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Abstract 
In this study, finite element analysis was performed to investigate the feasibility of multi-layered pyramidal 
truss structures as a filler material of energy absorbing tubes. Rectangular tubes with the filler and empty 
tubes were compressed at a constant velocity of 10km/h and their energy absorbing capabilities were 
compared to demonstrate the structural benefit of filling materials in the tubes. Additionally, the compressive 
response of the multi-layered pyramidal truss structures without tube wall constraint were observed. The 
investigations included three tube wall thicknesses and three pyramidal truss structures with three relative 
densities by varying the inclination angle of the pyramidal truss strut. Those were made of Al6063T5 and 
304 stainless steel (SS304) for tube wall and pyramidal truss structure, respectively. The results indicate that 
the energy absorption capability of the tube with the filling exceeds the simple sum of that of tube and that 
of the filler, and this is due to the interaction effect between outer tubes and pyramidal truss struts near the 
tube wall. Furthermore, the inclination angle of pyramidal truss struts influences energy absorption. Thus, the 
pyramidal truss structures can be potentially applied as a filler material for energy absorbing structures. 
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1 INTRODUCTION 

Passive energy dissipation devices absorb a portion of energy transmitted to passengers from vehicle collisions. For 
example, crash boxes, installed behind bumpers, fold progressively when exposed to unexpected impact loads. Dynamic 
progressive buckling is the primary deformation mechanism of the energy absorbers and leads to oscillations about a 
reasonably constant operating force over a relatively long distance. 

Generally, they are in the shape of rectangular or circular tubes in automobile applications. However, energies are 
absorbed more effectively with less materials if a supplemental material, such as metal foams, is filled in the empty 
region of tubes. Thus, the mean crushing strength of the tube filled with metal foam significantly exceeds the simple sum 
of the energy absorptions of individual elements: the outer tubes and the filler material. Extant studies indicate that 
interactions between the outer tubes and inner material lead to the additional enhancements (Santosa and Wierzbicki, 
1998; Seitzberger et al., 1997; Ashby et al., 2000). 
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To date, a significant amount of studies focused on discovering the energy absorption characteristics of empty 
tubes. The collapse modes of axially compressed tubes are significantly influenced by their cross sections. Abramowicz 
and Jones (1986) conducted an experimental study on circular and square steel tubes and observed their compressive 
response. In order to predict the energy absorbing capabilities and buckling wavelengths, Wierzbicki and Abramowicz 
(1983) performed an analytical study on the progressive buckling of circular tubes. The development was based on the 
assumptions wherein a rigid-plastic material allowing limited extensional modes. Recently, Velmururugan and 
Muralikannan (2009) experimentally explored empty tubes of various cross sections and compared their results with 
simple analytical predictions. In addition to basic geometries including rectangular, square and circular cross sections, 
double-walled and multi-cell tubes were also tested for energy absorbing performance (Abramowicz and Wierzbicki, 
1988; Goel, 2015; Karagiozova, 2004; Kim, 2002; Santosa and Wierzbicki, 1999; Yin et al., 2014). The parent materials 
comprising of the tubes as well as cross sectional shapes are of interest. Fundamental material response, such as strain 
hardening, strain rate sensitivity, and fracture mode, evidently influences the collapse modes and energy absorbing 
mechanisms of the structure (Ronchietto et al., 2009), and thus the tubes made of annealed steel (Velmururugan and 
Muralikannan, 2009), extruded aluminum alloy (Goel, 2015), composite (Harte et al.. 2000; Yan et al., 2014; Supian et al., 
2018) and metal-FRP hybrid (Kalhor and Case, 2015) were explored. 

In order to improve the energy absorbing performance, the structural benefit and weight saving were investigated 
by inserting a lightweight material inside empty tubes (Abramowicz and Wierzbicki, 1988). For example, earlier studies 
(Hanssen et al., 2000; Seitzberger et al., 2000; Santosa et al., 2000; Shahbeyk et al., 2005) considered aluminum foams. 
When the foam-filled structures were crushed, it revealed that the mean crushing load significantly increased due to the 
interaction between the tube wall and filler material. Therefore, the mean crushing strength of the tube filled with metal 
foam significantly exceeds the simple sum of the energy absorptions of individual elements, namely the outer tube and 
filler material. In addition to the Al foams, diverse lightweight materials such as polyurethane foam (Yan et al., 2014; 
Zhang et al., 2014), honeycomb (D’Mello and Wass, 2012; Zaeri and Kroger, 2008), and functionally graded materials 
(FGM) (Sun et al.,2010) are inserted to investigate their structural performances. Among the lightweight materials, recent 
studies focused on periodic cellular metals (PCMs). A significant amount of previous studies underlined their structural 
advantages as well as multifunctional potentials. Furthermore, it is easy to manipulate their mechanical properties simply 
by altering geometric dimensions. Given their advantages over metal foams (such as structural performance and 
multifunctional capabilities), the structured materials focused on a potential replacement for metal foam (Wadley, 2006). 

In the present study, a multi-layered pyramidal truss structure that corresponds to periodic cellular metal (PCM), is 
introduced for a filler material of crash boxes. A certain amount of crushing force enhancement is expected when a multi-
layered truss structure is inserted into an empty tube and subsequently compressed. Thus, the present study performed 
numerical simulations in order to understand the deformation mechanism and quantify the amount of interactions 
between the outer tube and multi-layered pyramidal truss structures (PCMs). Additionally, the compressive responses 
of individual elements which correspond to empty tubes and multi-layered pyramidal truss structures are also 
investigated to analyze energy absorbing capacity. 

The organization of this study is as follows. In section 2, three types of compression models are constructed as 
follows: (i) empty Al6063-T5 rectangular tubes, (ii) multi-layered pyramidal truss structures (PCM), and (iii) PCM filled 
Al6063-T5 tubes. In Section 3, three types of numerical simulation results are presented and discussed. 

2 NUMERICAL ANALYSIS 

2.1 Energy absorbing tubular structure 

The present study investigates a PCM-filled tubular structure consisting of an outer tube and an inner material as 
schematically described in Figure 1(a). A tube with a height of 160mm exhibits a rectangular cross section with a width 
(W) corresponding to 100mm and a length (L) corresponding to 60mm. 

The base material for the outer tube is Al6063-T5, and this is currently employed in automotive crash boxes. Three 
wall thicknesses of h=1.0, 1.2, 1.5mm are considered. Given a constant cross section along the height direction, extrusion 
is one of the easiest manufacturing methods for the outer tubes, and thus the base material is determined as mentioned 
above. 

A multi-layered pyramidal truss structure made of 304 stainless steel (SS304) is considered as a filler material. 
Previous studies report that the SS304 pyramidal truss structures are mainly manufactured by perforating/bending and 
then joined with face sheets by brazing for sandwich construction. Given the periodic nature of the multi-layered 
pyramidal truss structure, a representative unit cell is introduced for characterization as shown in Figure 1(b). The width 
of an unit cell (Wc) the angle of strut to the base plane (α), and strut thickness (tc) are used, and the strut is assumed to 
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have a square cross-section. And, the nodal region of the pyramidal truss structure, is assumed to have a flat area (bc ´ 
bc) for brazing neighboring upper and lower cells. Those dimensions are associated with the relative density ( cρ ), which 
is defined as the ratio of the density of pyramidal truss structures to that of base material. The investigations were 
performed on several pyramidal truss structures with three relative densities by varying angle α from 30° to 40° while 
fixing tc=1.0mm, bc=1.414mm and Wc=12mm. In this case, the relative density is obtained by using Eqs. (1) and (2) as 
follows: 

( )
( )( )( )cos cos sin

+
≈

+ + +

2
c c c c
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c c c c c c

2b t 4l t
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This is shown in Figure 1. In addition to the above-mentioned integrated structure, empty aluminum tubes without 
inner materials are compressed and compared with the compressive response of PCM-filled tubes. Furthermore, the 
compression response of multi-layered pyramidal truss structures is also characterized. Table 1 lists all the numerical 
models used in the study. 

 
Figure 1. (a) schematic diagram of the outer tube (Al6063-T5) and multi-layered pyramidal truss structure inside; (b) a 

representative unit cell of multi-layered PCM structure and its simplification. 

Table 1. List of FE models 

Case 
No. 

(Outer Shell, Al6063T5) (Inner Core) 
comment 

W L H h Wc ´ 
Wc 

tc´ 
tc αc (deg) bc´bc 

(node) 𝝆𝝆� 

#1 100 60 160 1.0 12´12 1´1 30 1.414´1.414 0.0497 PCM-filled crashbox (Model type III) 
#2 100 60 160 1.0 12´12 1´1 35 1.414´1.414 0.0447 PCM-filled crashbox (Model type III) 
#3 100 60 160 1.0 12´12 1´1 40 1.414´1.414 0.0408 PCM-filled crashbox (Model type III) 
#4 100 60 160 1.2 12´12 1´1 30 1.414´1.414 0.0497 PCM-filled crashbox (Model type III) 
#5 100 60 160 1.2 12´12 1´1 35 1.414´1.414 0.0447 PCM-filled crashbox (Model type III) 
#6 100 60 160 1.2 12´12 1´1 40 1.414´1.414 0.0408 PCM-filled crashbox (Model type III) 
#7 100 60 160 1.5 12´12 1´1 30 1.414´1.414 0.0497 PCM-filled crashbox (Model type III) 
#8 100 60 160 1.5 12´12 1´1 35 1.414´1.414 0.0447 PCM-filled crashbox (Model type III) 
#9 100 60 160 1.5 12´12 1´1 40 1.414´1.414 0.0408 PCM-filled crashbox (Model type III) 

#10 100 60 160 1.0 - - - - - Empty tube (Model type I) 
#11 100 60 160 1.2 - - - - - Empty tube (Model type I) 
#12 100 60 160 1.5 - - - - - Empty tube (Model type I) 
#13 - - - - 12´12 1´1 30 1.414´1.414 0.0497 Multi-layered pyramidal truss 

(Model type II) 
#14 - - - - 12´12 1´1 35 1.414´1.414 0.0447 Multi-layered pyramidal truss 

(Model type II) 
#15 - - - - 12´12 1´1 40 1.414´1.414 0.0408 Multi-layered pyramidal truss 

(Model type II) 
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2.2 FE model constructions 

As mentioned previously, the following three types of numerical models are constructed: (i) Type I: empty 
rectangular tubes, (ii) Type II: multi-layered pyramidal truss structures, and (iii) Type III: PCM-filled tubes. Model types I 
and II correspond to the individual elements of PCM-filled tubes (model type III), outer tube, and filler material 
(see Table 1). The objective of type I and type II involves analyzing the contribution of energy absorptions and measuring 
the load enhancement from interactions between the outer tube and the filler material. A commercial FE package, 
ABAQUS/Explicit, is utilized to simulate the constructed models. 

The base materials for outer tubes and multi-layered pyramidal truss structures correspond to Al6063T5 and 304 
stainless steel (SS304), respectively. In order to incoporate their material response into FE models, tensile test specimens 
are extracted from an Al6063T5 extruded tube and a tensile test is performed (KS B 0802, 2013). On the other hand, the 
material properties of 304 stainless steel (SS304) are based on previous studies (Lim and Bart-Smith, 2014). Specifically, 
Al6063-T5 is considered as an elastic-plastic solid with an elastic modulus E=70513.8MPa, Poisson’s ratio ν=0.33, density, 
ρ=2700kg/m3, and yield stress σY= 220.0MPa. The plastic deformation of the aluminum alloy is described by an isotropic 
hardening model utilizing multiple test data points. On the other hand, 304 stainless steel (SS304) is represented by 
Young’s modulus, yield stress, and the two hardening moduli for the two plastic regions corresponding to: E=230769.2 
MPa, ( ) =1

Y 271.8MPaσ , ( ) =2
Y 450.0MPaσ , ( ) =1

TE 7842.0MPa , ( ) =2
TE 2434.7MPa , respectively. Figure 2 shows the stress-strain curves 

for both metals. Most of aluminum alloys do not show appreciable strain rate sensitivity, and thus the rate sensitivity of 
Al6063-T5 is ignored. In contrast, the rate dependency of SS304, (i.e., the base material of multi-layered truss structures) 
is considered by using the Cowper-Symonds model. The dynamic yield strength enhancement ratio, R, is given by 

( )  = = +  
 

m
y

0
y

p pR 1
D

σ

σ



  (3) 

The material parameters of 304 stainless steel (SS304) in Eqn. (3), namely D and m, are used as follows: D=4920, 
m=0.154 (Ferri et al., 2006; Lim and Bart-Smith, 2014; Stout and Follansbee, 1986; Zok et al., 2005). 

In all the FE models, shell elements and beam elements are used to model the outer tubes and multi-layered 
pyramidal truss structures, respectively. To guarantee the FE models free from discretization, appropriate mesh density 
was determined. Several models having several mesh densities were created by doubling the number of elements, and 
the internal energy results were compared. A mesh density resulting in less than 1% difference between successive 
models was chosen to be the converged one. For the outer tubes, the number of shell elements (S4R in ABAQUS) 
correspond to fifty in the width, thirty in the length and eighty in the height directions, respectively. Furthermore, twenty 
beam elements are used to model a strut of a pyramidal truss. Thus, approximately 110,000 beam elements are meshed 
for the multi-layered pyramidal truss structures with α=35°. 

 
Figure 2. Stress-strain curves of (a) Al6063-T5; (b) 304 stainless steel (SS304). 

Prior to a dynamic compressive analysis, additional eigen-analysis on the outer tube is performed to obtain an 
imperfect geometry by superposing eigenmodes to a perfectly modelled geometry. The appropriate curvature shape and 
its magnitude are determined from an additional compression test of an Al6063-T5 empty tube (The details about the 
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test are skipped here). The test result is compared, and imperfect geometry from the second eigenmode and its 
magnitude of ξ2=0.1 is selected such that it exhibits a deformation shape and an initial peak in the reaction force curve 
close to the test results. The determined curvature is applied to all the empty tube models and PCM-filled tube models. 
This can trigger the formation of buckling and exhibit a more realistic initial peak in reaction-force curves. 

Two rigid plates are tied to both the ends of the structure, and dynamic compression is applied to a rigid plate. The 
plate moves at a constant velocity of 10kph (2778mm/s) while the other end is completely fixed. With respect to a 
number of contact interactions, a general contact algorithm without friction is defined between the pyramidal truss 
struts and a tube, and also from the self-contact between the tube and pyramidal truss struts. Calculations are completed 
when the amount of compression reaches 50% of the height of tube (i.e., 80mm). 

Additionally, FE models for individual elements comprising of the PCM-filled structures are constructed and 
simulated in the same manner as mentioned above (i.e., type I and II models). Three empty tubes (type I) with three shell 
thicknesses (h) are modelled and compressed with the same boundary and loading conditions. Furthermore, with respect 
to the multi-layered pyramidal truss structure models (type II), three models are constructed by controlling angle, α, 
which varies the relative density. The nodes at the bottom layer and those at the top layer are fixed to two rigid plates 
wherein one corresponds to fixed and the other corresponds to dynamic compression. All the simulation models, empty 
tubes (#10-#12), multi-layered pyramidal truss structures (#13-15), and PCM-filled tubes (#1-#9) are summarized in 
Table 1. 

3 RESULTS AND DISCUSSION 

3.1 Al6063-T5 empty tubes (Type I) 

Three tubes of h=1.0, 1.2, 1.5mm are compressed at a constant velocity of V=10km/h (2778mm/s). Figure 3 shows 
the deformation patterns of empty tubes of h=1.5mm. Figure 4 shows a reaction force-time curve of empty tubes of 
h=1.0, 1.2, 1.5mm. At the very initial stage, the reaction force rises instantaneously. After an initial peak, the reaction 
force decays and increases again at approximately d=40mm. The load fluctuation is clearly associated with the formation 
of consecutive folds. Similarly, progressive buckling response is also observed in the empty tube of h=1.0mm and 1.2mm. 

The mean crushing force is calculated by averaging the sum of elastic energy and plastic dissipation over 
compressive displacement (Δ=80mm). 

∆ ⋅
=

∆
∫0

m
P dx

P  (4) 

In the present study, the FE calculations are compared with the theoretical predictions (Velmururugan and 
Muralikannan, 2009) as shown in Table 2. The expression is as follows: 

.  =  
 

1 3

m 0
CP 38 27M
h

 with + =  
 

c dC
2

 (5) 

The discrepancies between the two are about 10% are due to the exclusion of the strain hardening response in the 
FEA. 

Table 2 Comparison of mean crushing load, Pm. 

Shell thickness, h 
(mm) 

FEA (Pm) 
(N) 

Theoretical (Pm) 
(N) 

Discrepancy 
(%) 

1.0 11428 10100 13.2 
1.2 13896 13686 1.54 
1.5 22018 19852 10.9 
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Figure 3. Deformation pattern of empty tube compression of h=1.5mm under V=10km/h (a) at 20mm compression, (b) at 40mm 

compression, (c) at 60mm compression, (d) at 80mm compression. The contour represents the equivalent plastic strain. 

 
Figure 4. Reaction force time history curve of empty tubes of h=1.0 (#10), 1.2 (#11), 1.5mm (#12). 

3.2 SS304 multi-layered pyramidal truss structures (Type II) 

Figure 5 shows a front view of SS304 multi-layered pyramidal truss structure when it is compressed by 40mm and 
80mm, respectively. The contour in the figure represents the equivalent plastic strain. Figure 6 shows the reaction force 
curves with respect to the inclination angle, α. At the earliest stage of compression (less than 1mm compression), a steep 
increase in reaction force is observed, and thus is associated with the elastic deformations of individual struts along their 
own axes. When the curve reaches a point of approximately 4000~5000N (corresponding to a few of mm compression), 
the rate of the reaction force change begins to decrease. And then, the curve rises at a constant rate as if metallic solids 
harden beyond the yield strength. In the consdered range of the inclination angle, α, differences in the reaction force 
curves were not appreciable. 

 
Figure 5. Compression of the pyramidal truss core at (a) 40mm compression (25% its height) and (b) 80mm (50% of its height). The 

contour represents the equivalent plastic strain. 
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Two points are noted based on the observations. 
The first point is deformation mechanism. In previous studies that investigated the structural response of PCM 

structures (Cote et al., 2007; Wicks and Hutchinson, 2004; Deshpande et al., 2001), the deformation mechanism is mainly 
due to axial-stretch of PCM struts as shown in Figure 7. Therefore, when struts are loaded, they are compressed or 
stretched in their axial direction. Thus, it is well-known that the structural superiority to metal foam stems from the 
deformation mechanism. However, in the multi-layered pyramidal truss structures, plastic deformations are shown as 
localized at the nodes where each four struts meet, and this is considered as a ‘hinge’ deformation mechanism. This is 
because the multi-layered pyramidal truss structure is manufactured such that a single pyramidal truss layer is repeatedly 
layered up to a considerable height so that it can be considered as open cell foam with a significantly large pore size. 

The second point is that the multi-layered pyramidal truss structures bulge in the middle of their height. In the case 
of sandwich structures with a single layer of pyramidal truss core, the displacement of nodes is constrained because all 
the nodes of the truss structure are attached to a face sheet. However, if the truss structures are constructed as multi-
layered, the nodes at the middle layers can move freely such that the bulging is observed. 

Thus, the deformation mechanism makes the load curves independent of a geometric parameter, α. The mean 
crushing load is approximately in the range of 5000-8000N during compression up to fifty percent of their heights. 

 
Figure 6. Reaction force-displacement curve of multi-layered pyramidal truss structures (PCM) with respect to α. 

 
Figure 7. Deformation mechanism of pyramidal truss (dotted: undeformed, solid: deformed) 
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3.3 PCM-filled structures (Type III) 

Figure 8 compares crushing patterns between an empty tube and PCM filled one. When compressed, the outer 
tubes collapse progressively. However, the bulging is not appreciably observed as seen in the type II analysis because the 
outer tube constrains the expansion of the inner material. Hence, the struts near an outer tube are observed to severely 
deform as shown in Figure 8. Figure 9(a) compares the reaction force-displacement curve of PCM-filled tubes with 
h=1.5mm and α=40°, that of an empty tube with h=1.5mm, and that of a multi-layered pyramidal truss with α=40°. 
Furthermore, the contribution of plastic dissipation by individual elements is also shown in Figure 9(b). When compared 
with the mean crushing force of empty tube with h=1.5mm (22000N), the load enhancement due to the PCM filler is 
evident. 

 
Figure 8. Deformation patterns of PCM-filled tubes. 

 
Figure 9. (a) Comparison of load-displacement curves of an empty tube of h=1.5mm, a multi-layered pyramidal truss structure, and 

PCM-filled structures; (b) analysis of energy absorptions of a PCM-filled structure (h=1.5, α=40°) 

Several studies (Seitzberger et al., 1997;Seitzberger et al., 2000; Santosa et al., 2000) observed that foam-filled tubes 
exhibit buckling wavelengths that are shorter than those of empty tubes with same dimensions, and this result in the 
enhancement of energy absorption capacity. Conversely, in the present study, the wave lengths in the integrated PCM-
filled structures (type III) are observed to slightly exceed those of empty tube simulations (type I). Nevertheless, the 
energy absorption capacity of integrated structure is greater than the sum of type I and type II models by 20~50%. The 
aforementioned structural benefit is strongly associated with the severe deformations of neighboring struts near the 
tube material, and this corresponds to the interaction between the outer tube material and PCM structures. 

Figure 10 quantitatively summarizes the amount of interaction between tube and core based on the angle α. As 
shown in the diagram, the energy absorptions of PCM-filled structures approximately exceeds the simple sum of the 
calculations from type I and type II analyses by 20~50%. The 20~50% differences are denoted by black arrows as shown 
in Figure 10. 
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Figure 10. Summary of the structural benefit obtained by inserting a multilayered pyramidal truss structure as an inner material. 

Although the relative density does not vary significantly in the range of 30°<α<40° (which corresponds to  
cρ =4.08~4.97%), the amount of mean crushing load ΔPm, varies substantially depending on the angle of α. It is assumed 

that the main deformation mechanism of pyramidal truss structures switch from bending to axial-stretch since the outer 
tube constrains the deformation of multi-layered pyramidal truss struts. 

Therefore, multi-layered pyramidal truss structures can be beneficially applied to an inner material at the point of 
lightweight design of energy absorbers. If the design variables are optimized, increased weight saving is expected with 
reduced materials. Thus, it is expected that energy absorbing performance can be enhanced by inserting a PCM inner 
material as performed in metal foam-filled structures. 

4 CONCLUSIONS 

In the study, we examined the feasibility of multi-layered pyramidal truss structures as an inner material of filled 
crashbox without considering the optimization of material distribution. From the numerical simulations of empty tubes, 
multi-layered truss cores, and PCM-filled tubes, following conclusions were obtained: 

1. Given the interaction effect between outer tubes and PCM struts near the tube, the energy absorption capability of 
the integrated structure exceeds the sum of capabilities of individual components. By inserting PCMs inside the 
empty tubes, the energy absorption enhancements amount to 20~50% of the sum of capacities of individual 
elements. 

2. The energy absorption capability is associated with the angle α,. Although the considered range of α did not change 
the relative density appreciably, it considerably influenced the energy absorption characteristics. For example, with 
the change in truss angle, α, from 30° to 40° (corresponding relative density difference of 0.89%), the mean crush 
load, Pm, showed the 16% difference in the tubes of outer shell thickness, h=1mm. 

3. The material response of multilayered pyramidal truss structures, when they are not inserted into tubes, appeared 
as an elastic-plastic hardening metal. Macroscopically, bulging was observed as compressed. And, deformation was 
concentrated at the nodes from the microscopic viewpoint. It is noteworthy that the observations are not seen 
when a single layer of pyramidal truss core is employed in sandwich structures. 
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