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Abstract 
In recent years, the Meshless Local Petrov-Galerkin (MLPG) Method has attracted the attention of many 
researchers in solving several types of boundary value problems. This method is based on a local weak form, 
evaluated in local subdomains and does not require any mesh, either in the construction of the test and shape 
functions or in the integration process. However, the shape functions used in MLPG have complicated forms, 
which makes their computation and their derivative's computation costly. In this work, using the Moving Least 
Square (MLS) Method, we dissociate the point where the approximating polynomial's coefficients are 
optimized, from the points where its derivatives are computed. We argue that this approach not only is 
consistent with the underlying approximation hypothesis, but also makes computation of derivatives simpler. 
We apply our approach to a two-point boundary value problem and perform several tests to support our 
claim. The results show that the proposed model is efficient, achieves good precision, and is attractive to be 
applied to other higher-dimension problems. 

Keywords 
meshless method, meshless local Petrov-Galerkin (MLPG) method, boundary value problem 

Graphical Abstract 

 
  

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6142-9850
https://orcid.org/0000-0003-2953-2652
https://orcid.org/0000-0002-0857-6333
https://orcid.org/0000-0003-1143-6662


A Locally-Continuous Meshless Local Petrov-Galerkin Method Applied to a Two-point Boundary Value 
Problem 

Suzana Matos França de Oliveira et al. 

Latin American Journal of Solids and Structures, 2020, 17(8), e330 2/21 

1 INTRODUCTION 

Engineers and scientists often need to solve and simulate physical problems for which analytical solutions do not 
exist. Therefore, numerical methods are used to approximate those solutions. Among the existing numerical methods, 
the Finite Element Method (FEM) is one of the most widely used. 

However, despite its great applicability, the FEM might have some drawbacks, especially due to its dependence on 
a good-quality mesh for delivering accurate approximations. Constructing such meshes may require either an intense 
human intervention or complex automated meshing techniques, which are highly expensive and complicated to perform 
in 3D domains. Also, sometimes complex remeshing techniques need to be used in the analyses of large deformation 
and fracture propagation problems (Liu, 2009; Sladek et al., 2013). In order to free the analyses from the problems 
associated with mesh generation, meshless methods have been developed, in which the domain of the problem is 
represented through a set of scattered points (nodes), without any explicit connection between them. Thus, in meshless 
methods, it is simple to include or to remove points, whenever necessary, during iterative computations. 

Several meshless methods have already been proposed: smooth particle hydrodynamics (SPH) (Gingold and 
Monaghan, 1977); element free Galerkin (EFG) (Belytschko et al., 1994); reproducing kernel particle method (RKPM) 
(Liu et al., 1995); partition of unity finite element method (PUFEM) (Babuska and Melenk, 1997); natural element method 
(NEM) (Sukumar et al., 1998). However, as Atluri and Zhu (1998) pointed out, they were not truly meshless methods, 
since they make use of a background mesh for integrating the global weak form. 

Atluri and Zhu (1998) proposed the Meshless Local Petrov-Galerkin (MLPG) Method. That method is based on a local 
weak form, which is evaluated in local subdomains of simple forms, such as line segments, circles, squares and spheres. 
The method does not use a mesh at all, neither in the construction of test and shape functions nor in the integration 
process. That is why the authors called it a truly meshless method. 

The MLPG has already been used to solve various types of boundary value problems (Amini et al., 2018; Han and 
Atluri, 2004; Hu and Sun, 2011; Kamranian et al., 2017; Liu et al., 2011; Sheikhi et al., 2019; Zhang et al., 2006). However, 
in developing those formulations, the authors broke the underlying consistency with the Moving Least-square 
assumptions, which, in our view, led to shape functions that have unduly complex forms, making their computation and 
their derivatives' computation quite costly (Liu, 2009; Mirzaei and Schaback, 2013). We believe that such complexity is 
unnecessary if the formulation maintains consistency with the basic assumptions. Thus, in this work, we show a Least-
square-consistent displacement-based Meshless Local Petrov-Galerkin formulation and apply it to the analysis of a two-
point boundary value problem. 

The remainder of this paper is organized as follows. In Section 2, we introduce the Least-square-consistent 
displacement-based MLPG, describing the problem to be addressed, the computation of the shape functions, the 
computation of the shape functions' derivatives, the choice of the test functions, the numerical integration and the 
enforcement of the essential boundary conditions. In Section 3, we present some tests. Finally, in Section 4, we present 
our conclusions. 

2 LOCALLY-CONTINUOUS MLPG (LC-MLPG) FORMULATION 

In this section, we explain the LC-MLPG formulation (see the overview shown in the Graphical Abstract), focusing 
on how we propose to compute a shape function's derivative. To achieve this goal, we consider a two-point boundary 
value problem. 

2.1 Boundary Value Problem 

Consider the ordinary differential equation 

𝑇𝑇 𝑑𝑑2𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥2

− 𝑘𝑘(𝑥𝑥)𝑢𝑢(𝑥𝑥) + 𝑓𝑓(𝑥𝑥) = 0 ,  (1) 

that governs the problem of a cable, under constant tension 𝑇𝑇 (small deflection theory), subjected to a transverse force 
per unit length, 𝑓𝑓(𝑥𝑥). The cable is embedded in a medium that provides a stiffness 𝑘𝑘(𝑥𝑥) to its transverse displacement 
𝑢𝑢(𝑥𝑥). The domain Ω of the problem is one-dimensional, with 0 < 𝑥𝑥 < 𝐿𝐿, and its boundary Γ consists of the two end 
points 𝑥𝑥 =  0 and 𝑥𝑥 =  𝐿𝐿 (Fig. 1). 



A Locally-Continuous Meshless Local Petrov-Galerkin Method Applied to a Two-point Boundary Value 
Problem 

Suzana Matos França de Oliveira et al. 

Latin American Journal of Solids and Structures, 2020, 17(8), e330 3/21 

 
Figure 1: Cable with Dirichlet boundary conditions in the interval [0, 𝐿𝐿], deflecting upward in the positive 𝑦𝑦 direction. 𝑢𝑢(𝑥𝑥) is the 

transverse displacement of the cable (deflection), 𝑓𝑓(𝑥𝑥) is the external transverse load, 𝑘𝑘(𝑥𝑥) is the stiffness offered by the medium 
in which the cable is embedded; and 𝑇𝑇 is a constant tension. 

The following essential boundary conditions are assigned at the endpoints: 

�𝑢𝑢
(0) = 0
𝑢𝑢(𝐿𝐿) = 0 .  (2) 

2.2 Local Weak Form 

In the MLPG method, the domain and the boundary of the problem are covered with an arbitrary number of 
scattered nodes. Each node 𝐼𝐼 has a local subdomain, Ω𝑞𝑞𝐼𝐼 , with its local boundary, Γ𝑞𝑞𝐼𝐼 (Fig. 2). In two and three-dimensional 
cases, subdomains can have arbitrary shapes. However, in one-dimensional cases, the subdomains are line segments 
whose union must cover the entire domain of the problem (Atluri and Zhu, 1998). 

 
Figure 2: The domain of the cable is covered by nodes scattered arbitrarily. All nodes will have a local subdomain Ω𝑞𝑞 with its local 

boundary Γ𝑞𝑞. Ω𝑞𝑞𝐼𝐼  and Ω𝑞𝑞
𝐽𝐽  represent, in that order, the local subdomains of nodes 𝐼𝐼 and 𝐽𝐽, and their boundaries are Γ𝑞𝑞𝐼𝐼 and Γ𝑞𝑞

𝐽𝐽. 

The generalized local weak form of the differential equation (Eq. (1)) over the local subdomain Ω𝑞𝑞𝐼𝐼  of a node 𝐼𝐼 can 
be written as 

∫ �𝑇𝑇 𝑑𝑑2𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥2

− 𝑘𝑘(𝑥𝑥)𝑢𝑢(𝑥𝑥) + 𝑓𝑓(𝑥𝑥)�Ω𝑞𝑞𝐼𝐼
𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0 ,  (3) 

where 𝑣𝑣𝐼𝐼(𝑥𝑥) is the test function associated with node 𝐼𝐼. 
Equation (3) can be expanded as 

𝑇𝑇 ∫ 𝑑𝑑2𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥2Ω𝑞𝑞𝐼𝐼

𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 − ∫ 𝑘𝑘(𝑥𝑥)𝑢𝑢(𝑥𝑥)Ω𝑞𝑞𝐼𝐼
𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 + ∫ 𝑓𝑓(𝑥𝑥)Ω𝑞𝑞𝐼𝐼

𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0 ,  (4) 

which, after integrating the leftmost integral by parts, yields 
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𝑇𝑇 �𝑣𝑣𝐼𝐼(𝑥𝑥𝑟𝑟) 𝑑𝑑𝑢𝑢(𝑥𝑥𝑟𝑟)
𝑑𝑑𝑥𝑥

− 𝑣𝑣𝐼𝐼(𝑥𝑥𝑙𝑙)
𝑑𝑑𝑢𝑢(𝑥𝑥𝑙𝑙)
𝑑𝑑𝑥𝑥

− ∫ 𝑑𝑑𝑣𝑣𝐼𝐼(𝑥𝑥)
𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼

𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

 𝑑𝑑𝑥𝑥� − ∫ 𝑘𝑘(𝑥𝑥)𝑢𝑢(𝑥𝑥)Ω𝑞𝑞𝐼𝐼
𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 + ∫ 𝑓𝑓(𝑥𝑥)Ω𝑞𝑞𝐼𝐼

𝑣𝑣𝐼𝐼(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0,  (5) 

where 𝑥𝑥𝑙𝑙  and 𝑥𝑥𝑟𝑟  are, respectively, the coordinates at the beginning (left) and at the end (right) of subdomain Ω𝑞𝑞𝐼𝐼 . 

2.3 Trial Functions 

The trial functions are local approximations of the true solution in a given subregion of arbitrary shape of the 
problem's domain. In this work, we use the moving least squares (MLS) to compute the trial functions' approximations, 
for its accuracy and simplicity to be extend to problems in higher dimensions. Because of those properties, MLS is 
commonly used in the literature (Atluri and Shen, 2002; Atluri and Zhu, 1998; Han et al., 2005; Atluri et al., 1999a; Atluri 
and Zhu, 2000). 

Let 𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) be the approximation of the true solution 𝑢𝑢(𝑥𝑥) at a point 𝑥𝑥 in the subregion defined in the vicinity of 
point �̅�𝑥. MLS defines 𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) as the following polynomial approximation 

𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) = 𝒑𝒑𝑇𝑇(𝑥𝑥)𝒂𝒂(�̅�𝑥) ,  (6) 

where 𝒑𝒑𝑇𝑇(𝑥𝑥) =  [𝑝𝑝1(𝑥𝑥)  𝑝𝑝2(𝑥𝑥) ⋯ 𝑝𝑝𝑚𝑚(𝑥𝑥)] is a complete monomial basis and 𝒂𝒂(�̅�𝑥) =
 [𝑎𝑎1(�̅�𝑥)  𝑎𝑎2(�̅�𝑥) ⋯ 𝑎𝑎𝑚𝑚(�̅�𝑥)]𝑇𝑇 is the coefficient vector, which should be determined in such a way that the polynomial 
approximation is optimal, in the Least Squares sense, in the vicinity of �̅�𝑥. In a one-dimensional problem, 𝑚𝑚 is equal to 
𝑡𝑡 +  1, where 𝑡𝑡 is the degree of the approximating polynomial (Atluri and Shen, 2002). For example, if 𝑡𝑡 =  2, then     
𝑚𝑚 =  3 and 𝒑𝒑𝑇𝑇(𝑥𝑥) =  [1  𝑥𝑥 𝑥𝑥2]. 

Suppose that, for the construction of the polynomial approximation in the vicinity of �̅�𝑥, we consider a set of 𝑁𝑁 nodes 
in that vicinity (Fig. 3). Thus, for a given node 𝐼𝐼 in that set, the difference between its exact displacement 𝑢𝑢(𝑥𝑥𝐼𝐼) and its 
approximate displacement 𝑢𝑢ℎ(𝑥𝑥𝐼𝐼 , �̅�𝑥) is 

𝑒𝑒𝐼𝐼 =  𝑢𝑢(𝑥𝑥𝐼𝐼) −  𝑢𝑢ℎ(𝑥𝑥𝐼𝐼 , �̅�𝑥) .  (7) 

However, since the exact displacement 𝑢𝑢(𝑥𝑥𝐼𝐼) is not known, we replace it with an unknown pseudo-displacement 𝑢𝑢�𝐼𝐼 
to be determined, and Equation (7) is rewritten as 

𝑒𝑒𝐼𝐼 =  𝑢𝑢�𝐼𝐼 −  𝑢𝑢ℎ(𝑥𝑥𝐼𝐼 , �̅�𝑥) .  (8) 

Substituting Equation (6) into Equation (8) yields 

𝑒𝑒𝐼𝐼 =  𝑢𝑢�𝐼𝐼  −  𝒑𝒑𝑇𝑇(𝑥𝑥𝐼𝐼) 𝒂𝒂(�̅�𝑥) .  (9) 

Considering the vector of errors for the 𝑁𝑁 nodes in the vicinity of �̅�𝑥 

𝒆𝒆 = �

𝑒𝑒1
𝑒𝑒2
⋮
𝑒𝑒𝑁𝑁

� ,  (10) 

we want to find the coefficients of the approximating polynomial such that the 𝐿𝐿2 norm of the error vector is minimized. 
However, instead of using the vector of errors of Equation (10), we construct a vector of weighted errors, to attribute 
more importance to the nodes that are closer to �̅�𝑥 (Fig. 3). Thus, for node 𝐼𝐼, the weight is defined as 

𝑤𝑤𝐼𝐼 =  𝑤𝑤(|𝑥𝑥𝐼𝐼 − �̅�𝑥|) ,  (11) 

where 𝑤𝑤(𝑟𝑟) is a bell-shaped weight function on the radial distance, 𝑟𝑟 = |𝑥𝑥 −  �̅�𝑥|, from point �̅�𝑥. Therefore, the vector of 
weighted errors is written as 
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𝒆𝒆� = �

𝑤𝑤1𝑒𝑒1
𝑤𝑤2𝑒𝑒2
⋮

𝑤𝑤𝑁𝑁𝑒𝑒𝑁𝑁

� .  (12) 

 
Figure 3: Influenced nodes in the vicinity of �̅�𝑥: nodes 1, 2 and 3. Node 2 has the strongest influence on �̅�𝑥 and node 1 has the least 

influence on �̅�𝑥. 

In order to find the coefficients 𝒂𝒂(�̅�𝑥) of the approximating polynomial, we minimize the squared 𝐿𝐿2 norm of the 
vector of weighted errors (Notice that, in (Atluri and Zhu, 1998), the weighted squared errors are minimized while we 
minimize the squared weighted errors). Thus, defining the functional 

J�𝒂𝒂(�̅�𝑥)� =  ‖𝒆𝒆�‖2 =  ∑ �𝑤𝑤𝐼𝐼�𝑢𝑢�𝐼𝐼  −  𝒑𝒑𝑇𝑇(𝑥𝑥𝐼𝐼) 𝒂𝒂(�̅�𝑥)��
2𝑁𝑁

𝐼𝐼=1  ,  (13) 

we pose the following unconstrained minimization problem: 

minimize
𝒂𝒂(�̅�𝑥)

J�𝒂𝒂(�̅�𝑥)� ,  (14) 

to find the optimum coefficients for 𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥), using the first order necessary condition 

∇𝒂𝒂J = 𝟎𝟎 .  (15) 

Substituting Equations (6) to (12) into (15) yields the following 

∇𝒂𝒂J = ∇𝒂𝒂(𝒆𝒆�𝑇𝑇𝒆𝒆�) = 2𝒆𝒆�𝑇𝑇∇𝒂𝒂(𝒆𝒆�) = 2𝒆𝒆𝑇𝑇𝑾𝑾∇𝒂𝒂(𝒆𝒆) = 2𝒆𝒆𝑇𝑇𝑾𝑾(−𝑷𝑷) = −2𝑷𝑷𝑇𝑇𝑾𝑾𝑇𝑇(𝒆𝒆) = −2𝑷𝑷𝑇𝑇𝑾𝑾𝑇𝑇(𝒖𝒖� − 𝑷𝑷𝒂𝒂) = 𝟎𝟎 .  (16) 

Thus, at �̅�𝑥, and knowing that 𝑾𝑾 is a diagonal matrix, 

𝑷𝑷T𝑾𝑾(�̅�𝑥)�𝒖𝒖� − 𝑷𝑷𝒂𝒂(�̅�𝑥)� = 𝟎𝟎 ⇒ 𝑷𝑷T𝑾𝑾(�̅�𝑥)𝑷𝑷𝒂𝒂(�̅�𝑥) = 𝑷𝑷T𝑾𝑾(�̅�𝑥)𝒖𝒖�  ⇒ 𝑨𝑨(�̅�𝑥)𝒂𝒂(�̅�𝑥) = 𝑩𝑩(�̅�𝑥)𝒖𝒖� ,  (17) 

where 𝑨𝑨(�̅�𝑥) = 𝑷𝑷T𝑾𝑾(�̅�𝑥)𝑷𝑷 and 𝑩𝑩(�̅�𝑥) = 𝑷𝑷T𝑾𝑾(�̅�𝑥), with 

𝑷𝑷 =

⎣
⎢
⎢
⎡𝒑𝒑

𝑇𝑇(𝑒𝑒1)
𝒑𝒑𝑇𝑇(𝑒𝑒2)

⋮
𝒑𝒑𝑇𝑇(𝑒𝑒𝑁𝑁)⎦

⎥
⎥
⎤
 ,  (18) 

𝑾𝑾(�̅�𝑥) =

⎣
⎢
⎢
⎡𝑤𝑤1

2 0 ⋯ 0
0 𝑤𝑤22 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝑤𝑤𝑁𝑁2⎦

⎥
⎥
⎤
  (19) 

and 

𝒖𝒖� = [𝑢𝑢�1 𝑢𝑢�2 ⋯  𝑢𝑢�𝑁𝑁]𝑇𝑇 .  (20) 

After solving the system of algebraic linear equations, the optimized coefficients are 
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𝒂𝒂(�̅�𝑥) = 𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)𝒖𝒖� .  (21) 

2.3.1 Shape Functions 

Substituting Equation (21) into Equation (6) yields 

𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) = 𝒑𝒑𝑇𝑇(𝑥𝑥)𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)𝒖𝒖� = 𝝓𝝓𝑇𝑇(𝑥𝑥, �̅�𝑥)𝒖𝒖� ,  (22) 

where 𝝓𝝓𝑇𝑇(𝑥𝑥, �̅�𝑥) represents the shape function vector, 

𝝓𝝓𝑇𝑇(𝑥𝑥, �̅�𝑥) = 𝒑𝒑𝑇𝑇(𝑥𝑥)𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥) = [𝜙𝜙1(𝑥𝑥, �̅�𝑥)  𝜙𝜙2(𝑥𝑥, �̅�𝑥) ⋯ 𝜙𝜙𝑁𝑁(𝑥𝑥, �̅�𝑥)] ,  (23) 

so that 𝜙𝜙𝐼𝐼(𝑥𝑥, �̅�𝑥), with 𝐼𝐼 = 1,⋯ ,𝑁𝑁, denotes the shape function for node 𝐼𝐼. 
Considering Equation (23), Equation (22) can be rewritten as 

𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) = ∑ 𝜙𝜙𝐼𝐼(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐼𝐼𝑁𝑁
𝐼𝐼=1  ,  (24) 

in which 𝜙𝜙𝐼𝐼(𝑥𝑥, �̅�𝑥) is defined as 

𝜙𝜙𝐼𝐼(𝑥𝑥, �̅�𝑥) = ∑ 𝑝𝑝𝑗𝑗(𝑥𝑥)[𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)]𝑗𝑗𝐼𝐼 ,𝑚𝑚
𝑗𝑗=1   (25) 

where 𝑝𝑝𝑗𝑗(𝑥𝑥) is the 𝑗𝑗-th term of the polynomial basis 𝒑𝒑(𝑥𝑥) and [𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)]𝑗𝑗𝐼𝐼 is the element (𝑗𝑗, 𝐼𝐼) of matrix 
[𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)]. Note that, in order to compute the shape functions, the 𝑨𝑨 matrix needs to be invertible. To ensure that 
condition, the selected number of nodes, 𝑁𝑁, in the vicinity of �̅�𝑥 has to be greater than or equal to the number of 
monomials in the polynomial basis, i.e., 𝑁𝑁 ≥ 𝑚𝑚 (see (Atluri and Shen, 2002; Liu, 2009)). 

2.3.2 Derivatives of the Shape Functions 

The derivative of the shape functions with respect to 𝑥𝑥 are calculated as 

𝜙𝜙𝐼𝐼′(𝑥𝑥, �̅�𝑥) = ∑ 𝑝𝑝𝑗𝑗′(𝑥𝑥)[𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)]𝑗𝑗𝐼𝐼 ,𝑚𝑚
𝑗𝑗=1   (26) 

where 

𝑝𝑝𝑗𝑗′(𝑥𝑥) = 𝑑𝑑𝑝𝑝𝑗𝑗(𝑥𝑥)
𝑑𝑑𝑥𝑥

 . 

Notice that, to compute the derivative of a shape function at �̅�𝑥, we simply compute 𝜙𝜙𝐼𝐼′(�̅�𝑥, �̅�𝑥), using Equation (26). 
This is totally consistent with the formulation developed for the approximating polynomial and its coefficients (Eqs. (6) 
to (24)). However, methods, such as MLPG1 (Atluri et al., 1999b), use the polynomial in (6) just as an auxiliary polynomial 
to construct the trial function at �̅�𝑥, i.e., 

𝑢𝑢trial(�̅�𝑥) = 𝑢𝑢ℎ(𝑥𝑥, �̅�𝑥) = 𝒑𝒑𝑇𝑇(𝑥𝑥)𝑨𝑨−1(�̅�𝑥)𝑩𝑩(�̅�𝑥)𝒖𝒖� = 𝝓𝝓𝑇𝑇(�̅�𝑥, �̅�𝑥)𝒖𝒖� .  (27) 

Those methods assume that the trial function 𝑢𝑢trial(�̅�𝑥) computed in such a way (Eq. (27)) is continuous and differentiable 
everywhere (∀ �̅�𝑥 -- since �̅�𝑥 is the new variable of domain) with respect to �̅�𝑥. Since the optimization of the coefficients of 
the auxiliary polynomial is based on a discrete set of nodes in the vicinity of �̅�𝑥, it is not guaranteed that the same set of 
discrete nodes is used to optimize the coefficients of the auxiliary polynomial at �̅�𝑥 + d�̅�𝑥. So, in that sense, there is an 
inconsistency between the discrete nature of the optimization process and the continuity assumption required to ensure 
the differentiability of the matrices 𝑨𝑨−1 and 𝑩𝑩 in (27). 

2.3.3 Weight Function 

In this work, the weight function is a bell-shaped function, whose support region is centered at �̅�𝑥. Thus, any node 
that falls outside that support region will not contribute to the trial function associated with the subregion around �̅�𝑥. We 



A Locally-Continuous Meshless Local Petrov-Galerkin Method Applied to a Two-point Boundary Value 
Problem 

Suzana Matos França de Oliveira et al. 

Latin American Journal of Solids and Structures, 2020, 17(8), e330 7/21 

use the fourth order spline with compact support as weight function (Atluri and Shen, 2002; Atluri et al., 1999b; 
Sladek et al., 2010), i.e., 

𝑤𝑤(𝑟𝑟) = �1 − 6 �𝑟𝑟
𝑟𝑟𝑠𝑠
�
2

+ 8 �𝑟𝑟
𝑟𝑟𝑠𝑠
�
3
− 3 �𝑟𝑟

𝑟𝑟𝑠𝑠
�
4

 , 0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠 ;
0 , 𝑟𝑟 > 𝑟𝑟𝑠𝑠 ;

  (28) 

where 𝑟𝑟 = ‖𝑥𝑥 – �̅�𝑥‖ is the distance from a point in the location 𝑥𝑥 to point �̅�𝑥 and 𝑟𝑟𝑠𝑠 is the size (radius) of the support region 
of the weight function centered at �̅�𝑥. For this particular case, 𝑟𝑟𝑠𝑠 is referred to as 𝑟𝑟𝑤𝑤(�̅�𝑥). The size 𝑟𝑟𝑤𝑤(�̅�𝑥) is determined, as 
explained in Section 2.3.1, to contain the 𝑁𝑁 required points to ensure that matrix 𝑨𝑨 is invertible (𝑁𝑁 ≥  𝑚𝑚). However, 
𝑟𝑟𝑤𝑤(�̅�𝑥) should also be small enough to maintain the local nature of the MLS approach (Atluri and Shen, 2002). 

 
Figure 4: Support zones for the test functions, 𝑟𝑟𝑒𝑒(𝑥𝑥𝐼𝐼), and for the trial functions, 𝑟𝑟𝑤𝑤(�̅�𝑥): 𝑟𝑟𝑒𝑒(𝑥𝑥𝐼𝐼) of nodes 1 and 3 and 𝑟𝑟𝑤𝑤(�̅�𝑥) centered 

at �̅�𝑥. 

2.4 Test Functions 

In MLPG the trial and test functions may be chosen from different function spaces. The test functions usually have 
compact support, which causes the integral to be calculated in a limited region, where the function is non-zero. Different 
test functions result in different MLPG methods (Atluri and Shen, 2002). In this work, the test functions are also bell-
shaped functions centered at the nodes (the same as the weight function of Eq. (28) with 𝑟𝑟 = ‖𝑥𝑥 – 𝑥𝑥𝐼𝐼‖ and 𝑟𝑟𝑠𝑠 =  𝑟𝑟𝑒𝑒(𝑥𝑥𝐼𝐼)), 
resulting in the so-called MLPG1. However, 𝑟𝑟𝑤𝑤(�̅�𝑥) need not be equal to 𝑟𝑟𝑒𝑒(𝑥𝑥𝐼𝐼) (Fig. 4). The support of a test function is 
usually confined to a region around its associated node, such that all the neighboring nodes fall outside that region. 

2.5 Discretization 

��𝑇𝑇 �𝑣𝑣𝐼𝐼(𝑥𝑥𝑟𝑟)𝜙𝜙𝐽𝐽′(𝑥𝑥𝑟𝑟 , �̅�𝑥 ) 𝑢𝑢�𝐽𝐽  −  𝑣𝑣𝐼𝐼(𝑥𝑥𝑙𝑙)𝜙𝜙𝐽𝐽′(𝑥𝑥𝑙𝑙 , �̅�𝑥) 𝑢𝑢�𝐽𝐽  −� 𝑣𝑣′𝐼𝐼(𝑥𝑥)𝜙𝜙𝐽𝐽′(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑑𝑑𝑥𝑥
Ω𝑞𝑞𝐼𝐼

� − � 𝑘𝑘(𝑥𝑥)𝜙𝜙𝐽𝐽(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥
Ω𝑞𝑞𝐼𝐼

� 
𝑁𝑁

𝐽𝐽=1

 

Substituting Equation (24) into Equation (5) the local weak form for a node 𝐼𝐼 can be rewritten as 

      + ∫ 𝑓𝑓(𝑥𝑥)𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
= 0 .  (29) 

This equation can be simplified into the following linear algebraic equation in 𝑢𝑢�𝐽𝐽 

∑ 𝐾𝐾𝐼𝐼𝐽𝐽𝑢𝑢�𝐽𝐽𝑁𝑁
𝐽𝐽=1 =  𝑓𝑓𝐼𝐼 ,  (30) 

where 

𝐾𝐾𝐼𝐼𝐽𝐽 =  𝑇𝑇 �𝑣𝑣𝐼𝐼(𝑥𝑥𝑟𝑟)𝜙𝜙𝐽𝐽′(𝑥𝑥𝑟𝑟 , �̅�𝑥 ) 𝑢𝑢�𝐽𝐽  −  𝑣𝑣𝐼𝐼(𝑥𝑥𝑙𝑙)𝜙𝜙𝐽𝐽′(𝑥𝑥𝑙𝑙 , �̅�𝑥) 𝑢𝑢�𝐽𝐽  − ∫ 𝑣𝑣′𝐼𝐼(𝑥𝑥)𝜙𝜙𝐽𝐽′(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
� − ∫ 𝑘𝑘(𝑥𝑥)𝜙𝜙𝐽𝐽(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼

  (31) 

and 
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𝑓𝑓𝐼𝐼 = −∫ 𝑓𝑓(𝑥𝑥)𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
 .  (32) 

The test function 𝑣𝑣𝐼𝐼(𝑥𝑥) is chosen to vanish in the support boundary, then Equation (31) can be simplified. Therefore, 
for internal nodes (Fig. 4, nodes 2 to 4), we have 

𝐾𝐾𝐼𝐼𝐽𝐽 =  −𝑇𝑇∫ 𝑣𝑣′𝐼𝐼(𝑥𝑥)𝜙𝜙𝐽𝐽′(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
− ∫ 𝑘𝑘(𝑥𝑥)𝜙𝜙𝐽𝐽(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 ;Ω𝑞𝑞𝐼𝐼

  (33) 

for the left node 𝑥𝑥𝑙𝑙 =  0 (Fig. 4, node 1), then 

𝐾𝐾𝐼𝐼𝐽𝐽 =  𝑇𝑇 �− 𝜙𝜙𝐽𝐽′(0, �̅�𝑥) 𝑢𝑢�𝐽𝐽  − ∫ 𝑣𝑣′𝐼𝐼(𝑥𝑥)𝜙𝜙𝐽𝐽′(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
� − ∫ 𝑘𝑘(𝑥𝑥)𝜙𝜙𝐽𝐽(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼

 ;  (34) 

and, for the right node 𝑥𝑥𝑟𝑟 =  𝐿𝐿 (Fig. 4, node 5), then: 

𝐾𝐾𝐼𝐼𝐽𝐽 =  𝑇𝑇 �𝜙𝜙𝐽𝐽′(𝐿𝐿, �̅�𝑥 ) 𝑢𝑢�𝐽𝐽  − ∫ 𝑣𝑣′𝐼𝐼(𝑥𝑥)𝜙𝜙𝐽𝐽′(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑑𝑑𝑥𝑥Ω𝑞𝑞𝐼𝐼
� − ∫ 𝑘𝑘(𝑥𝑥)𝜙𝜙𝐽𝐽(𝑥𝑥, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑣𝑣𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 .Ω𝑞𝑞𝐼𝐼

  (35) 

Applying Equation (30) to all 𝑛𝑛 nodes in the problem's domain results in set of 𝑛𝑛 equations that, when grouped, 
constitute the final system of global equations 

𝑲𝑲(𝑛𝑛×𝑛𝑛)𝒖𝒖�(𝑛𝑛×1) = 𝒇𝒇(𝑛𝑛×1) . 

After solving this system, the displacement at any point in the domain can be obtained through Equation (24), making 
use of the displacements computed for the nodes in the support domain of that point. 

2.6 Numerical Integration 

The integrals are calculate using Gauss-Legendre quadrature. Thus, for the internal nodes (Eqs. (33) and (32)), 
making the necessary parameterization, 

𝐾𝐾𝐼𝐼𝐽𝐽 =  −𝑟𝑟𝑒𝑒 ∑ 𝜔𝜔𝑞𝑞 � 𝑇𝑇 𝑣𝑣′𝐼𝐼 �𝑥𝑥� 𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽′�𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥� + 𝑘𝑘 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽�𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥�𝑣𝑣𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞���𝐿𝐿𝐿𝐿
𝑞𝑞=1   (36) 

and 

𝑓𝑓𝐼𝐼 =  −𝑟𝑟𝑒𝑒 ∑ 𝜔𝜔𝑞𝑞𝑓𝑓 �𝑥𝑥�𝜀𝜀𝑞𝑞�� 𝑣𝑣𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞��  ,𝐿𝐿𝐿𝐿
𝑞𝑞=1   (37) 

where 𝜀𝜀𝑞𝑞, 𝑞𝑞 = 1, … , 𝐿𝐿𝐿𝐿, are the Legendre quadrature points, 𝜔𝜔𝑞𝑞 are their associated weights, and 𝑥𝑥�𝜀𝜀𝑞𝑞� = 𝑥𝑥𝐼𝐼 + 𝑟𝑟𝑒𝑒𝜀𝜀𝑞𝑞; for 
the left node (Eqs. (34) and (32)), 

𝐾𝐾𝐼𝐼𝐽𝐽 =  −𝑟𝑟𝑒𝑒
2
∑ 𝜔𝜔𝑞𝑞 � 𝑇𝑇 𝑣𝑣′𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽′ �𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥� +  𝑘𝑘 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽�𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥�𝑣𝑣𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞���𝐿𝐿𝐿𝐿
𝑞𝑞=1 − 𝑇𝑇𝜙𝜙𝐽𝐽′ (0, �̅�𝑥)  (38) 

and 

𝑓𝑓𝐼𝐼 =  −𝑟𝑟𝑒𝑒
2
∑ 𝜔𝜔𝑞𝑞𝑓𝑓 �𝑥𝑥�𝜀𝜀𝑞𝑞�� 𝑣𝑣𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝐿𝐿𝐿𝐿
𝑞𝑞=1  ,  (39) 

where 𝑥𝑥�𝜀𝜀𝑞𝑞� = 𝑟𝑟𝑒𝑒
2

(1 + 𝜀𝜀𝑞𝑞); and for the right node (Eqs. (35) and (32)), 

𝐾𝐾𝐼𝐼𝐽𝐽 =  −𝑟𝑟𝑒𝑒
2
∑ 𝜔𝜔𝑞𝑞 � 𝑇𝑇 𝑣𝑣′𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽′ �𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥� +  𝑘𝑘 �𝑥𝑥�𝜀𝜀𝑞𝑞��𝜙𝜙𝐽𝐽�𝑥𝑥�𝜀𝜀𝑞𝑞�, �̅�𝑥�𝑣𝑣𝐼𝐼 �𝑥𝑥�𝜀𝜀𝑞𝑞���𝐿𝐿𝐿𝐿
𝑞𝑞=1 + 𝑇𝑇𝜙𝜙𝐽𝐽′ (𝐿𝐿, �̅�𝑥) ,  (40) 

where 𝑓𝑓𝐼𝐼 is computed using Equation (39), and 𝑥𝑥�𝜀𝜀𝑞𝑞� = �𝐿𝐿 − 𝑟𝑟𝑒𝑒
2
� + 𝑟𝑟𝑒𝑒

2
𝜀𝜀𝑞𝑞 . 
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Notice that, in the computation of 𝐾𝐾𝐼𝐼𝐽𝐽, the value of �̅�𝑥 to be used is the one adopted for the trial function in whose definition 
node 𝐽𝐽 takes part. It is possible, for 𝐼𝐼 = 𝐽𝐽, that the node takes part in multiple trial functions. In those cases, their contributions to 
𝐾𝐾𝐼𝐼𝐽𝐽 should be added. 

2.7 Enforcement of the Essential Boundary Conditions 

The trial functions based on MLS, as described in Section 2.3, are not interpolating functions. Therefore, the shape functions 
associated with each node do not possess the Kronecker Delta property (Fig. 5). Thus, some special method is required to impose 
the essential boundary conditions. Although the most popular methods for that are the penalty method and the method of 
Lagrange multipliers, we use the MLS collocation method proposed in (Liu, 2009; Mirzaei, 2015), where: 

𝑢𝑢ℎ(0, �̅�𝑥) = ∑ 𝜙𝜙𝐽𝐽(0, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑁𝑁
𝐽𝐽=1 = 0  (41) 

and 

𝑢𝑢ℎ(𝐿𝐿, �̅�𝑥) = ∑ 𝜙𝜙𝐽𝐽(𝐿𝐿, �̅�𝑥)𝑢𝑢�𝐽𝐽𝑁𝑁
𝐽𝐽=1 = 0 .  (42) 

Equations (41) and (42) replace Eqs. (38), (39) and (40) for the left and right nodes. 

 
Figure 5: Distinction between 𝑢𝑢�𝐼𝐼 and 𝑢𝑢ℎ(𝑥𝑥𝐼𝐼 , �̅�𝑥) in the MLS approximation 

2.8 Algorithm 

The main implementation of the Locally-Consistent Meshless Local Petrov-Galerkin (LC-MLPG) method followed the 
Algorithm 1. 

Algorithm 1: LC-MLPG 

Choose a finite number of nodes in the domain Ω and on the boundary Γ and a finite number of �̅�𝑥 in the domain Ω. 
Define the monomial basis and the radii 𝑟𝑟𝑒𝑒(𝑥𝑥𝐼𝐼), 𝑟𝑟𝑤𝑤(�̅�𝑥) respectively for the nodes and for �̅�𝑥. 
 
Loop over all �̅�𝑥: 
 Determine all nodes 𝑥𝑥𝐽𝐽 in the vicinity, i.e., those nodes with 𝑤𝑤��𝑥𝑥𝐽𝐽– �̅�𝑥�� > 0 and calculate the matrix 𝑨𝑨−1𝑩𝑩 (Eq. (21)). 
 
Loop over all nodes 𝐼𝐼 without prescribed displacement: 
 Loop over all integration points 𝑞𝑞: 
  Calculate local force vector 𝑓𝑓𝐼𝐼 (Eq. (37)). 
  Find the nearest �̅�𝑥 from integration point 𝑞𝑞. 
  Loop over all 𝑥𝑥𝐽𝐽 in the vicinity of �̅�𝑥: 
   Calculate local stiffness matrix 𝐾𝐾𝐼𝐼𝐽𝐽 (Eq. (36)). 
  Assemble local contributions into the global linear system 𝑲𝑲 and 𝒇𝒇. 
 
Loop over all nodes 𝐼𝐼 with prescribed displacement: 
 Find the nearest �̅�𝑥 from node 𝐼𝐼. 
 Loop over all x_J in the vicinity of �̅�𝑥: 
  Enforce prescribed displacement (Eqs. (41) and (42)). 
 
Solve the global linear system 𝑲𝑲𝒖𝒖� = 𝒇𝒇. 
 
Calculate the displacement at any point 𝑥𝑥 using Equation (24) 
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3 TESTS AND RESULTS 

In this section, several tests demonstrate the advantages of our Least-Square-Consistent Meshless Local Petrov-
Galerkin formulation over the traditional MLPG1 formulation. Both methods were implemented in C++, and the Eigen 
Library (Guennebaud et al., 2019) was used to handle matrix operations and to solve the linear system of algebraic 
equations. The simulations were performed in an Intel® Core™ i7-4500U CPU @ 1.80GHz × 4, 8.0GB RAM with the system 
Ubuntu 18.04.2 LTS. 

In the following subsections, we compare our method with the original MLPG1 (Atluri and Shen, 2002; Atluri and 
Zhu, 1998), using a simple problem of a cable with fixed ends illustrated in Figure 1. In Section 3.1, we compare the 
relative errors for various parameter settings which are obtained by changes of: Polynomial order (𝑡𝑡), number of nodes, 
number of integration points, support radius of the test function and support radius of the trial functions. The error is 
measured against the analytical solution given in Equation (43). In Section 3.2, we fix all the parameters and vary the 
polynomial order of the trial function. Again, the results are compared against the analytical solution. In Section 3.3, we 
repeat the tests of Section 3.2 using a non-constant 𝑘𝑘(𝑥𝑥) function. In that case, the ground truth for computing the error 
is the solution obtained by the finite difference method with a very fine discretization. In Section 3.4, we compare the 
computational performances of the approaches used in the previous subsections. 

3.1 Parametric Error Analysis 

For the analyzed problem shown in Figure 1, when 𝑘𝑘(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) are constant, i.e., 𝑘𝑘(𝑥𝑥)  =  𝑘𝑘 and 𝑓𝑓(𝑥𝑥) = 𝑓𝑓, the 
analytical solution 𝑢𝑢(𝑥𝑥) can be written as (Buchanan, 1994) 

𝑢𝑢(𝑥𝑥) =  𝑓𝑓[cosh(𝛾𝛾𝐿𝐿)−1] sinh(𝛾𝛾𝑥𝑥)
𝑘𝑘 sinh(𝛾𝛾𝐿𝐿)

− 𝑓𝑓 cosh(𝛾𝛾𝑥𝑥)
𝑘𝑘

+ 𝑓𝑓
𝑘𝑘

 ,  (43) 

where 𝛾𝛾2 = 𝑘𝑘 𝑇𝑇⁄ . The radii 𝑟𝑟𝑒𝑒 and 𝑟𝑟𝑤𝑤 of the support regions for the test and trial functions, respectively, are written as 

re(α) =  α𝑑𝑑min 

and 
rw(α) = β𝑑𝑑min , 

where 𝑑𝑑min is the minimum distance from a given node to its closest adjacent node. 
In this section, we present the results of a parametric error analysis in which we report the effects of varying the 

number nodes, the polynomial order of the trial function and the number of integration points for several values of 𝛼𝛼 
and 𝛽𝛽. The relative errors are computed as 

error = �𝒖𝒖− 𝒖𝒖h�
‖𝒖𝒖‖

× 100 ,  (44) 

where 𝒖𝒖 and 𝒖𝒖h are vectors whose components are the displacements at discrete points of the domain computed, 
respectively, with the analytical and the numerical solutions. 

In this section, the tests use the following parameters: 𝐿𝐿 =  3m, 𝑇𝑇 =  20N, 𝑘𝑘 =  2N/m2 and 𝑓𝑓 =  10N/m. The 
tests are run with the following values of 𝛼𝛼 and 𝛽𝛽: 𝛼𝛼 =  0.1 to 1.0, with steps of 0.1 and 𝛽𝛽 =  0.1 to 4.0, with steps of 
0.1. However, to avoid unnecessary clutter in the plots, we show only four values of 𝛼𝛼 (0.1, 0.4, 0.7 and 1.0). The upper 
limit for 𝛽𝛽 was established as 4.0 to ensure enough range for the cubic polynomial order case, while still keeping the 
locality of the trial functions. We ran the same tests with 7, 13, 25 and 49 nodes. Those number of nodes were chosen 
so that the same set of tests could be performed for both the quadratic and the cubic order trial functions. 

3.1.1 Trial functions of second degree (𝒕𝒕 = 𝟐𝟐) 

In our method, �̅�𝑥 is located as illustrated in Figures 6a and 6b for the 7-node case, ensuring that matrix 𝑨𝑨 has an 
inverse (𝑁𝑁 ≥ 3). First, we consider the minimum number of trial functions, i.e., with �̅�𝑥 located at every other node         
(Fig. 6a). Then, we tested trial functions with �̅�𝑥 located at each internal node (Fig. 6b) to show the flexibility of the 
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method. The distribution of trial functions for the 13, 25 and 49-node cases follows the same pattern shown in           
Figures 6a and 6b. 

 
Figure 6: Location of �̅�𝑥 for the 7-node case with a quadratic polynomial order (a and b) and with a cubic polynomial order (c). 

In the original MLPG1, �̅�𝑥 is fused with 𝑥𝑥, requiring a new computation of the shape functions for every integration 
point (see (Atluri and Zhu, 1998; Atluri et al., 1999b). 

The results plotted in Figures 7 and 8 allow us to make some general observations. First, notice that, for our method, 
the error diminishes as the number of nodes and the number of integration points increase. However, MLPG1 shows a 
similar behavior only for some specific values of 𝛼𝛼. Second, MLPG1's error is highly sensitive to variations of 𝛽𝛽 and 𝛼𝛼, 
especially for a small number of nodes (for example, 7 and 13 nodes in the tests), making it difficult to suggest adequate 
values for those parameters. On the other hand, our method shows very smooth error curves, which are almost 
insensitive to changes in 𝛽𝛽 for a given value of 𝛼𝛼. Third, MLPG1 requires a larger starting value of 𝛽𝛽 to be able to invert 
matrix 𝑨𝑨. For smaller number of nodes, this implies an undue restriction on the locality of the solution. 

We also want to point out some more specific observations from Figures 7 and 8: 1) for all the tests (with 7, 13, 25 
and 49 nodes), regardless of the value of 𝛼𝛼, MLPG1 requires 𝛽𝛽 to be at least 2.1 for 𝑨𝑨 to have an inverse, while our 
method requires a 𝛽𝛽 of 1.1; 2) The dependence relation of the error on the 𝛼𝛼 × 𝛽𝛽-combination, on the number of nodes 
and on the number of integration points is very well-behaved in our method, and shows that the error diminishes as the 
number of nodes and integration points increase for any values of 𝛼𝛼 and 𝛽𝛽. On the other hand, that dependence relation 
in MLPG1 is not well-behaved when the number of points is small (e.g., 7 and 13 points). Notice that, in those cases, for 
the whole range of 𝛽𝛽 a given value of 𝛼𝛼 is not always the best choice, while our method shows clearly the best 𝛼𝛼 to 
choose. 

3.1.2 Trial functions of third degree (𝒕𝒕 = 𝟑𝟑) 

Since the results for different distributions of trial functions (locations of �̅�𝑥) in the quadratic case were equivalent, 
for the trial functions of third degree, �̅�𝑥 is located as illustrated in Figure 6c for the 7-node case, ensuring that matrix 𝑨𝑨 
has an inverse (𝑁𝑁 ≥ 4). The distribution of the trial functions for the 13, 25 and 49-node cases follows the same pattern 
shown in Figure 6c. 

Once again, notice that, in MLPG1 �̅�𝑥 is fused with 𝑥𝑥, requiring a new computation of the shape functions for every 
integration point. 

The results plotted in Figure 9 allow us to make some general observations. First, notice that, for our method, the 
error diminishes as the number of nodes and integration points increase. However, MLPG1 shows a similar behavior only 
for some values of 𝛼𝛼. Second, MLPG1's error is highly sensitive to variations of 𝛽𝛽 and 𝛼𝛼, making it difficult to suggest 
adequate values for those parameters. On the other hand, our method shows very smooth error curves, which are almost 
insensitive to changes in 𝛽𝛽 for a given value of 𝛼𝛼. Third, MLPG1 requires a larger starting value of 𝛽𝛽 to be able to invert 
matrix 𝑨𝑨. For smaller number of nodes, this implies an undue restriction on the locality of the solution. 

Again, we want to point out some more specific observations from Figure 9: 1) for the test with 7, 13 and 25 nodes, 
regardless of the value of 𝛼𝛼, MLPG1 requires 𝛽𝛽 to be at least 3.1 for 𝑨𝑨 to have an inverse, while our method requires 
𝛽𝛽 =  1.6. With 49 nodes, MLPG1 requires 𝛽𝛽 to be at least 3.2 for 𝑨𝑨 to have an inverse, while our method requires         
𝛽𝛽 =  1.9; 2) The dependence relation of the error on the combination of 𝛼𝛼, 𝛽𝛽, number of nodes and number of 
integration points is very well-behaved in our method, and shows that the error diminishes as the number of nodes and 
the number of integration points increase for any values of 𝛼𝛼 and 𝛽𝛽. On the other hand, that dependence relation in 
MLPG1 is very erratic and, for some values of 𝛼𝛼, it deteriorates as the number of nodes and the number of integration 
points increase, which is a rather inconsistent behavior. 
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Figure 7: Exhaustive test with quadratic polynomial base using 7, 13, 25 and 49 nodes, where �̅�𝑥 is located in accordance with the 

pattern shown in Figure 6a. The graphs on the left columns are from the original MLPG1 method and on the right columns are from 
our approach. The tests are performed with 5, 10, 20 and 40 integration points as shown in each row. The 𝑦𝑦-axis represents the 

percentage relative error (Eq. (44)), the x-axis shows the values of 𝛽𝛽, and each curve corresponds to a specific value of 𝛼𝛼. 
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Figure 8: Exhaustive test with quadratic polynomial base using 7, 13, 25 and 49 nodes, where �̅�𝑥 is located in accordance with the 

pattern shown in Figure 6b. The graphs on the left columns are from the original MLPG1 method and on the right columns are from 
our approach. The tests are performed with 5, 10, 20 and 40 integration points as shown in each row. The 𝑦𝑦-axis represents the 

percentage relative error (Eq. (44)), the x-axis shows the values of 𝛽𝛽, and each curve corresponds to a specific value of 𝛼𝛼. 
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Figure 9: Exhaustive test with cubic polynomial base using 7, 13, 25 and 49 nodes, where �̅�𝑥 is located in accordance with the 

pattern shown in Figure 6c. The graphs on the left columns are from the original MLPG1 method and on the right columns are from 
our approach. The tests are performed with 5, 10, 20 and 40 integration points as shown in each row. The 𝑦𝑦-axis represents the 

percentage relative error (Eq. (44)), the x-axis shows the values of 𝛽𝛽, and each curve corresponds to a specific value of 𝛼𝛼. 
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3.2 Varying 𝒕𝒕 with Constant 𝒌𝒌(𝒙𝒙) 

In this test, we use specific values of 𝛼𝛼 and 𝛽𝛽 based on the results shown in Section 3.1 and compare both our 
solution and MLPG1's solution against the exact solution given in Equation (43). 

Once again, we separate the results according to the polynomial degree 𝑡𝑡 of the trial functions. We present results 
for different numbers of integration points (𝑞𝑞 =  5, 10, 20 and 40) and nodes (𝑛𝑛 =  7, 13, 25 and 49). 

The value of 𝛼𝛼 was fixed at 0.7 for the sake of MLPG1 (most stable results), although for our method 𝛼𝛼 =  1.0 would 
be the best choice. Since the value of 𝛽𝛽 determines the existence, or not, of the inverse of matrix 𝑨𝑨 (Eq. (21)), it depends 
on the value of 𝑡𝑡. Thus, we chose the smallest value of 𝛽𝛽 required by each method. 

3.2.1 Trial function of second degree (𝒕𝒕 = 𝟐𝟐) 

In these tests, we use 𝛽𝛽 =  2.1 for the original MLPG1, and 𝛽𝛽 =  1.1 for our method (those were the minimum 
required values to invert matrix 𝑨𝑨). Notice (see Fig. 7) that, if we also used 𝛽𝛽 =  2.1 in our method, the results would 
not be any different. For our method, we use the trial function distribution pattern shown in Figure 6a. 

The results are shown in Figure 10. Notice that, with 10 integration points, all the results (any number of nodes) are 
visually indistinguishable from the exact solution. However, as we point out in Section 3.4, our method is much more 
efficient than MLPG1. 

3.2.2 Trial functions of third degree (𝒕𝒕 = 𝟑𝟑) 

In these tests, we use 𝛽𝛽 =  3.2 for the original MLPG1, and 𝛽𝛽 =  1.9 for our method (those were the minimum 
required values to invert matrix 𝑨𝑨). For our method, we use the trial function distribution pattern shown in Figure 6c. 

The results are shown in Figure 11. Notice that, with 10 integration points, all the results from 5 up to 25 nodes are 
visually indistinguishable from the exact solution. However, with 49 nodes, MLPG1 shows inconsistent behavior 
regardless of the number of integration points (see also Fig. 9, 49-node case). Our method, on the other hand, maintains 
consistency in all cases. Moreover, as we point out in Section 3.4, our method is much more efficient than MLPG1. 

3.2.3 Summarized results at the midpoint 

The midpoint in the current problem, 𝑥𝑥 =  1.5m, has a displacement of 0.5142m (see the exact solution in Eq. (43)). 
Table 1 shows comparative results for the displacement of that point, including the value of the relative error, i.e. 

error = �𝑢𝑢− 𝑢𝑢h

𝑢𝑢
� × 100 ,  (45) 

Table 1 Approximate displacements of the cable's midpoint. The exact displacement is 0.5142m. All the examples use 40 
integration points and 𝛼𝛼 =  0.7. The values of 𝛽𝛽 are: for the quadratic cases, 𝛽𝛽 =  2.1 (original MLPG1 method) and 
𝛽𝛽 =  1.1 (our method); and, for the cubic case, 𝛽𝛽 =  3.2 (original MLPG1 method) and 𝛽𝛽 =  1.9 (our method). 

 Nodes Value MLPG1 (m) Error MLPG1 Value our (m) Error our 

qu
ad

ra
tic

 7 0.5144 0.04% 0.5146 0.08% 
13 0.5144 0.04% 0.5143 0.02% 
25 0.5143 0.02% 0.5142 0.00% 
49 0.5142 0.00% 0.5142 0.00% 

cu
bi

c 

7 0.5147 0.10% 0.5131 0.21% 
13 0.5145 0.06% 0.5139 0.06% 
25 0.5144 0.04% 0.5141 0.02% 
49 -0.4633 190.10% 0.5142 0.00% 

 

As expected, those quantitative results confirm the qualitative results shown in Figures 10 and 11. In the quadratic 
case, all the relative errors of both methods are less than 0.1%. However, in the cubic case, our method presented a 
consistent diminishing of the relative error as the number of nodes increased. MLPG1 showed a similar behavior up to 
25 nodes. However, with a 49-node discretization, the diminishing trend was lost, and the results are clearly wrong. 
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Figure 10: Comparison of the MLPG1 method with our approach for the quadratic polynomial order, where �̅�𝑥 is located in 

accordance with the pattern shown in Figure 6a. The displacements are shown at each node, using uniform discretization with 7, 
13, 25 and 49 nodes; and 5, 10, 20 and 40 integration points. The support radii of the test functions were fixed at 𝛼𝛼 =  0.7, and 

the radii for the trial functions were: 𝛽𝛽 =  2.1 for the original MLPG1 method and 𝛽𝛽 = 1.1 for our method. 
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Figure 11: Comparison of the MLPG1 method with our approach for the cubic polynomial order. The displacements are shown at 

each node, using uniform discretization with 7, 13, 25 and 49 nodes; and 5, 10, 20 and 40 integration points. The support radii of 
the test functions were fixed at 𝛼𝛼 =  0.7, and the radii for the trial functions were: 𝛽𝛽 =  3.2 for the original MLPG1 method and 

𝛽𝛽 = 1.9 for our method. 
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3.3 Varying 𝒕𝒕 with Non-Constant 𝒌𝒌(𝒙𝒙) 

Since the analytical result shown in Equation (43) corresponds to the case in which 𝑘𝑘(𝑥𝑥) is constant, we cannot use 
it here because 𝑘𝑘(𝑥𝑥) =  sin(𝑥𝑥𝑥𝑥/𝐿𝐿). Thus, we compare the results with a Finite Difference (FD) solution obtained with a 
very refined grid of 100 partitions. All other variables of the model are the same as the previous example. 

The tests for this problem were exactly the same as those performed in Section 3.2. However, we present only the 
results with 40 integration points. Thus, Figures 12a and 12b show, respectively, the results for the quadratic and cubic 
cases (𝑡𝑡 =  2 and 3), using 40 integration points (𝑖𝑖 =  40) and discretizations of 7, 13, 25 and 49 nodes. Table 2 shows 
the midpoint's displacements and the corresponding relative errors. In this test, the original MLPG1 example, with cubic 
order trial functions and 49, nodes shows a deviation from the FDM's solution as in the previous test. 

Both methods reach similar relative errors for the quadratic case. However, for the cubic case, our method always 
presents better results with consistent diminishing error trend as the discretization increases. 

 
Figure 12: Tests using 𝑘𝑘(𝑥𝑥) =  sin(𝑥𝑥𝑥𝑥/𝐿𝐿) for the quadratic (a) and cubic cases (b). The displacements are shown at each node, using 
uniform discretization with 7, 13, 25 and 49 nodes; and 40 integration points. The support radii of the test functions were fixed at 

𝛼𝛼 =  0.7. 

Table 2 Approximate displacements of the cable's midpoint. The “true” displacement of 0.5406m was computed using the finite 
difference method 100 domain partitions. All the examples use 40 integration points and 𝛼𝛼 =  0.7. The values of 𝛽𝛽 are: for the 

quadratic cases, 𝛽𝛽 =  2.1 (original MLPG1 method) and 𝛽𝛽 =  1.1 (our method); and, for the cubic case, 𝛽𝛽 =  3.2 (original MLPG1 
method) and 𝛽𝛽 =  1.9 (our method). 

 Nodes Value MLPG1 (m) Error MLPG1 Value our (m) Error our 

qu
ad

ra
tic

 7 0. 5410 0.07% 0.5410 0.07% 
13 0.5409 0.06% 0.5407 0.02% 
25 0.5407 0.02% 0.5407 0.02% 
49 0.5406 0.00% 0.5406 0.00% 

cu
bi

c 

7 0.5414 0.15% 0.5402 0.08% 
13 0.5409 0.06% 0.5405 0.03% 
25 0.5408 0.04% 0.5406 0.00% 
49 -0.3952 173.10% 0.5407 0.02% 

3.4 Computational Performances 

This test compares the average time spent in computing the solution with the original MLPG1 method and with our 
method (using both �̅�𝑥 distributions illustrated in Figures 6a and 6b). The simulations were repeated ten thousand times 
and the average simulation time was computed. We implemented a program with both methods using C++ and the 
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simulations were made in the same machine. The tests used 7, 13, 25 and 49 nodes with 𝑡𝑡 =  2 (quadratic polynomial 
order), using 5 and 40 integration points. 

The results plotted in Figure 13 indicate that our approach outperforms MLPG1. Considering, for example, the 40-
integration-point cases, which deliver the most accurate results, our method is approximately 30 times faster. Even if we 
were satisfied with the results obtained with 5 integration points and 49 nodes, our method was approximately 5 times 
faster. 

 
Figure 13: Average run time vs discretization. All simulations were performed for the quadratic polynomial order (𝑡𝑡 = 2), 

considering the two distribution patterns for �̅�𝑥 shown in Figures 6a and 6b. The discretization used 7, 13, 25 and 49 nodes, and the 
integration used 5 and 40 integration points. The values of 𝛼𝛼 and 𝛽𝛽 were fixed (𝛼𝛼 =  0.7 and 𝛽𝛽 =  2.1 for the the MLPG1 method 

and 𝛽𝛽 =  1.1 for our method). 

Also, notice that the performance of our method with 40 integration points is comparable to the performance of 
MLPG1 with 5 integration points. So, for equivalent time performance, our approach delivers more accurate results. As 
shown in Figure 7, for 5 integration points, regardless of the number of nodes, MLPG1 delivers a relative error of 
approximately 8%. However, with the same computational times for each discretization, our method delivers results 
with relative errors less than 0.01% (see Table 1). 

4 CONCLUSIONS 

We investigated the behavior of a one-dimensional problem of a cable with fixed ends using the meshless local 
Petrov-Galerkin method using the same weight function as the test function. That method is also known as MLPG1 (Atluri 
and Shen, 2002) and uses the Moving Least Square (MLS) to construct local trial functions. The MLS collocation method 
was used to enforce the displacement boundary conditions. 

The problem was sufficiently simple for us to assess the pitfalls of the original MLPG formulation and to propose a 
consistent MLPG formulation that does not suffer of the same drawbacks. Our development shows that the location 
around which the approximating polynomial's coefficients are optimized should be dissociated from the place where the 
polynomial is evaluated, and its derivatives are computed. This is truly consistent with the error minimization associated 
with the MLS method, and makes the method simple and more powerful. We demonstrated, through a series of tests, 
that the consistent formulation delivers accurate results in an efficient manner. Moreover, with our method, it is easy to 
recommend sound values of 𝛼𝛼 and 𝛽𝛽 to deliver accurate results. In fact, although this is a very important issue for the 
practical application of the method, such recommendation is often overlooked in the literature. 

As future work, the proposed approach will be extended to two-dimensional problems next and then, to three-
dimensional ones. 
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