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Abstract 

The problem of nonlinear vibrations and stability analysis for 

the symmetric laminated plates with complex shape, loaded by 

static or periodic load in-plane is considered. In general case 

research of stability and parametric vibrations is connected with 

many mathematical difficulties. For this reason we propose 

approach based on application of R-functions theory and varia-

tional methods (RFM).The developed method takes into ac-

count pre-buckle stress state of the plate. The proposed ap-

proach is demonstrated on testing problems and applied to 

laminated plates with cutouts. The effects of geometrical pa-

rameters, load, boundary conditions on stability regions and 

nonlinear vibrations are investigated. 
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1 INTRODUCTION 

Laminated composite plates are frequently used in various engineering applications in the aviation, 

aerospace, marine, mechanical and others industries. The use of composite materials requires com-

plex analytical and numerical methods in order to predict accurately their response to external 

loading. A recent review of current developments in non-linear vibration analysis and dynamic sta-

bility of the laminated plates and shells has been presented in references [6,9,11,13,14], ets. From 

presented review it follows that buckling problems with non-uniform pre-buckle stress state are of 

special interest. There are few works in which vibration, buckling and parametric instability behav-

ior of a laminated plate with internal cutouts were studied [10,12]ets. It should be noted that the 

finite element method (FEM) remains the only way for dealing with complex structures and the 

most versatile.  

 In this work we propose alternative to FEM approach based on using variational methods and 

R-functions theory (RFM). The developed method takes into account pre-buckle stress-state and 

allows investigating the laminated plates of an arbitrary form, in particular case with internal free, 

simply supported and clamped cutouts. Formerly this approach was developed in references [2,3] for 

isotropic and orthotropic plates. The aim of this paper is extending the theoretical model of this 
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method in order to carry out the nonlinear analysis of laminated plates with an arbitrary shape and 

different boundary conditions. The dynamic instability and buckling characteristics of the laminated 

plates with cutouts are discussed. 

 

2 PROBLEM FORMULATION 

Geometrically nonlinear vibration of simmetricaly laminated composite plates subjected to in-

plane compressive periodic edge loading 0 costp p p t  is studied. It is assumed that the de-

lamination of the layers is absent. The mathematical formulation of the problem is made in the 

framework of the classical laminated plate theory. Neglecting rotatory inertia the equation of 

equilibrium [1] may be written as: 

 

11, 12, 0x yN N , (1) 

 

12, 22, 0x yN N , (2) 

 

11, 12, 22, 11 , 12 , 22 , ,2 2xx xy yy xx xy yy ttM M M N w N w N w mw , (3) 

 

where 11 22 12, ,N N N  and  11 22 12, ,M M M  are stress resultants: 

 

11 11 12 16 11

22 12 22 26 22

12 16 26 66 12

N C C C

N N C C C

N C C C

, 

11 12 16 ,11

22 12 22 26 ,

12 16 26 66 ,2

xx

yy

xy

D D D wM

M M D D D w

M D D D w

. 

 

 Deformations 11 22 12, ,
T

are expressed as [1] 

 

2
11 ,

1
,

2x xu w ,     2
22 ,

1
,

2y yv w ,  12 , , , ,
L

x y x yv u w w , 

 

 where u,v,w are displacements of the plate in directions Ox, Oy and Oz respectively.  

 For convenience we introduce the following notation 

 
L N

, 
L NN N N , 

 

  where 

 

11 22 12, ,
TL L LL

, 11 22 12, ,
TN N NN
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11 ,
L

xu , 22 ,
L

yv , 12 , ,
L

x yv u , 
2

11 ,
1

2

N
xw ,

2

22 ,
1

2

N
yw , 12 , ,

N
x yw w . 

 

 Then stress resultants 11 22 12, ,
TL L LLN N N N and 11 22 12, ,

TN N NNN N N N may be 

presented as follows 

 
( ) ( )L LN C ,    ( ) ( )N NN C . 

 

 The components ,ij ijC D  11,22,12,16,26,66ij  of the stiffness matrices C and D are defined 

as[1]: 

 

1

2

1

, 1, ,
s

s

hN
s

ij ij ij
s h

C D B z dz  

 

 where ( )s
ijB are mechanical characteristics of the  s-layer. 

 The system of equations (1)-(3) is supplemented by corresponding boundary conditions. 

 

3. METHOD OF SOLUTION 

The proposed method is based on solving a number of auxiliary problems. 

 

1. Solving problem about pre-buckle stress state of the laminated plate. 

In order to determine the pre-buckle stress state of the plate let us consider the following system 

 

11, 12, 0
L L
x yN N , 

12, 22, 0
L L
x yN N ,       

(4) 

 

 supplemented on the loaded part of the border 1   by the following  boundary conditions  

 
( ) ( )

1 1 1 1, 1, , 0,L L
n nN u v T u v 1,x y  (5) 

 

 Operators ,L L
n nN T  in (5) is defined by formulas 

 

2 2
11 22 122
L L LL

nN N l N m N lm , 2 2
12 11 22
L L LL

nT N l m N N lm , 
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 where cos( , ), cos ,l n Ox m n Oy , n  is normal vector to border of the domain. Boundary 

conditions on the remain part depend on way of fixing.  

 Solution 1 1, , ,u x y v x y  of this system (4)-(5) may be found by RFM (R-functions method). 

Variational formulation of the problem (4)-(5) is reduced to finding minimum of the functional  

 

1

( ) ( ) ( ) ( )
1 1 11 11 22 22 12 12 1 1 1

1
( , ) ( )

2
L L L L

nI u v N N N d N u l v m d  (6) 

 

 We seek the minimum of the functional (6) on the set of basis functions constructed by R-

functions  theory [7,8]. 

 Forces 
0 0 00
11 22 12, ,

T

N N N N are defined after finding solutions u1 and  v1 , 

(0)
(0)

1 1 1 1, , ,N u v u vC  

 

 where   

 

(0) (0) (0)(0)
1 1 11 22 12, ( , , ) ,Tu v   (0)11 1,xu , ( )22 1,

L
yv , ( )12 1, 1,

L
y xu v . 

 

2. Finding buckling load. 

Let us find the critical load provided that compressive load is varied proportionally to some pa-

rameter  , that is, from the following equation 

 

33 3 , ,L w Nl u v w . (7) 

 

 The critical value of the parameter  is found by energy approach. Let us write the appropri-

ate functional: 

 

0 2
11 11 22 22 12 12 11 ,

1
( ) [( ) ( ( )

2 xI w M M M N w  

0 02
22 , 12 , ,( ) )]y x yN w N w w dxdy . 

 

 As before, minimization of the functional is performed on the set of basis functions, construct-

ed using the RFM. As a result of the Ritz’s method, this problem is reduced to the eigenvalue 

problem. 

  

3. Solution linear vibration problem of the laminated plate subjected to in-plane compressive stat-

ic edge loading 0p . Above mentioned problem is solved by RFM  too. The corresponding func-

tional is  
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,I U V  (8) 

 

 where U is total potential energy taking into account the influence of forces in the median 

plane: 

 

11 11 22 22 12 12
1

( )
2

U w M M M  

2 2
0 11 1 1 , 22 1 1 , 12 1 1 , ,( , )( ) ( , )( ) ( , ) ,

L L L
x y x yp N u v w N u v w N u v w w d  

and V is kinetic energy: 
2

21

2
Lm

V w d . 

 

 Let us denote eigenfunction corresponding to the first mode of free linear vibrations of loaded 

plate by 1w , L  is relative natural frequency. 

 

4. Solutions of the auxiliary problem like elasticity problem. Let us consider the following system 

of the equations: 

 

11, 12, 1 1
L L
x yN N Nl w , 

12, 22, 2 1
L L
x yN N Nl w  

(9) 

 

 The right side of the system (9) has the following kind 

 

1 1 11, 12,
N N
x yNl w N N ,    2 1 12, 22,

N N
x yNl w N N  

 

 This system is supplemented by the boundary conditions: 

 
( ) ( ) ( ) ( )

1 1, ,L N L N
n n n nN N w T T w  (10) 

 

 where  

 

2 2
11 22 122
N N NN

nN N l N m N lm , 2 2
12 11 22
N N NN

nT N l m N N lm . 

 

 The solution of system (9)-(10) is found by RFM.  Denote this solution by 2 , ,u x y 2 ,v x y . 

 Variational formulation of the problem is reduced to finding minimum of the following func-

tional 



180     Lidiya Kurpa, Olga Mazur and Victoria Tkachenko / Dynamical stability and parametrical vibrations of the laminated plates with complex shape 

 

 

Latin American Journal of Solids and Structures 10(2013) 175 – 188 

 

2 2 11 11 22 22 12 12 1 1 2 2 1 2
1

( , ) ( 2( ( ) ( ) ))
2

L L L
I u v N N N Nl w u Nl w v d  

 ( ) ( )
1 2 2 1 2 2 1( )( ) ( )( )N N

n nN w u l v m T w u m v l d . 

 

5. Solution of non-linear vibration problem. Let us represent unknown functions , ,u v w  in the 

following way 

 

1, , ,w x y t y t w x y , 

2
1 2, , , ,u x y t pu x y y t u x y , 2

1 2, , , ,v x y t pv x y y t v x y . 
(11) 

 

 Substituting expressions (11) into equation (1)-(3), and using the Bubnov-Galerkin method, 

we receive ordinary differential equation: 

 

 in case of static load 
2 3( ) ( ) ( ) 0,Ly t y t y t  (12) 

 in case of periodic load  
2 3( ) (1 2 cos( )) ( ) ( ) 0.Ly t k t y t y t  (13) 

 

 Here k  and is defined by the following expressions: 

 

,
2
t

kr

p
k

p
 

11 2 2 1 1, 12 2 2 1 1, 22 2 2 1 1,

22
1 1

( , , ) 2 ( , , ) ( , , )

.
xx xy yy

L

N u v w w N u v w w N u v w w d

m w
 

 

 To solve the equation (12) let us present unknown function ( )y t  in the form ( ) cos Ny t A t . 

Using the Bubnov-Galerkin method, we receive the dependence between amplitude A and fre-

quency ratio N

L

: 

 

23
1 .
4
A  

 

 To identify areas dynamic instability, instead of (13), we use the equation Mathieu: 

 
2 1 2 cos 0t Ly t k t y t . 
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 The main area of dynamic instability (near 2 L ) is limited by values 1  and 2  [4]: 

 

1 2 1L k ,  2 2 1L k . 

 

 For the analysis of nonlinear vibrations after the loss of stability we use  nonlinear equation 

(13). Dependence between the frequency ratio / 2 L  and amplitude A are determined as follows 

[4]: 

 

2

2

2
1 .

43 L

A k  

 

4. NUMERICAL RESULTS  

To illustrate our approach let us consider symmetrically laminated plate with central cutout (Fig. 

1). In this case it is needed to determine the pre-buckle stress state of the laminated plate. Sup-

pose the plate is loaded longitudinally along the edges parallel to axis OY (
2

a
x ).  

 

 

Figure 1 Form of plate with cutout. 

 

 Boundary conditions of two types are considered: 

 

1. The plate is assumed simply supported on the outer border, but cutout is free (SS-F): 

 

0w , 0xM , xN p , 0xyN , 1,x y , 1 : 2

a
x ; 

0w , 0yM , 0u , 0yN , 2,x y , 2 : 2

b
y ; 

0nM , 0nQ , 0nN , 0nT , 3,x y , 3 1 2\ . 

(14) 

 

2. The  plate is simply supported on the all border (SS-SS): 
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0w , 0xM , xN p , 0xyN , 1,x y , 1 : 2

a
x ; 

0w , 0nM , 0nN , 0nT , 4,x y , 4 1\ .  
(15) 

 

 Numerical results are obtained for material with the following relations for the elasticity coeffi-

cients:  E11=141.0 Gpa, E22=9.23 Gpa, G12=G13=5.95 Gpa, G23=2.96 Gpa, ν12= 0.313. 

The structures of solution [7,8] for above mentioned boundary value problems (4)-(5), (7), (8), 

(9)-(10) are taken in the form: 

 

1. boundary conditions SS-F (14): 

1 0 0w P ; 2i iu P , 2i iv P , 1,2i ; 

 

2. boundary conditions SS-SS (15): 

1 0w P ; i iu P , 2i iv P , 1,2i , 

 

 where 0, 1,4jP P j  are indefinite components of the structure presented as an expansion in 

a series of some complete system (power polynomials, trigonometric polynomials, splines etc.), 

0 2, 0, , 0, , 0x y x y x y  are equations of the boundary domain  and its parts 

0 1 2  and 2 . For constructions of functions 0 2, , , , ,x y x y x y  theory of 

the R-functions is used: 

 

1 0 2 0 3 0 4,x y f f f f , 0 1 0 2,x y f f , 2 2,x y f  (16) 

 

 where 0 0,  are R-operations [7,8] represented below 

 
2 2

0x y x y x y , 2 2
0x y x y x y . 

 

 Functions , 1..4if i  in (16) are determined as 

 
2

2
1
1

0
2

a
f x

a
, 

2
2

2
1

0
2

b
f y

b
, 

2
2

3
1

0
2

c
f x

c
, 

2
2

4
1

0
2

c
f y

c
 

 

 To validate the proposed approach we investigate cross-ply four layers laminated plate with 

free cutout, boundary conditions (14) and for  a=b=0.5m, h=0.005m. This problem had been 

solved by Dash S. and others in [5]. The accuracy and the efficiency of the present method are 

established through comparison of non-dimensional buckling load 
2

3
2

xN b

E h
  with [5], fig. 2. 
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Figure 2 Non-dimensional buckling load 
2

3
2

xN b

E h
 with different ratios of cutout. 

 

 Further calculations are carried out for geometrical parameters a/b=2, h=0.005m and bounda-

ry conditions (15). The influence of cutout size on non-dimensional frequencies 

2 2
2/La E h  for various values of static component of load p0 is presented in the table 1. 

 

Table 1.  Effect of cutout size on natural  frequency 2 2
2/La E h  

 

/c b  

0 0 00 / 90 / 0  0 0 0 00 / 90 / 90 / 0  0 0 0 0 00 / 90 / 0 / 90 / 0  

0 / krp p  

0 0.25 0.75 0 0.25 0.75 0 0.25 0.75 

0.1 19.197 16.894 10.051 19.290 16.886 9.923 19.038 16.605 9.733 

0.2 22.937 19.979 11.684 22.533 19.602 11.453 22.082 19.194 11.185 

0.25 24.237 21.169 12.535 23.825 20.842 12.556 23.354 20.388 12.080 

0.4 32.835 29.564 20.527 31.874 28.546 19.504 30.879 27.447 17.993 

 

 Effect of parameter of cutout size ( / 0.1,0.2,0.25,0.4c b  ) on instability regions 

( 1 2 1 k , 2 2 1 k )  are studied for 0 / krp p =0.25, 0.75, fig. 3. Obtained results 

demonstrate the same behavior in both of the cases: for a larger value of /c a  the loss of instabil-

ity occurs at lager values of excitation frequency θ and response zones occupy greater area. It 

should also be noted that instability zones for 0 / krp p =0.25 correspond to greater value of exci-

tation frequency θ. 
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Figure 3. Instability zones for different size of cutout  (SS-SS, 0 / krp p =0.25,0.75). 

Instability analysis is fulfilled for 3,4,5 layers plates. (fig.4). Results are obtained for 0 / krp p =0.25 and 

/ 0.2,0.4c b .   More significantly the number of layers effects on instability domains for plates with large 

cutouts. 



Lidiya Kurpa, Olga Mazur and Victoria Tkachenko / Dynamical stability and parametrical vibrations of the laminated plates with complex shape     185 

 

 

Latin American Journal of Solids and Structures 10(2013) 175 – 188 

 

Figure 4. Instability zones for different number of layers (SS-SS, 0 / krp p =0.25, / 0.2,0.4c b ). 

 

 Nonlinear parametric vibrations are investigated for 3-layers plate. Effect of load parameter tp  

on response curves is shown on fig.5. Calculations are performed for / 0.1,0.2c b , 0 / krp p

=0.25. Decreasing of parameter tp  leads to a convergence of curves. 
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Figure 5. Response curve for different values of parameter tp  (SS-SS, 0 / krp p =0.25, / 0.1,0.2c b ). 
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Figure 6. Response curve for different size of cutout   (SS-SS, 0 / krp p =0.25, 0.75). 

 

 The effect of size of cutout on the response curves is analyzed for 0 / krp p =0.25, 0.75, /t krp p

=0.25. The extension of cutout leads to increase of the vibration amplitude. Change of the static 

component of the load 0p  affects the slope of response curves. 

 

5 CONCLUSIONS 

An effective method to investigate dynamical stability and nonlinear vibrations of symmetrically 

laminated plates with a complex form is developed. The proposed method is based on the original 

meshless discretization procedure in the time and variational methods combined with R-functions 

theory. Due to application of the developed approach the initial nonlinear problem is reduced to 

sequence of auxiliary linear problems and nonlinear ordinary differential equations (ODEs) with 

respect to time. The present approach has advantage of being suitable for considering of different 

types of the boundary conditions in domains of arbitrary shape. The proposed method has been 
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applied to study dynamical stability and nonlinear vibrations of simply supported rectangular 

plate with both free and simply supported central square cutout. The numerical results for buck-

ling loads, instability regions and amplitude-frequency response curves are obtained for various 

size of cutout, number of layers, parameters of load. Note that due to increase of cutout size of 

simply supported plate, instability regions tend to shift to higher excitation frequency with exten-

sion of instability regions, showing destabilizing effect of cutout on behavior of plate. The effect of 

layers number on instability zones is not significant for plates with small cutout, but increase of 

cutout leads to essential influence of layers number. The amplitude-frequency response curves 

change the slope and location according to variation of values of the load components. 
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