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Abstract 

This paper proposes a methodology to obtain the transient response of structural system interacting with 
soil-foundation schemes supported by viscoelastic soils. The structure and soil are divided into sub-systems. 
The time domain solution for each subsystem is formulated by an appropriated methodology. The equations 
of motion of structure are solved by Newmark integration algorithm. The transient response of the soil is 
obtained by a convolution integral. The convolution integral uses transient impulse response of viscoelastic 
soils. Newmark and convolution algorithms are formulated as input and output schemes, which, in turn, are 
plugged to the time stepping iterative algorithm. The scheme is applied to vertical response of a dynamical 
system interacting with a massless foundation laying on a soil modelled as a three-dimensional homogeneous 
viscoelastic half-space. For two distinct external forces, the resulting coupled displacements, interface forces, 
errors and number of iterations within each time step are provided. 
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1 INTRODUCTION 

The dynamic analysis of complex systems with parts presenting distinct properties constitutes an immense 
challenge to the scientific and professional community. Dynamic soil-structure interaction problems (DSSI) represent one 
such class of complex systems. The structures are bounded, heterogeneous, anisotropic and frequently present local 
non-linear behavior. The soil is usually less stiff, more homogeneous and usually is unbounded in two or three directions. 
The soil unboundedness introduces a geometric damping due to wave propagating into the infinite region and carrying 
energy with them. 

Due to the complexity of constitutive equations, geometries, boundary conditions and applied loads it is not possible 
to tackle these problems with analytical tools. It is also very difficult to solve DSSI problems with a single numerical 
methodology. Presently, a very efficient methodology to describe DSSI problems is the coupling of the Finite Element 
Method (FEM) with the Boundary Element Method (BEM). The FEM can model, in a standard way, the heterogeneity and 
the non-linear behavior in localized parts of the structure. The FEM can also model the soil at the vicinity of the structure, 
where non-linear deformation or non-linear contact behavior may be expected (Hughes, 1987). On the other hand, the 
BEM can describe accurately the linear wave propagation process in the soil and the radiation condition. Thus, a coupling 
FEM-BEM has been an efficient and frequently used technique in the DSSI analysis (Von Estorff and Prabucki, 1990). 

Dynamic analysis can be performed in frequency or in time domain. The FEM has become the standard numerical 
tool in linear and non-linear dynamic analysis (Bathe, 1996; Crisfield, 1991). A large set of very efficient numerical solvers 
are available to the FEM researcher or practitioner, that make full use of the sparsity and symmetry of the resulting FE 
system matrices. The BEM analysis for DSSI in the frequency domain was formulated by Dominguez (1978). An important 
feature of the BEM is that, when formulated based on a proper fundamental solution, the resulting Integral Equation 
only requires a boundary discretization, reducing thus the dimensionality of the problem by one. On the other hand, the 
resulting system matrices are fully populated and non-symmetric. A direct time domain formulation and implementation 
was first given by Mansur and Brebbia (1982a,b). Many contributions followed to improve the BEM in time domain (Von 
Estorff and Antes, 1991; Coda and Venturini, 1995; Rizos and Karabalis, 1998; Rizos and Wang, 2002). All these 
formulations represented distinct implementations of the so-called Stoke’s time fundamental solution for linear elastic 
domains. 

Transient response of unbounded soil problems and the interaction with supported structures have also been 
obtained with the use of Laplace transform domains (Wang and Rajapakse, 1993). A hybrid time-frequency domain 
procedure for transient BEM has been proposed by Gaul et al. (1992). A transient BEM formulation based on the 
Convolution Quadrature Method – CQM was proposed by Schanz and Antes (1997). A general formulation and 
implementation to transient linear viscoelatic models for FEs and BEs was presented by Mesquita et al. (2001). It requires 
a domain integration and cannot be directly applied to unbounded domains. A non-singular transient influence functions 
for semi-unbounded domains based on viscoelastic frequency domain solutions and the application of the FFT algorithm 
was synthesized by Mesquita et al. (2012). These solutions, which do not present singularities at the loading point (Barros 
and Mesquita, 1999) and require no integration regularization procedures (Dangla et al., 2005), were able to render 
accurate wave propagation phenomena for general linear viscoelastic models. 

There are distinct strategies to couple FE and BE formulation in direct time domain. The first one is the direct 
coupling formulated by Von Estorff and Prabucki (1990). It is efficient but the integration time steps for both BE and FE 
domains are the same. This may result in instabilities due to the different stiffness and, consequently, distinct wave 
propagation speeds in both domains. Recent studies, nevertheless, stressed the efficiency of the direct coupling method 
face to face to the other methodologies (François et al., 2015). One possibility of the direct coupling methodology is to 
transform the BE into FE-like elements at the interfaces. This has been applied to determine dispersion relations in wave 
guides embedded in semi-unbounded media (Mazzotti et al., 2013). Coupled FE-BE systems with localized non-linearities 
have been presented by Coda (2001). 

The second possibility is the so-called staggered coupling (Rizos and Wang, 2002). The technique has the advantage 
that each subdomain may be solved by the best available technique. In this procedure, for every time step, the interface 
solutions of one domain is fed as input to the second domain. The procedure implies in the same time step for the 
integration of both domains and require small integration steps to maintain stability of the solution (François et al., 
2015). 

The third FE-BE coupling mechanism is the iterative coupling. The first time domain FE-BE iterative coupling strategy 
was presented by Soares et al. (2004) and has been subjected to systematic improvements. An iterative coupling strategy 
shows many advantages over the other techniques. As in the staggered approach, every subdomain may be solved by 
the most suitable technique. The time steps for each domain may not be the same, potentializing the stability of the 
method (Soares, 2008; François et al., 2015). The iterative coupling strategy may incorporate a relaxation parameter 
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which may accelerate the convergence of the iterative method (Soares, 2008). The iterative approach is, in principle, also 
prone to handle non-linear contact problems, such as foundation partial uplift (Wolf, 1988). A fourth possibility to 
coupled the FE and BE subdomains is through the Lagrange multipliers strategy (González et al., 2007). Recently, Soares 
and Araújo (2019) proposed an advanced coupling procedure that does not require the iterative convergence process. 

All the previous works on iterative coupling used direct BEM time formulations for elastic domains. There is up to 
the present time, to the best of the authors’ knowledge, no general time domain fundamental solution for linear 
viscoelastic unbounded domains. In this article an iterative coupling strategy is presented that allows linear or non-linear 
structures to be coupled directly in time domain with time response of rigid structures interacting with viscoelastic soils. 

The time domain solution for both FE and BE methodologies are formulated in the so-called Newman-Dirichlet and 
Dirichlet-Newman modes (François et al., 2015). In this paper these solution schemes are called mode 1 and mode 2, 
respectively. For the FE domain, the Newmark integration algorithm is formulated to render mode 1 and mode 2 schemes 
for the iterative process. 

An indirect version of the BEM is applied to synthesize the frequency response of a circular rigid and massless 
foundation interacting with a viscoelastic half-space (soil model) (Barros and Mesquita, 1999; Labaki et al., 2014). An 
accurate integration scheme allows to determine the frequency response for the soil-foundation at very high frequencies 
(Mesquita et al., 2012). This high frequency solution together with the FFT algorithm yield very accurate time response 
for the soil system, in which linear viscoelastic effects can be incorporated. 

The time response of the BE domain to a general excitation is obtained by a superposition convolution integral, 
relating the time impulse response of the soil-foundation system to the time loads at the interface in every time step. 
The convolution integral has also been casted into mode 1 and mode 2 schemes. At every time step, the iterative coupling 
algorithm updates the interface nodal values, alternating in mode 1 and mode 2, until a prescribed convergence is 
reached. A relaxation parameter α is introduced for the interface variables update in mode 2, but in this study its value 
is kept constant α = 0.5. In the present article only the vertical response of the soil and of the structure were considered. 
So only the vertical structure and foundation degree freedom at the soil-structure interface is being coupled. The 
extension for the coupling FE interface variables to the multiple degrees of freedom of a rigid foundation can be obtained 
by standard procedures (Rizos, 2000). 

The main accomplishment of the present article is related to the formulation of the iterative scheme for the 
viscoelastic unbounded domain, the BE discretized domain. A previously synthesized time domain solution for rigid 
foundation interacting with a linear viscoelastic unbounded domain is incorporated into a discretized convolution 
integral, which in turn, can, for every time step of the iterative procedure, deliver Newman or Dirichlet values of the 
variables at the domains interface. To the best of the authors’ knowledge, iterative time domain coupling of unbounded 
viscoelastic domains with structures has not been reported in the literature. 

2 STATEMENT OF PROBLEM 

The problem being analyzed in this article is shown in Figure 1. This figure describes structure modelled as a linear 
system with mass M, stiffness K and damping coefficient C, interacting with a soil, described in this case as a 
homogeneous half-space, characterized by a density ρ, shear módulus G, Poisson ratio ν and internal damping ratio η. 
The structure is excited by an external load F(t). In the present case, the soil response is characterized by the vertical 
displacement at the geometric center of a massless and rigid foundation laying on a homogeneous half-space 
(Labaki et al., 2014). 

The system described is subdivided into two sub-systems, the structure and the soil. The forces and the 
displacements at the soil-structure interface are designated by F1(t), u1(t), F2(t) and u2(t), respectively, as shown in 
Figure 1. 

Fully bonded coupling conditions of the sub-systems require that at every time step, displacement kinematic 
compatibility and force equilibrium at the soil-foundation interface expressed, respectively, as: 

   1 2i iu t u t  (1) 

and 

   1 2 0i iF t F t   (2) 
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In the present article, the soil response u2(t) is the vertical displacement at the geometric center of a massless and 
rigid foundation interacting with a homogeneous half space (Labaki et al., 2014). But the soil profile may be a layered 
one (Labaki et al., 2014), the foundation may be embedded in the soil (Carrion et al., 2007) or the response of a pile 
embedded in the soil may also be considered (Barros et al., 2019; Lima et al., 2019). 

 
Figure 1: Statement of problem. 

3 COUPLING PROCEDURE 

3.1 Input-output responses 

To obtain the transient response of the coupled system, the equilibrium and kinematic compatibility equation must 
be fulfilled at every time step (ti) of the response. It is assumed that, for every time step t = ti , the response of each 
subsystem may be formulated as an input-output ‘box’. In this article the equations of motion of the structure will be 
integrated by the Newmark time stepping algorithm (Damasceno, 2013). As detailed in the next session, the Newmark 
algorithm can be formulated in the form of a Newman-Dirichlet (force-displacement), or Dirichlet-Newman 
(displacement-force) scheme to be applied at the iterative coupling methodology (François et al., 2015). These two 
solution schemes are termed mode 1 and mode 2 in the present article and are illustrated in Figure 2. 

The transient soil response will be obtained by means of a time convolution integral, relating the soil response due 
to unit (time) concentrated impulse to the actual loading function, in this case, the interface force F2(ti) (Mesquita et al., 
2012). Both integration procedures will be detailed in the next session. In this session, for the purpose of explaining the 
iterative coupling procedure, it suffices to say that for both subsystems it is possible to formulate the response in the 
modes shown in Figure 2. 

 
Figure 2: Input-Output Modes: Newman-Dirichlet (Mode 1), Dirichlet-Newman (Mode 2). 

Figure 2 should be read in the following way. For every time step (ti), the forces acting upon the structure are the 
external excitation F(ti) and the interface force F1(ti). In this case the Newmark algorithm can render the displacement 
u1(ti) that fulfills the dynamic equilibrium equations of motion (Damasceno et al., 2013). For the soil, the convolution 
integral may be so formulated that given a force applied at the soil interface F2(ti), the convolution algorithm delivers the 
corresponding displacement u2(ti) (Damasceno et al., 2013; Tovo, 2018; Tovo et al., 2019) that corresponds to the 
solution of the soil differential equations of motion (Mesquita et al., 2012). This operation is called Mode 1. 
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To properly formulate the iterative algorithm, the inverse operation, in which, for every time step the interface 
displacements are the (Dirichlet) input quantities, u1(ti) and u2(ti), and the output are the forces F1(ti) and F2(ti) (Newman 
quantities) that satisfies the equations of motion of both subdomains. This operation is called Mode 2. 

3.2 The coupling algorithm 

With the numerical input-output algorithms established, the coupling algorithm, shown in Figure 3, can be 
explained. The first action is, for a given time step (ti), to solve both iterative algorithms in Mode 1, for the case that all 
interface forces are given an initial value. In the present case this value is zero, F1(ti) = F2(ti) = 0. The outputs are the 
displacements for each subsystem u1(ti , j) and u2(ti , j). The internal iterative loop within every time step (ti) is designated 
by the index ‘j’. 

Next, the resulting displacements are compared within a pre-determined error erru level to check if the continuity 
at the soil-foundation interface is satisfied, u1(ti , j) - u2(ti , j) < erru. If this is the case, the coupling has been attained. Both 
interface displacements are equal, within an error bound erru, satisfying Equation (1) and both interface forces satisfy 
Equation (2), in this case with F1(ti) = F2(ti) = 0. 

In general Equations (1) and (2) are not fulfilled at the first iteration step. In this case, new displacement for the 
iterative inner counter j=j+1, u1(ti , j+1) and u2(ti , j+1) are determined from weighting the previous displacement results, 
u1(ti , j) and u2(ti , j): 

         1 2 1 2, 1 , 1 , 1 ,i i u i u iu t j u t j u t j u t j          (3) 

These new displacements u1(ti , j+1) and u2(ti , j+1) are now fed into the Mode 2 solvers, having as an output the 
new interface forces F1(ti , j+1) and F2(ti , j+1). To start a new iterative cycle (j+2), the forces F1(ti , j+1) and F2(ti , j+1) are 
weighted to obtain the input forces F1(ti , j+2) and F2(ti , j+2): 

         1 2 1 2, 2 , 2 , 1 1 , 1i i f i f iF t j F t j F t j F t j            (4) 

These new forces, F1(ti , j+2) and F2(ti , j+2), are now fed into the Mode 1 algorithms, delivering the displacements 
u1(ti , j+2) and u2(ti , j+2), which are compared within the limits of an established error bound u1(ti , j+2) - u2(ti , j+2) < erru. 
Again, if this condition is fulfilled the subsystems are considered coupled within this numerical error bound. Otherwise, 
the cycle continues until at step ‘n’ the displacement compatibility condition u1(ti , n) - u2(ti , n) < erru is satisfied, or the 
inner counter ‘j ‘ reaches a predefined maximum value, ‘j=nmax’, and the procedure stops without having reached the 
required convergence. 

Two remarks should be made about this algorithm. First, throughout this article the relaxation or weighting factors 
are kept constant with the value α = αu = αf = 0.5. This means that we are averaging displacements and forces within the 
j-cycles. Second, convergence is only tested for interface displacements and not for forces. The literature reports 
techniques to optimize the relaxation parameter, but this has not been incorporated in the present analysis (Soares, 
2008). 

4 FORMULATION 

In this session the numerical algorithms used to render the transient response of the subsystems shown in the 
Problem Statement session will be given a formulation which, in turn, will render them amenable to be incorporated in 
the iterative scheme presented in Figure 3. 

4.1 Formulation of the Input-Output Algorithm for the Structure Transient Response 

The equation of motion for the subsystem 1, the structure, is given by: 

1 1 1 1 1 1 1M u C u K u F F         (5) 

The Newmark algorithm may be written in the input-output Mode 1 and Mode 2, as indicated in Figure 2. 
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Figure 3: The iterative coupling algorithm. 

4.1.1 Newmark Mode 1 

For the Mode 1, considering the time instant (ti) and the inner iteration ‘j’, having as input the external force F(ti) 
and the interface iterative force F1(ti , j), the output, i.e. the displacement u1(ti , j+1) at the inner iteration (j+1), may be 
expressed using the Newmark algorithm as (Damasceno, 2013): 

      
1

1 12

1
, 1 ,i i iu t j M C K F t F t j A B

tt




 
        
  

 (6) 

with 

     1 1 12

1 1 1
, , 1 ,

2i i iA M u t j u t j u t j
tt  

             
   (7) 

     1 1 1, 1 , 2 ,
2i i i
t

B C u t j u t j u t j
t

  
  

                      
   (8) 

The Newmark integration parameters are α = 0.25 and β = 0.5. 

4.1.2 Newmark Mode 2 

The Newmark integrator may also be written in terms of Mode 2, in which the input is the displacement u1(ti , j+1) 
and the output is the interface force F1(ti , j+1) satisfying the equilibrium equation of motion (Damasceno, 2013): 

         1 1 1 1, 1 , 1 , 1 , 1i i i i iF t j M u t j C u t j K u t j F t             (9) 
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4.2 Formulation of the Input-Output Algorithm for the Soil Transient Response 

The soil transient displacement response u2(ti), is obtained by the convolution integral relating the actual force 
applied at the soil foundation interface F2(ti) with the soil impulse response function h2

δ(ti) (Wolf, 1988; Mesquita et al., 
2012): 

     
τ

τ

τ τ τ2 2 2
0

 
it

i iu t F h t d




    (10) 

4.2.1 Convolution Integral Mode 1 

For the case of Mode 1, considering the time instant (ti) and the inner iteration ‘j’, having as input the interface 
iterative force F2(ti , j), the output, i.e. the displacement u2(ti , j+1) at the inner iteration (j+1) may be expressed in 
discretized as (Tovo, 2018): 

         
1

2 2 2 2 2
0

, 1 , 0
k i

i k i k i
k

u t j F t h t t F t j h t 
 




      (11) 

4.2.2 Convolution Integral Mode 2 

Equation (11) can easily be reformulated to have, as an input, the displacement u2(ti , j+1) and, as output, the soil 
interface F2(ti , j+1) at the next inner iteration cycle. 

 
 

     
1

2 2 2 2
02

1
, 1 , 1

0

k i

i i k i k
k

F t j u t j F t h t t
h t




 




 
         

  (12) 

In this article, both sub-systems are discretized with the same time step. Nevertheless, a linear and quadratic 
interpolation of the variables in the convolution integral have been implemented by Tovo (2018) and can be used to 
expand the iterative algorithm to use distinct time steps in each sub-system (François et al., 2015). 

4.3 The Transient Soil Impulse Response 

4.3.1 Frequency Domain Response 

In this session, the strategy used to obtain the transient soil impulse response is described. The soil model is given 
by a rigid massless rigid foundation resting upon a viscoelastic homogeneous half-space. The frequency domain solution 
for this problem has been given by Labaki et al. (2014). The frequency domain vertical displacement of the foundation 
geometric center H2(ω) due to a unitary load F2(ω) = 1(ω) can be seen in Figure 4a. The parameters used in these 
calculations are: G = 1.0 [Pa], ρ = 1.0 [kg/m3], ν = 0.25, η = 0.01. It is costumary to use unit constitutive values to test 
numerical methodologies (Soares, 2008). 

4.3.2 Transient Impulse Response 

The procedure developed to determine the frequency domain solution shown in Figure 4a can be used to calculate 
this response up to very high frequencies (Mesquita et al., 2012). This means that the FFT algorithm can be applied to 
the frequency domain response H2(ω) to render the transient soil impulse response h2

δ(t) with very small time steps 
shown in Figure 4b. 

Two remarks should be mentioned about this topic. The transient impulse response h2
δ(t) shown in Figure 4b will 

be used in the iterative coupling algorithm, both in Mode 1, Equation (11), and Mode 2, Equation (12). In this article, the 
chosen soil model is a homogeneous half-space, but many other soils or foundation supporting systems like layered soils 
(Labaki et al., 2014), embedded foundations (Carrion et al., 2007) and pile supporting schemes (Barros et al., 2019; 
Lima et al., 2019) may be used. 
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Figure 4: (a) Soil frequency domain displacement solution H2(ω) for a unitary load F2(ω) = 1 (ω). (b) Soil transient impulse response 

h2
δ(t) due to a unit impulse excitation f(t)=δ(t). 

4.4 Formulation of the Frequency Domain Solution of the Coupled Soil-structure System 

In order to have a solution that allows a validation of the proposed iterative coupling scheme, a transient solution 
of the complete, direct coupled, soil-structure system is obtained. The idea is to use the frequency response solution of 
the structure H1(ω) and the soil frequency response H2(ω) and to couple both solutions through force equilibrium and 
kinematic continuity condition, given in Equations (1) and (2), to obtain the frequency domain solution of the coupled 
soil-foundation system HT(ω). The structure frequency response H1(ω) corresponds to a one degree of freedom oscillator 
with mass M, damping C and stiffness K and can be obtained in a rather straightforward manner. The more intricate soil 
solution H2(ω) is given, exemplarily, in Figure 4a. The expression for coupled solution HT(ω) can be shown to be: 

 
   
   
1 2

1 2
T

H H
H

H H

 


 

      
 (13) 

Figure 5a shows the frequency domain response of the direct coupled soil-structure system for the parameters 
M = 0.4 [kg], C = 0.01 [Ns/m], K = 0.01 [N/m], G = 1.0 [Pa], ρ = 1.0 [kg/m3], ν = 0.25, η = 0.01. Using the FFT algorithm on 
Equation (13) will furnish the transient unit impulse response of the coupled system hT

δ(t), which is given in Figure 5b. 
This response hT

δ(t) will be used in conjunction with the convolution integral to render the transient response of the 
direct coupled soil-structure system: 

     
τ

τ

τ τ τ
0

 
it

T i T iu t F h t d




    (14) 

 
Figure 5: (a) Frequency domain response of the coupled soil-structure system HT(ω). (b) Transient unit impulse response of the 

coupled soil-structure system hT
δ(t). 
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5 NUMERICAL EXAMPLES 

In this session, the responses obtained by the iterative coupling procedure are compared to those obtained from 
the direct coupled system, given in Equations (13) and (14). Two external excitation forces F(t) are used as examples, 
namely, trapezoidal and triangular excitation. The values of the absolute and relative displacement errors between both 
approaches are given. The resulting interface forces F1(t) and F2(t) are also shown. The number of iterative steps ‘j’ within 
each time step Δt is also presented. Throughout these examples the system parameters are: M = 0.4 [kg], C = 0.01 [Ns/m], 
K = 0.01 [N/m], G = 1.0 [Pa], ρ = 1.0 [kg/m3], ν = 0.25, η = 0.01. The value of the convergence criteria for the displacements 
of both subsystems u1(ti , j) - u2(ti , j) < erru in the iterative process is established to be erru = 10-12. The number of 
maximum iterative steps within a time step is set to nmax = 200. The displacement u units are given in meters [m]. 

Two other error definitions are used in this article. They are, respectively, the absolute, errabs, and relative, errrel, 
errors between the subsystems u1(t) = u2(t) = u1,2(t) and the response of the coupled system uT(t): 

   1,2errabs Tu u   (15) 

    1,2err T
rel

T

u u

u


  (16) 

5.1 Trapezoidal excitation 

Figures 6 to 8 present the performance of the iterative coupling procedure for the case of a trapezoidal external 
excitation F(t), shown in Figure 6a. The displacement response for the both solutions, the initially coupled system uT(t) 
and the iteratively coupled systems u1(t) = u2(t), is given in Figure 6b. The errors as defined in Equations (15) and (16) are 
shown in Figures 7a and 7b, respectively. The resulting interface forces obtained in the iterative process for every time 
step is given in Figure 8a. The resulting interface forces are consistent with the excitation profile. 

The number of inner iterations ‘j’ required to obtain convergence between the displacements of the two subsystems 
u1(ti , j) - u2(ti , j) < erru is shown in Figure 8b. This Figure 8b indicates that at some time steps the maximum number of 
iterations per time step, nmax = 200, is reached without displacement convergence within the prescribed error bound of 
10-12. It should be mentioned that this is a very high convergence requirement. Even when the iterated displacement 
solution u1(ti , j) - u2(ti , j) < erru fulfill the convergence criteria, this iterated solution still presents larger absolute and 
relative errors when compared to the originally coupled system displacement uT(t). 

 

Figure 6: (a) Trapezoidal excitation – F(t) [N]. (b) Displacements: u1 , u2 , uT [m]. 
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Figure 7: Displacement errors u1,2(t)- uT(t) : (a) Absolute error. (b) Relative error. 

 
Figure 8: (a) Coupling interface forces F1(t), F2(t). (b) Iterations to convergence. 

5.2 Triangular excitation 

The iterative coupling procedure is tested now for a triangular external excitation, shown in Figure 9a. The results 
for the displacements, errors, interface forces and number of iterations within each time step are given in Figures 9b 
through 11b. They follow basically the same pattern of the results obtained in the previous example. The idea is to show 
that, at least what concerns the external excitation source, the proposed methodology is consistent. 

 
Figure 9: (a) Triangular excitation – F(t) [N]. (b) Displacements: u1 , u2 , uT [m]. 
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Figure 10: Displacement errors u1,2(t)- uT(t) : (a) Absolute error. (b) Relative error. 

 
Figure 11: (a) Coupling interface forces F1(t), F2(t). (b) Iterations to convergence. 

The results presented in Figures 6 to 11 are the main outcomes of the methodology proposed and implemented in 
this article. These initial results tend to indicate that the proposed transient iterative coupling procedure has the 
potential to obtain transient responses of more complex structural and foundation systems interacting with many soil 
profiles or soil-supported foundation schemes. It may be applied to obtain transient solutions of coupled structures with 
viscoelastic soils. 

6 CONCLUSION 

This article presented an iterative methodology to obtain the coupled transient response of structural systems 
interacting with viscoelatic soil-foundation arrangements. Structure and soil are considered two distinct subsystems. For 
the structure, an input-output scheme, relating Newman and Dirichlet interface quantities, is developed based on the 
Newmark time integration algorithm. The transient response of the viscoelastic soil-foundation sub-system is obtained 
by a discretized convolution integral relating the soil transient impulse response to the actual interface forces and 
displacements. The discretized convolution integral has also been formulated as input-output procedures relating 
Newman and Dirichlet quantities at the soil-structure interface. The kernel of the convolution integral for the soil is the 
transient impulse response of the viscoelastic soil model. It is obtained applying the FFT algorithm to an accurately 
synthesized frequency domain solution of the soil problem. The proposed iterative strategy couples the Newmark 
algorithm with a discretized version of the convolution integral. 

The method is applied to obtain the vertical response of a mechanical structure interacting with a rigid and massless 
foundation resting on a viscoelastic half-space. The results obtained by the iterative coupling procedure presented a 
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good agreement with the solution obtained for the complete, directly coupled, soil-structure system. The interface 
displacement, forces and the number of iterations within each step to achieve displacement convergence have been 
determined. Relative and absolute error measures were provided. The methodology may be further developed to 
consider structures with localized non-linear behavior, non-linear contact conditions at the soil-structure interface, 
including partial uplift, and also distinct integration time steps for each subdomain. It may also contribute to advance the 
challenging problem of obtaining transient responses for viscoelastic unbounded domains. 
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