The geometry of conical shell is as shown in Figure [3]. 
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Figure 3   Conical Shell panels 

 
Table 3  Non-dimensionalized central deflection w = 100 ETh

3w / pL4( )  
of a (00/900/00) conical shell panel  

(Rt = 0.8Rb, L = Rb , Rb/h=10 ) 
 

Boundary condition Rb/h Theory 
EL/ET 

2 10 20 30 

CCCC 10 Bhaskar and Varadan [3] 0.3646 0.1270 0.0751 0.0538 
Present 0.3612 0.1318 0.0774 0.0551 

100 Present 0.0043 0.0015 0.0008 0.0005 
SSSS 

 
 
 
 
 
 

10 Present 0.8517 0.4946 0.3910 0.3476 

100 Present 0.0095 0.0083 0.0077 0.0075 

SSCC 10 Present 0.4494 0.1765 0.1131 0.8546 
100 Present 0.0062 0.0026 0.0015 0.0011 

SCSC 10 Present 0.5718 0.3036 0.2441 0.2206 
100 Present 0.0073 0.0053 0.0046 0.0043 

 
3.1.2.3 Cylindrical shell 

3.1.2.3.1 Cross-ply cylindrical shell 

Simply supported three-ply (00/900/00), four-ply (00/900/00/900) and five-ply (00/900/00/900/00) 
laminated cylindrical shells with R1/a = 4 and b/a = 3 is considered in this example. Taking 

sinusoidal variation of loading q = q0 sin
π x
a
sin

π y
b

⎛
⎝⎜

⎞
⎠⎟  
on the shells, the central deflections obtai-

ned by thepresent model are compared with the results of Reddy and Liu [33]. 
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Table 4 Non-dimensional central deflection w = 100 ETw / qhS
4( )  of simply supported laminated cylindrica lshell panel  

(R1/a = 4, a/h = 10) 
 

R1/a a/h 
Lamination Scheme 
00/900/00 00/900/00/900/00 00/900/00/900 
Reddy [33] Present Reddy [33] Present Reddy [33] Present 

4 
5 1.944 1.9218 1.896 1.8722 2.494 2.4505 
10 0.8712 0.8720 0.931 0.9304 1.441 1.4350 
100 - 0.4562 - 0.5312 - 0.8468 

10 
5 - 1.9026 - 1.8552 - 2.4377 
10 - 0.8637 - 0.9227 - 1.4289 
100 - 0.4965 - 0.5921 - 1.0336 

20 
5 - 1.8997 - 1.8527 - 2.4376 
10 - 0.8625 - 0.9216 - 1.4289 
100 - 0.5038 - 0.6017 - 1.0678 

50 
5 - 1.8990 - 1.8521 - 2.4385 
10 - 0.8621 - 0.9213 - 1.4293 
100 - 0.5055 - 0.6053 - 1.0764 

100 
5 - 1.9012 - 1.8520 - 2.4390 
10 - 0.8621 - 0.9213 - 1.4295 
100 - 0.5058 - 0.6054 - 1.0804 

Note: Reddy [33] - Reddy’s higher-order theory [multiplied by a factor (1 + h/2R1) (1 + h/2R2,)]. 
 

It is observed in Table 4 that for lower values of thickness ratio (a/h) present results slightly 
differ from the results presented by Reddy and Liu [33]. This difference may be due to the fact 
that the deflection results of Reddy and Liu [33] shown in Table 4 are multiplied by a factor (1 + 
h/2R1) (1 + h/2R2,). Moreover, Reddy and Liu [33] have not included the effect of twist curva-
ture (1/Rxy) in their formulation. The geometry of cylindrical shell is as shown in Figure [4]. It 
can also be observed that with increasing values of R1/a and a/h the deflections decrease. 
 

 
Figure 4   Perspective view of cylindrical shell panel 
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The lamination scheme (00/900/00) was found to give lesser deflection compared to other 
schemes for a/h =10, 100 while for a/h=5, lamination scheme (00/900/00/900/00) is found give 
lesser values for the deflections. It is also observed that the anti-symmetric lamination scheme 
(00/900/00/900) gives higher results in all the cases. 

 
3.1.2.3.2 Angle-ply cylindrical shell 

In this example, an angle-ply (𝜃/- 𝜃 / 𝜃 /- 𝜃 / 𝜃) cylindrical shell panel of square plan form, 
simply supported at all edges and subjected to uniform transverse pressure p is considered. Non-
dimensional central deflections obtained by using the present model are compared with the corre-
sponding results of Bhaskar and Varadan [3]. It may be observed in Table 5 that there are differ-
ences between the two results for higher values of ply angles (𝜃). This may be due to the reasons 
that the loading considered in the two models are slightly different; and also Bhaskar and Vara-
dan [3] have not considered the twist curvature (1/Rxy) in their formulation which may be signifi-
cant for angle ply lamination schemes. Some new results are also presented in Table 5. It is ob-
served minimum deflection values corresponds to𝜃 =45 for all the cases. 

 
Table 5 Non-dimensionalized central deflection w = 100 ETh

3 / pa4( )  
of simply supported angle-ply (𝜃 /- 𝜃 / 𝜃 /- 𝜃 /𝜃)  

cylindrical shell panel. 
 

R0/a a/h Theory 𝜃 =15 𝜃 =30 𝜃 =45 𝜃 =60 𝜃 =75 

3 
10 

Bhaskar and Varadan [3] 0.8507 0.7393 0.6514 0.7525 0.8769 

Present 0.8470 0.7002 0.5994 0.6867 0.8265 

100 Present 0.1481 0.0761 0.0283 0.0664 0.1242 

5 
10 Present 0.8589 0.7276 0.6607 0.7224 0.8511 

100 Present 0.2854 0.1668 0.0831 0.1597 0.2633 

10 
10 Present 0.8639 0.7399 0.6903 0.7385 0.8619 

100 Present 0.4626 0.3234 0.2177 0.3202 0.4498 

20 
10 Present 0.8652 0.7429 0.6981 0.7427 0.8647 

100 Present 0.5452 0.4197 0.3433 0.4191 0.5423 

50 
10 Present 0.8655 0.7439 0.7004 0.7438 0.8655 

100 Present 0.5714 0.4585 0.4071 0.4604 0.5768 

100 
10 Present 0.8656 0.7439 0.7007 0.7439 0.8656 

100 Present 0.5792 0.4662 0.4193 0.4671 0.5815 
 

3.1.2.4 Hypar shell 

In this example cross-ply laminated hypar shells having four lamination schemes of (00/900), 
(00/900/900/00), (00/900/00/900) and (00/900/00/900/00)with simply supported as well as clamped 
boundary conditions with varying c/a ratios (0 to 0.2) are considered. The shell is subjected to 
uniform as well as sinusoidal loadings. It may be noted that the c/a ratio is an indicator of the 



906     A. Kumar et al./Analysis of laminated composite skew shells using   higher order shear deformation theory 

 

Latin American Journal of Solids and Structures 10(2013) 891 – 919 

 

twist curvature of the hypar shell. The results are compared with those obtained by Pradyumna 
and Bandyopadhyay [31] and found to match very well with each other. Some new results are 
also presented. Lamination scheme 00/900/900/00 is found to give lesser deflections in all cases 
especially in case of clamped boundary (CCCC) conditions. The geometry of hypar shell is as 
shown in Figure [5]. 
 

 
 

Figure 5   Perspective view of hypar shell panel 
 

Table 6   Non-dimensional central deflection of cross-ply laminatedhypar shell panel 
 

c/a Theory 

Lamination scheme 
00/900 00/900/900/00 00/900/00/900 00/900/00/900/00 
a/h = 
100 

a/h = 
10 

a/h = 
100 

a/h = 
10 

a/h = 
100 

a/h = 
10 

a/h = 
100 

a/h = 
10 

SSSS-uniform 

0 

Pradyumna and 
Bandyopadhyay 
[31] 

16.9763 - 6.8436 - 8.1137 - - - 

Present 16.4961 19.1698 6.8008 11.0546 8.0119 10.6923 6.8579 9.8175 

0.05 

Pradyumna and 
Bandyopadhyay 
[31] 

2.3744 - 1.9629 - 2.0922 - - - 

Present 2.3696 17.9858 1.9556 10.6522 2.0861 10.3190 1.9841 9.5001 

0.1 

Pradyumna and 
Bandyopadhyay 
[31] 

0.6193 - 0.5972 - 0.6252 - - - 

Present 0.6188 15.1714 0.5966 9.6030 0.6247 9.3402 0.6101 8.6616 

0.15 

Pradyumna and 
Bandyopadhyay 
[31] 

0.2610 - 0.2638 - 0.2767 - - - 

Present 0.2608 12.0271 0.2637 8.2471 0.2765 8.0642 0.2714 7.5492 

0.2 

Pradyumna and 
Bandyopadhyay 
[31] 

0.1388 - 0.1434 - 0.1504 - - - 

Present 0.1384 9.3147 0.1432 6.8835 0.1502 6.7680 0.1477 6.3972 
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Table 6   (continued) 
 
SSSS-sinusoidal 

0 

Pradyumna and 
Bandyopadhyay 
[31] 

10.6524 - 4.3441 - 5.0857 - - - 

Present 10.3521 12.1582 4.3160 7.1463 5.0214 6.8644 4.3216 6.3447 

0.05 

Pradyumna and 
Bandyopadhyay 
[31] 

1.6785 - 1.3511 - 1.3866 - - - 

Present 1.6714 11.4372 1.3453 6.9039 1.3819 6.6391 1.3310 6.1540 

0.1 

Pradyumna and 
Bandyopadhyay 
[31] 

0.5672 - 0.4966 - 0.4781 - - - 

Present 0.5654 9.7232 0.4956 6.2718 0.4771 6.0483 0.4781 5.6491 

0.15 

Pradyumna and 
Bandyopadhyay 
[31] 

0.3167 - 0.2716 - 0.2545 - - - 

Present 0.3158 7.8083 0.2712 5.4550 0.2539 5.2783 0.2575 4.9799 

0.2 

Pradyumna and 
Bandyopadhyay 
[31] 

0.2180 - 0.1800 - 0.1680 - - - 

Present 0.2173 6.1563 0.1797 4.6336 0.1675 4.4964 0.1698 4.2870 
CCCC-uniform 

0 

Pradyumna and 
Bandyopadhyay 
[31] 

3.9672 - 1.4859 - 1.7894 - - - 

Present 3.9276 5.8701 1.4767 4.8050 1.7738 4.0677 1.4785 4.0236 

0.05 

Pradyumna and 
Bandyopadhyay 
[31] 

1.3371 - 0.8459 - 0.9640 - - - 

Present 1.3349 5.7104 0.8432 4.6902 0.9606 3.9857 0.8585 3.9424 

0.1 

Pradyumna and 
Bandyopadhyay 
[31] 

0.3901 - 0.3451 - 0.3791 - - - 

Present 0.3923 5.2770 0.3455 4.3748 0.3797 3.7574 0.3588 3.7162 

0.15 

Pradyumna and 
Bandyopadhyay 
[31] 

0.1576 - 0.1613 - 0.1732 - - - 

Present 0.1589 4.6781 0.1619 3.9289 0.1741 3.4269 0.1693 3.3887 

0.2 

Pradyumna and 
Bandyopadhyay 
[31] 

0.0805 - 0.0879 - 0.0917 - - - 

Present 0.0810 4.0268 0.0883 3.4307 0.0924 3.0460 0.0918 3.0114 
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Table 6   (continued) 
 
CCCC-sinusoidal 

0 
Pradyumna and Ban-
dyopadhyay [31] 2.8703 - 1.0967 - 1.2944 - - - 

Present 2.8445 4.2399 1.0909 3.4731 1.2847 2.9326 1.0819 2.9112 

0.05 
Pradyumna and Ban-
dyopadhyay [31] 1.0168 - 0.6440 - 0.7138 - - - 

Present 1.0140 4.1300 0.6418 3.3949 0.7115 2.8770 0.6430 2.8561 

0.1 
Pradyumna and Ban-
dyopadhyay [31] 0.3335 - 0.2826 - 0.2988 - - - 

Present 0.3337 3.8316 0.2424 3.1800 0.2989 2.7220 0.2853 2.7024 

0.15 
Pradyumna and Ban-
dyopadhyay [31] 0.1524 - 0.1433 - 0.1484 - - - 

Present 0.1526 3.4189 0.1433 2.8757 0.1485 2.4973 0.1451 2.4797 

0.2 
Pradyumna and Ban-
dyopadhyay [31] 0.0852 - 0.0837 - 0.0836 - - - 

Present 0.0853 2.9694 0.0837 2.5350 0.0856 2.2380 0.0847 2.2225 
 
3.2 Analysis of laminated composite skew shell 

In this section some examples of laminated composite skew hypar and cylindrical shells are stud-
ied using the present FE model based on HSDT.  
 
3.2.1 Skew Hypar shell 

Skew hypar shells (b/a =1) having different boundary conditions are considered in this example 
taking three different lamination schemes (00/900, 00/900/00, 00/900/00/900) and varying c/a ratio 
(0.0, 0.1, 0.2) as well as a/h ratio (10, 100). Skew angles are varied from 00 to 450. Non-

dimensional central deflections ( ) and stresses obtained by using the present FE 

model are shown in Table 7 and Table 8 respectively. The present results for c/a = 0, represent-
ing plate geometry are compared with the corresponding results obtained by Chakrabartiet. al [5] 
for simply supported skew composite plates. It may be observed from Table 7 and 8 that the pre-
sent results are matching quite well with those obtained by Chakrabarti et al.. [5]. The present 
model is therefore used to generate other new results. It is observed that the deflection values 
tend to decrease with increase in c/a ratio as well as a/h ratio. In this case of skew hypar shell, 
lamination scheme (00/900/00/900) was found to give minimum central deflections. Thin shells 
(a/h = 100) with clamped boundary condition (CCCC) are found to give minimum deflections in 
all the cases listed in Table 7. Non-dimensional stresses for the same problem of hypar shell are 
also presented in Table 8 (a/h = 100). In-plane normal stresses and transverse shear stress are 
non-dimensionalized using following factors: 
 
 

3 3
2

4
0

10 wh Ew
q a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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,  

,  

 
Table 7   Non-dimensional central deflections of a laminated composite hypar shell panel subjected to uniform loading (b/a =1) 

 

Boundary con-
dition c/a Skew 

angle 

Lamination scheme 
00/900 00/900/00 00/900/00/900 
a/h 
=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 

SSSS 

0.0 

00 19.2188 16.9637 10.9812 6.7064 10.6967 8.1081 
- - 10.91171 6.7168 - - 

150 16.5631 14.2388 10.4300 6.4294 9.4613 6.8517 
- - 10.36691 6.4392 - - 

300 10.7202 8.6394 8.6613 5.4608 6.4902 4.1722 
- - 8.62171 5.4708 - - 

450 5.2223 3.7667 5.7181 3.6190 3.4184 1.8098 
- - 5.71051 3.6333 - - 

0.1 

00 15.1721 0.6188 9.4652 0.5680 9.3404 0.6247 
150 13.9406 0.5797 8.9882 0.5505 8.4446 0.5890 
300 9.8189 0.5580 7.6182 0.5364 6.0453 0.5487 
450 5.0687 0.5756 5.2683 0.5430 3.3177 0.5016 

0.2 

00 9.3148 0.1384 6.7769 0.1358 6.7681 0.1502 
150 8.9257 0.1237 6.4289 0.1326 6.2558 0.1387 
300 7.1747 0.1203 5.6522 0.1296 4.8556 0.1325 
450 4.3850 0.1364 4.3095 0.1399 2.9727 0.1416 

CCCC 

0.0 

00 6.2088 3.9552 5.2198 1.4184 4.3159 1.7830 
150 5.6912 3.5419 4.9871 1.3899 4.0084 1.6007 
300 4.2922 2.4602 4.2252 1.2692 3.1558 1.1183 
450 2.5206 1.1936 2.8971 0.9582 2.0114 0.5458 

0.1 

00 5.3198 0.3923 4.4877 0.3269 3.8027 0.3797 
150 4.9039 0.3916 4.3088 0.3268 3.5443 0.3712 
300 3.7603 0.3832 3.7114 0.3263 2.8215 0.3388 
450 2.2386 0.3395 2.6144 0.3135 1.8189 0.2582 

0.2 

00 4.0479 0.0810 3.4924 0.0882 3.0735 0.0924 
150 3.7987 0.0828 3.3809 0.0879 2.8991 0.0933 
300 3.0725 0.0879 3.0008 0.0879 2.3943 0.0951 
450 1.9781 0.0945 2.2423 0.0909 1.6315 0.0927 

 
 
 
 
 
 

2 2
0, ,

2 2 2
x x

a b h h q aσ σ ⎛ ⎞= −⎜ ⎟⎝ ⎠
2 2

0, ,
2 2

y y
a b z h q aσ σ ⎛ ⎞= ⎜ ⎟⎝ ⎠

( )2, 2; 3, 6; 4, 4N z h N z h N z h= = = = = = 2 2
00,0,

2
xy xy

h h q aτ τ ⎛ ⎞= −⎜ ⎟⎝ ⎠
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Table 7   (continued) 

 

SCSC 

0.0 

00 9.9870 7.2803 7.2947 2.7499 6.3726 3.3415 
150 8.9476 6.3348 6.9529 2.6690 5.8152 2.9199 
300 6.4114 4.2032 5.8512 2.3629 4.3639 1.9459 
450 3.5369 1.9953 3.9673 1.6895 2.5920 0.9269 

0.1 

00 8.2657 0.4209 6.2159 0.3801 5.5637 0.4322 
150 7.5967 0.4223 5.9545 0.3798 5.1347 0.4255 
300 5.7087 0.4322 5.1217 0.3889 3.9584 0.4085 
450 3.2650 0.4374 3.6102 0.4034 2.4162 0.3546 

0.2 

00 5.6746 0.0827 4.5737 0.0928 4.2349 0.0968 
150 5.3960 0.0856 4.4209 0.0923 3.9914 0.0984 
300 4.4532 0.0935 3.9627 0.0946 3.2720 0.1035 
450 2.8774 0.1103 3.0405 0.1068 2.1736 0.1122 

1 Results of these rows corresponds to Chakrabarti et al. [5]. 
 

Table 8    Non-dimensional stresses of a laminated composite hypar shell panel subjected to uniform loading (b/a =1, a/h = 100) 
 

c/a Skew 
angle 

Laminationscheme 
00/900 00/900/00 00/900/00/900 

σ x  σ y  τ xy  σ x  σ y  τ xy  σ x  σ y  τ xy  

Simplysupported (SSSS) 

0.0 

00 1.0762 -1.0762 -0.0940 0.8094 0.1937 -0.0432 0.7374 0.7005 -0.0447 
150 0.9496 -0.9598 -0.0473 0.7757 0.2196 -0.0270 0.6464 0.6262 -0.0169 
300 0.6435 -0.7258 -0.0053 0.6597 0.2807 -0.0136 0.4344 0.4696 -0.0014 
450 0.3200 -0.4969 0.0027 0.4482 0.3193 -0.0033 0.2158 0.3190 0.0007 

0.1 

00 0.0244 -0.0244 -0.0237 0.0614 0.0051 -0.0234 0.0448 0.0425 -0.0229 
150 0.0047 -0.0248 -0.0058 0.0472 0.0037 -0.0047 0.0288 0.0424 -0.0034 
300 -0.0209 -0.0334 -0.0029 0.0284 0.0094 -0.0029 0.0094 0.0505 -0.0014 
450 -0.0390 -0.0681 -0.0014 0.0123 0.0330 -0.0031 -0.0019 0.0810 -0.0014 

0.2 

00 0.0019 -0.0019 -0.0109 0.0123 -0.0012 -0.0112 0.0060 0.0057 -0.0110 
150 -0.0079 -0.0016 -0.0028 0.0051 -0.0009 -0.0021 -0.0029 0.0065 -0.0016 
300 -0.0211 -0.0024 -0.0017 -0.0054 -0.0005 -0.0015 -0.0152 0.0089 -0.0008 
450 -0.0379 -0.0112 -0.0009 -0.0161 0.0046 -0.0018 -0.0273 0.0201 -0.0009 

Clamped (CCCC) 

0.0 

00 0.4036 -0.4036 0 0.2788 0.0406 0 0.2592 0.2448 0 
150 0.3647 -0.3897 0 0.2728 0.0529 0 0.2337 0.2367 0 
300 0.2651 -0.3410 0 0.2479 0.0880 0 0.1688 0.2077 0 
450 0.1471 -0.2508 0 0.1879 0.1282 0 0.0932 0.1529 0 

0.1 

00 0.0134 -0.0134 0 0.0530 -0.0045 0 0.0369 0.0348 0 
150 0.0126 -0.0179 0 0.0510 -0.0055 0 0.0347 0.0383 0 
300 0.0148 -0.0329 0 0.0486 0.0018 0 0.0328 0.0500 0 
450 0.0202 -0.0604 0 0.0450 0.0244 0 0.0310 0.0658 0 

0.2 

00 -0.0042 0.0042 0 0.0065 -0.0014 0 0 -0.0001 0 
150 -0.0043 0.0045 0 0.0059 -0.0027 0 -0.0005 0.0010 0 
300 -0.0037 0.0027 0 0.0053 -0.0041 0 0.0004 0.0055 0 
450 -0.0023 -0.0073 0 0.0046 -0.0014 0 0.0029 0.0171 0 
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Table 8  (continued) 

 
Simply supported-Clamped (SCSC) 

0.0 

00 0.5591 -0.5591 -0.0609 0.4056 0.0840 -0.0273 0.3686 0.3532 -0.0282 
150 0.4948 -0.5262 -0.0331 0.3929 0.1036 -0.0176 0.3221 0.3364 -0.0116 
300 0.3534 -0.4368 -0.0048 0.3466 0.1493 -0.0095 0.2261 0.2834 -0.0013 
450 0.1856 -0.3123 0.0013 0.2495 0.1916 -0.0026 0.1181 0.2076 0.0004 

0.1 

00 0.0047 -0.0125 -0.0191 0.0453 -0.0148 -0.0182 0.0248 0.0231 -0.0158 
150 -0.0079 -0.0193 -0.0078 0.0356 -0.0180 -0.0066 0.0132 0.0255 -0.0042 
300 -0.0250 -0.0359 -0.0028 0.0223 -0.0092 -0.0035 0.0001 0.0395 -0.0011 
450 -0.0375 -0.0642 -0.0002 0.0089 0.0214 -0.0019 -0.0069 0.0677 -0.0323 

0.2 

00 -0.0052 0.0044 -0.0106 0.0051 -0.0057 -0.0099 -0.0028 -0.0029 -0.0089 
150 -0.0109 0.0037 -0.0044 0.0005 -0.0083 -0.0037 -0.0087 -0.0024 -0.0025 
300 -0.0210 -0.0003 -0.0018 -0.0071 -0.0097 -0.0020 -0.0175 0.0013 -0.0008 
450 -0.0357 -0.0110 -0.0003 -0.0177 -0.0042 -0.0012 -0.0267 0.0142 -0.0003 

 
 
3.2.2 Skew Cylindrical shell 

In this example, Cross-ply laminated skew cylindrical shells (b/a=3) having symmetric lamination 
scheme as (00/900/00) and anti-symmetric lamination schemes as (00/900), (00/900/00/900) with 
simply supported and clamped boundary conditions are considered. The skew angle is varied from 
00 to 450.  These shells are subjected to uniform loading with varying R/a (3, 10, 100) as well as 
a/h (10, 100) ratios.  

In Table 9 the values of non-dimensional central deflections w( )  of three different lamination 
schemes are presented for different skew angles. It can be observed that the deflection values de-
crease with increase in skew angle. Also there is not much effect of R/a ratio on the deflection 
values. The clamped boundary condition is more effective in reduction of deflection values as 
compared to the simply supported boundary condition. The reduction in deflection with increase 
in a/h ratio from 10 to 100 makes thin shells more effective. The superiority of (00/900/00) lami-
nation scheme is observed in all the cases mentioned in Table 9. 

Present results for stresses of cylindrical shell panel (b/a=3, R/a=4) subjected to sinusoidal 
loading are shown in Table 10. Some of the present results are compared with those of Xiao-ping 
[39] for zero skew angle and found to be in good agreement. The lamination scheme (00/900/00) is 
found to be superior. Normal stresses decrease as the value of skew angle increases. Stresses are 
least in the case of clamped boundary condition. In all the cases listed; values of shear stress are 
much lesser compared to other stresses. 
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Table 9   Non-dimensional central deflections of a laminated composite cylindrical shell panel subjected to uniform loading (b/a =3) 
 

Boundary condi-
tion 

R/a 
Skew 
angle 

Lamination scheme 
00/900 00/900/00 00/900/00/900 
a/h =10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 

SSSS 

3 

00 38.6423 17.5678 11.2634 6.2711 20.1208 11.0884 
150 35.7127 8.7441 11.0503 4.3794 18.8462 6.4675 
300 26.3440 2.4594 10.0582 1.7653 14.4127 2.0799 
450 13.2141 0.4843 7.2277 0.4157 7.6007 0.4280 

10 

00 38.4591 32.2695 10.9839 6.5265 19.8321 14.8302 
150 35.6285 27.1971 10.8545 6.2772 18.7313 13.2245 
300 25.9215 15.8484 10.2259 5.1350 14.6473 8.4976 
450 12.2178 6.1815 8.2528 2.6949 7.9607 3.3300 

100 

00 38.5372 34.3715 10.9568 6.48221 19.8325 15.0855 
150 35.4921 31.8843 10.8352 6.4357 18.7187 14.3902 
300 25.1606 22.6344 10.2421 6.2211 14.5660 11.1852 
450 11.2650 9.9188 8.3683 5.3999 7.7924 5.5613 

CCCC 

3 

00 5.4914 0.1277 3.2664 0.0923 4.3743 0.1242 
150 5.3737 0.1271 3.2430 0.0921 4.2795 0.1239 
300 4.7629 0.1251 3.1225 0.0913 3.7558 0.1224 
450 3.1886 0.1205 2.6770 0.0891 2.5287 0.1154 

10 

00 9.3282 1.1821 4.8846 0.6000 6.6049 0.9538 
150 8.9780 1.1732 4.8322 0.5977 6.3762 0.9484 
300 7.3744 1.1221 4.5641 0.5872 5.2632 0.8985 
450 4.1901 0.9215 3.6614 0.5508 3.1421 0.6729 

100 

00 10.0241 6.3319 5.1342 1.3081 6.9555 2.8344 
150 9.6189 6.1223 5.0764 1.2977 6.7008 2.7854 
300 7.7994 5.0049 4.7805 1.2528 5.4809 2.3783 
450 4.3241 2.5959 3.7980 1.1056 3.2191 1.2628 

SCSC 

3 

00 17.6312 6.2102 7.3655 2.3365 10.9063 4.0331 
150 16.6497 4.0103 7.2339 1.9001 10.3625 2.8937 
300 12.9507 1.2835 6.5332 0.9088 8.1242 1.0771 
450 6.8585 0.2697 4.5251 0.2394 4.4016 0.2403 

10 

00 17.7013 12.6187 7.2659 2.6306 10.8758 5.7734 
150 16.8148 11.2045 7.1814 2.5585 10.4146 5.3678 
300 13.1846 7.0018 6.7511 2.1823 8.4134 3.7366 
450 6.9278 2.7386 5.3537 1.2625 4.8174 1.5215 

100 

00 17.7372 13.5193 7.2558 2.6230 10.8830 5.8865 
150 16.8055 12.8839 7.1757 2.6014 10.4203 5.7363 
300 12.9510 9.9939 6.7728 2.5095 8.3959 4.7387 
450 6.5691 4.8274 5.4520 2.1991 4.7650 2.4543 
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Table 10   Non-dimensional stresses of laminated cylindrical shell subjected to sinusoidal loading (b/a=3, R/a=4) 
 

a/h Skew angle 
Lamination scheme 
00/900 00/900/00 00/900/00/900 
σ x  σ y  τ xy  σ x  σ y  τ xy  σ x  σ y  τ xy  

Simply Supported (SSSS) 

10 

00 
 

1.6878 0.2719 0.0521 0.6930 0.0608 0.0141 1.1007 0.1842 0.0257 
- - - 0.69852 0.0603 0.0140 1.100 0.1846 0.02573 

150 0.5902 0.1366 0.0133 0.2686 0.0395 0.0054 0.3921 0.0096 0.0034 
300 0.6109 0.3359 0.0009 0.3642 0.1074 0.0019 0.4122 0.2199 0.0035 
450 0.4967 0.4957 0.0015 0.4403 0.2503 0.0097 0.3339 0.3451 0.0012 

100 

00 0.9797 0.3860 0.0708 0.5553 0.1283 0.0202 0.8029 0.2496 0.0404 
150 0.1857 0.0875 0.0096 0.1763 0.0425 0.0047 0.1956 0.0728 0.0051 
300 0.1215 0.0738 0.0025 0.1495 0.0496 0.0025 0.1170 0.0754 0.0011 
450 0.0318 0.0507 0.0009 0.1349 0.0469 0.0016 0.0443 0.0680 0.0003 

Clamped (CCCC) 

10 

00 0.2937 0.0547 0 0.3510 0.0161 0.0054 0.2022 0.0529 0 
150 0.0991 0.0330 0 0.1344 0.0125 0.0014 0.0688 0.0309 0 
300 0.1613 0.1197 0 0.2040 0.0416 0 0.1124 0.0959 0 
450 0.1719 0.2246 0 0.2727 0.1256 0 0.1237 0.1672 0 

100 

00 0.0070 0.0042 0 0.0810 0.0014 0 0.0099 0.0038 0 
150 0.0215 0.0034 0 0.0305 0.0001 0 0.0116 0.0008 0 
300 0.0128 0.0028 0 0.0509 0.0021 0 0.0023 0.0054 0 
450 0.0052 0.0111 0 0.0819 0.0045 0 0.0043 0.0224 0 

Simply Supported-Clamped (SCSC) 

10 

00 0.9357 0.1408 0.0333 0.4399 0.0379 0.0122 0.6434 0.1115 0.0189 
150 0.3967 0.1098 0.0099 0.1968 0.0359 0.0041 0.2733 0.0804 0.0026 
300 0.3541 0.1589 0.0010 0.2231 0.0297 0.0021 0.2389 0.1084 0.0007 
450 0.3238 0.3402 0.0003 0.3240 0.1523 0.0013 0.2161 0.2310 0.0005 

100 

00 0.44612 0.1327 0.0482 0.2829 0.0423 0.0145 0.3849 0.0895 0.0280 
150 0.0891 0.0652 0.0075 0.1163 0.0306 0.0031 0.1139 0.0545 0.0038 
300 0.0839 0.0264 0.0028 0.0898 0.0268 0.0021 0.0721 0.0139 0.0016 
450 0.0002 0.0034 0.0017 0.0989 0.0027 0.0019 0.0093 0.0196 0.0013 

2Results of this row corresponds to Xiao-ping [39] 
 
3.2.2.2 Angle-ply laminated skew cylindrical shell 

Angle-ply laminated (450/-450/450/-450) skew cylindrical shell (b/a =3) is considered in this ex-
ample. The shell is subjected to uniform loading with different boundary conditions such as simp-
ly supported and clamped. The skew angle is varied from 00 to 450. The R/a (3, 10, 100) as well 
as a/h (10, 100) ratios are also varied. 
Variation of non-dimensional central deflection (Figures 6a-6e) and in-plane normal stress (Fig-
ures 7a-7e) with skew angle is presented [Figures (a, b): Simply supported, Figures (c, d): 
Clamped and Figures (e, f):- Simply supported-clamped boundary conditions]. As in the case of 
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clamped boundary condition, the in-plane shear stress was found to be zero for all the cases; vari-
ation of in-plane shear stress with skew angle is shown (Figures 8a-8d) only for two boundary 
conditions [Figure 8(a, b): Simply supported, 8(c, d): Simply supported-clamped boundary condi-
tions]. From the figures it can be observed that the deflection and stresses follow the expected 
general trend. With increase in R/a ratio, central deflection values differ significantly in case of 
thin shells (a/h = 100) as compared to those for thick shells (a/h = 10). Deflection and stresses 
tend to decrease as the skew angle increases. In Figures 8 it can be observed that in-plane shear 
stresses tend to attain minimum value approximately at skew angle of 300. 
 

 
6(a)                                                         6(b) 

 
6(c)                                                         6(d) 

 
6(e)                                                         6(f) 

Figure 6   Variation of non-dimensional central deflections w( )  of laminated angle ply skew composite cylindrical shell 

With skew angles 
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7(a)                                                         7(b) 

 
7(c)                                                         7(d) 

 
7(e)                                                         7(f) 

Figure 7 Variation of non-dimensional in-plane normal stress (σ x ) of laminated angle ply skew composite cylindrical shell  

with skew angles 
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8(a)                                                         8(b) 

 
8(c)                                                         8(d) 

Figure 8Variation of non-dimensional in-plane shear stress τ xy  of laminated angle ply skew composite cylindrical shell with skew 

angles 
 
4 CONCLUSIONS 

In this paper, a new finite element model has been developed for the analysis of skew composite 
shells based on higher order shear deformation theory (HSDT) using a C0 formulation. In this 
model there is no need to include any shear correction factor. Three radii of curvatures including 
the cross curvature effects are also considered in the FE formulation which accounts for twisting 
effect of the geometry. Different shell forms considered in this study include spherical, conical, 
cylindrical and hypar shells. It is observed there is no result available in the literature on the 
present problem of skew composite shell. Therefore, many new results are generated on the static 
response of laminated composite skew shells considering different geometry, boundary conditions, 
ply orientation, loadings and skew angles which should be useful for future research. 
The following general conclusions are made:  
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1. Central deflection values are lesser for thin shells (a/h=100) as compared to thick shells 
(a/h=10) for all the types of shells considered in this paper.  
2. The lamination scheme 00/900/00 is found to give minimum central deflection values for spheri-
cal, cylindrical and hypar shells.  
3. In cylindrical and spherical shells, as the R/a ratio increases central deflection values decrease.  
4. Laminated composite angle-ply (𝜃 /- 𝜃 / 𝜃 /- 𝜃 /𝜃) cylindrical shell gives minimum deflection 
values corresponds to 𝜃 =45 for all the cases.  
5. Laminated composite skew hypar shell give minimum central deflection for lamination scheme 
(00/900/00/900).  
6. In-plane normal stresses decrease as the skew angle increases in case of laminated composite 
skew cylindrical shell.  
7. In-plane shear stresses are much lesser compared to in-plane normal stresses for both cylindri-
cal and hypar shells.  
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