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Abstract 
A highly non-linear model for the dynamics behavior of Air Cush-
ion Vehicles (ACV) is presented. In this model the compressible 
Bernoulli's equation, the Newton's second law of motion, and the 
nonlinear isentropic relations are used to predict the dynamics 
behavior of only the vertical response of the ACV in both time 
and frequency domains. In this paper the mass flow rate inside the 
air cushion volume of the ACV is maintained constant. In order to 
assist in the design process of such vehicles, the self excited re-
sponse and the cushion pressure of the ACV are calculated to 
understand the dynamic behavior of these vehicles.  It is shown in 
this study that the mass flow rate and the length of the vehicle's 
skirt are the most significant parameters which control the steady 
state behavior of the self excited oscillations of the ACV.  An 
equation to predict the transient time of the oscillatory response 
or the settling time in terms of the system parameters is devel-
oped.  Based on the developed equations, the optimum parameters 
of the ACV that lead to minimum settling time are obtained.  
Also, the chaotic behavior of the heave dynamics is investigated 
with the aid of the Fourier analysis and the Poincaré map.  It is 
shown that the heave dynamics does not manifest any chaotic 
behavior within the selected range of the control parameters. 
However, the cushion pressure manifested some chaotic behavior 
at some values of the skirt length and mass flow rate.  
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1 INTRODUCTION 

Air Cushion Vehicles (ACVs) are mainly used to operate in the marine air-ground tasks. They have 
the ability to operate over many terrains which can be rough such as ice, water, or forests.  The 
early work in designing and operating the ACVs started in England by Sir Christopher Cockerell in 
1955 [1].  The Landing Craft Air Cushion LCAC is a type of ACV that is used to transport weapon  
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Nomenclature 
 
M  Mass of vehicle (kg) 
L  Skirt length (m) 
d  Skirt height (m) 
z  Heave displacement (m) 
 z  Vertical acceleration (m/s2) 
pa  Atmospheric pressure (101000 Pa) 

 p  Cushion pressure (Pa) 
A  Cushion area (m2) 
Ae  Exit area (m2) 
γ  Specific heat ratio (cp/cv) 
R  Gas constant 
T  Temperature of air (K) 
g  Gravitational acceleration (9.81 m/s2) 
ρ  Air cushion density (kg/m3) 
ρa  Atmospheric Air density (1.189 kg/m3) 
c0  Correction coefficient factor 
V  Cushion volume (m3) 
m  Mass of air inside the cushion volume (kg) 
 m  Mass flow rate of air (kg/s) 
 min  Mass flow rate of air inside the cushion volume (kg/s) 

 mout  Mass flow rate of air outside the cushion volume (kg/s) 
Tss  Settling time (s) 
v0  Initial velocity (m/s) 
L  Normalized ACV skirt length 

 min  Normalized mass flow rate 
M  Normalized ACV mass 
Tss  Normalized settling time 
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systems, equipment, cargo and personnel both from ship to shore and across the beach.  The 
LCACs are capable of carrying heavy payload, such as M-1 tank, at a high speed.  In these vehicles 
air is supplied to the cushion by a number of centrifugal fans which are driven by the craft’s gas 
turbine engines.  

Numerous studies were reported in the literature regarding proper designing of these vehicles. 
During the 1960's and 1970's great amount of research work was focused on understanding the 
physics of full-skirted air cushion vehicles. Optimization in the design of the ACVs allows utilization 
of these vehicles for different purposes and missions. Figure (1) shows a simple diagram of these 
ACV’s. One of the basic components of the ACV is the skirt. Since the beginning of ACV designing, 
a lot of effort had been put in to develop a good skirt system. Excellent performance in terms of 
power consumption, stability, maneuverability can be guaranteed with a good skirt design [2-6].  

In all these studies, the aim was to introduce a design for the ACV skirt system which should be 
amphibious and tolerant to unfriendly environment and terrains.  Ma and Sullivan [6] developed a 
numerical theory on the linear heave dynamics of a two dimensional section of a flexible skirt and 
flexible bag-finger skirt system.  It was found in [6] that the skirt system mass is an important pa-
rameter in craft dynamics only at high frequency, which is close to the skirt bounce frequency. The 
skirt section in this study was constrained to move only in the vertical (heave) direction.  

Chung et al. [7] described results of an analysis of the nonlinear heave dynamics of a simplified 
configuration chosen specifically to allow formulation from first principles.  In this study, the skirt 
mass was lumped in the fingers, with the bag being modeled as a combination of massless inelastic 
membranes and links. Airflow processes were assumed quasi-steady, and the bag-and-cushion vol-
umes were modeled as lumped pneumatic capacitances. The modulation of cushion air escape by 
skirt-surface contact is also included. In this study, the numerical results showed that nonlinear 
effects occur at wave input amplitudes expected to be encountered in practice. Also, at a given fre-
quency, input amplitude increase caused jumps in heave response, period doubling, and chaos. Fur-
thermore, results for two typical configurations show resonance at frequencies at which humans are 
most sensitive. 

An air-cushion vehicle equipped with a bag-and-finger skirt using a linear analysis of the heave 
dynamics has been presented in [8].  In this study, a two-dimensional section of the cushion is sub-
ject to pure heave or long-wave surface motion inputs. The skirt mass is lumped in the fingers, with 
the bag being modeled as a combination of massless inelastic membranes and links. The airflows 
from bag to cushion and from cushion to atmosphere were assumed quasisteady, and the bag and 
cushion volumes were modelled as lumped pneumatic capacitances. Their results suggested that 
changes in the skirt geometry cannot be used to radically modify an undesirable heave response, but 
reducing the skirt mass may be effective. It should be noted that air compressibility has not been 
included in their model. 

Chung [9] investigated the pure heave motion of a two-dimensional section of the bag-and-finger 
skirt using a non-linear mathematical model.  In this study, a simple model to account for the hys-
teretic skirt surface contact forces was presented. The simulation results showed that the skirt force 
appears as damping, and confirms that the hysteretic forces observed in the static stiffness tests can 
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have a major effect on vehicle dynamics. However, they do not suppress phenomena such as period 
doubling and chaotic response to periodic input disturbances. 

Fu MY et al. [10] had introduced a model for the dynamics behavior of Air Cushion Vehicles 
base on equation of six degrees of freedom motion control. In this study, the landing process actual-
ly is the coupled motion among gas-liquid-solid three-phase intermediate value, in which motion- 
stance changes are quite dramatic and complex.  Simulations in this study showed that, the greater 
the slope angle of the ACV is, the greater the pitch angle change during the ACV’s beach-landing. 
Also, it has been shown in this study that the pitch angle obtained by the air cushion vehicle’s 
land-movement is much smaller than the pitch angle made by the water surface exercise. 

Pollack et al. [11] studied the resonant frequencies and mode shapes of the dynamic pressure 
within an ACV air cavity.  In his study, a numerical model has been developed to predict the mo-
tion of an ACV, with varying fan and skirt designs, subject to a range of ocean surface excitations. 
The model encompasses the complex geometry of the ACV and the three-dimensional variation of 
the air cushion pressure. The focus of the study is on analytical modeling of an ACV and its physics, 
to enable verification of the developed numerical model [11]. 

Yang et al. [12,13] had  utilized of a Computational Fluid Dynamics (CFD) tool to investigate 
the dynamics of the skirt system of an idealized Air Cushion Vehicle (ACV) under non-linear break-
ing wave impact.  Modeling the domain of the fluid which includes water and pressurized air inside 
the ACV’s bag, had been achieved by using Smoothed Particle Hydrodynamics (SPH).  The de-
formable structural domain was modeled using the Finite Element Method (FEM). 

A new dynamical model for small scale intelligent air-cushion tracked vehicle moving over 
swamp peat has been investigated experimentally and numerically by Hossain et al. [14]. They 
showed that the air-cushion system improves the vehicle performance by keeping traction coefficient 
of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport 
efficiency with the optimal power consumption [14]. 
 
2 PROBLEM STATEMENT AND MOTIVATION 

In modeling the heave dynamics of the ACV, several sources of nonlinearities contribute to the limit 
cycle oscillations. These sources were identified and studied for an incompressible air cushion flow 
rate model in reference [15] for different air cushion geometries. Hinchey et al. [15] showed that the 
frequency of oscillations was low enough to allow the incompressibility condition to be adopted in 
analyzing the heave dynamics of the ACV. 

A key factor in designing the ACV is to use the flexible air cushion skirt system, which is at-
tached to the base of the vehicle from where the pressurized air is exited. The work presented in 
references [15-16] carried an analytical and experimental investigation of the oscillation dynamics in 
a flexible skirt ACV. Despite the presence of highly nonlinear sources in reference [16], Bernoulli 
model was used to model the flow inside the skirt of the air cushion ignoring the compressibility as 
well as the fluid friction effects. 

Simulation of an ACV in waves was made possible by introducing a linearized compressible hy-
drodynamic model based on transient wave Green's function [18-19]. It was shown in [17] that 
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smoothing out pressure in an artificial and empirical manner near the edges was necessary to obtain 
a finite wave resistance. 

The importance of compressibility on the air cushion vehicle’s dynamic behavior was demon-
strated by the deformable free surface condition in reference [19-20]. A numerical study of the dy-
namic behavior of the ACV was achieved by developing a numerical simulation program called 
ACVSIM. The ACVSIM models the skirt and the ACV dynamics was investigated using the 
boundary element method with a higher order spline based model [19-20]. 

Several investigations to understand the ACV dynamics have been conducted by many research-
ers using linear modeling analysis [7,8,15].  The ACVs suffered setbacks during their early develop-
ment period due to the occurrence of self excited oscillations.  These oscillatory motions are simply 
a translation in the vertical direction and are very undesirable as sometimes they may lead to de-
struction of the vehicle.   The self excited behavior of the ACV is encountered in most of the linear 
models which have been studied in the literature. In this paper, a non-linear model is introduced 
which is an extension of the approach presented in references [15,16,21].  

The model presented in this paper contains two nonlinear coupled differential equations.  The 
nonlinearities included in the governing equations of this model are present due the compressibility 
effects and the polytropic behavior of the compression expansion process. 

The governing equations are solved numerically to study the dynamic behavior of the self excit-
ed oscillations in the vertical direction.  The numerical simulation in this study is based on writing 
a code using the Matlab software.  A parametric study is carried out in order to develop an equa-
tion to predict the settling time of the oscillatory motion of the ACV. Finally, the chaotic behavior 
of the model is also investigated for different ACV parameters. The work presented in this paper 
will therefore allow the reader to better understand the air cushion vehicle’s dynamic behavior and 
will provide room for design improvements.  

 

zFANpa

Mass	
  center
skirt

inm

outm

pd

aρ

ρ

L (Skirt 
Perimeter)

Cushion	
  Vol.

 
 

Figure 1   Simple schematic of Air Cushion Vehicle system. 
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3 DESCRIPTION OF THE PROPOSED METHOD 

The flow of air from the cushion in Figure (1) is assumed to be subsonic and compressed isentropi-
cally. Also, thermodynamic equilibrium is assumed inside the cushion volume. Using Newton’s Se-
cond law of motion leads to writing the vertical equation of motion as: 
 

 Mz = (p − pa )A −Mg  (1) 
 
where M is the mass of the vehicle,  z  is the acceleration in the vertical direction, p  is the inside 
cushion pressure, pa  is the atmospheric pressure, A  is the cross-sectional area of the cushion, and  
g  is the gravitational acceleration. The total amount of air mass inside the cushion:  
 

m = ρV  (2) 
 
where m  is the mass of air inside the cushion volume, V  is the cushion volume, and ρ  is the den-
sity of air inside the cushion volume. The mass flow rate balance inside the cushion is: 
 

m = min − mout  (3) 
 
where  min  is mass flow rate entering the cushion and is a fixed quantity defined by the properties 
of the blower fan.  On the other hand, mout is the mass flow rate exiting the cushion. It is depend-
ent on the vertical displacement y  as well as the atmospheric and cushion pressures. Taking the 
time derivative of Equation (2) yields: 
 

 m = ρV + ρ V  (4) 
 

The polytropic relationship between pressure and density for an isentropic process is: 
 

pρ−γ = constant  (5) 
 

where γ =
cp
cv

, and the pressure is related to temperature by the perfect gas equation p = ρRT , 

where R  is the gas constant ( R for air is 287 m
2

s2K
). Differentiation of Equation (5) yields: 

 

 pρ
−γ − pγ ρρ−γ −1 = 0  (6) 

 
or 
 



A. S. Sowayan et al. / Investigation of the Heave Dynamics of Air Cushion Vehicles (ACV): Parametric and Chaotic Studies      731 

 
 

 
Latin American Journal of Solids and Structures 10(2013) 725 – 745 

 

 
ρ = ρ p

γ p
 (7) 

 
Therefore the conservation of mass, Equation (4), can be written using the isentropic relation as: 

 

 

ρVp
γ p

+ p V = min − mout  (8) 

 
The variables in Equation (8) are all related to the cushion zone. Also  V = Az , and at the cush-

ion zone ρ = p
RT

, therefore: 

 
Vp
γ RT

+ pAz
RT

= min − mout  (9) 

 
where T is the surrounding temperature. One can solve for  p  such that: 
 

 
p = γ RT

V
min − mout −

pAz
RT

⎡
⎣⎢

⎤
⎦⎥

 (10) 

 
This model contains three unknown quantities, which are the vertical displacement z , the cush-

ion pressure p , and the air flow rate leaving the cushion volume  mout . A third constitutive equa-
tion is needed together with Equations (1) and (10). This can be introduced using the compressible 
Bernoulli’s equation [22]. 
 

v2

2
+ γ
γ −1

p
ρ
= constant  (11) 

 
The compressible Bernoulli’s equation is evaluated between the two stages, which are: the cush-

ion and the atmospheric regions. Therefore, the velocity of the air exiting the skirt is given by the 
following equation: 
 

vout =
2y
γ −1

p
ρ
− pa
ρa

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (12) 
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where p  and ρ  are respectively the pressure and density of the air inside the cushion region. 
Moreover, pa  and ρa  represent the pressure and density of the atmospheric air, respectively. The 
atmospheric air density ρa  is related to the air cushion density ρ  by the isentropic relations: 
 

ρa

ρ
= pa

p
⎛
⎝⎜

⎞
⎠⎟

1
γ

 (13) 

 
The Equation (13) is substituted into Equation (12) which yields: 

 

vout =
2y
γ −1

p
ρ
1− pa

p
pa
ρa

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

= 2γ
γ −1

p
ρ
1− pa

p
pa
p

⎛
⎝⎜

⎞
⎠⎟

− 1
γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (14) 

 
Therefore the outlet velocity is given by: 

 

vout =
2y
γ −1

p
ρ
1− pa

ρa

⎛
⎝⎜

⎞
⎠⎟

γ −1
γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (15) 

 
The air mass flow rate can be evaluated using the continuity equation such that: 

 

 mout = ρaAevout  (16) 
 
where Ae  is the exit area of the flowing air. Substituting Equation (15) into (16) and taking 

ρa =
pa
RT

 and Ae = Lz , yields. 

 

 

mout = ρaLz
2γ
γ −1

p
ρ
1− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ −1
γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (17) 

 
Making some manipulations and using the isentropic relations for ρa : 
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mout = ρ pa
p

⎛
⎝⎜

⎞
⎠⎟

1
γ
Lz 2γ

γ −1
RT 1− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ −1
γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (18) 

 
which yields: 

 

 

mout = ρLz RT 2γ
γ −1

pa
p

⎛
⎝⎜

⎞
⎠⎟

2
γ
1− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ −1
γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (19) 

 
or 

 

 

mout =
ρRT
RT

Lz 2γ
γ −1

pa
p

⎛
⎝⎜

⎞
⎠⎟

2
γ
− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ +1( )
γ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (20) 

 
Finally the mass flow rate out of the cushion volume is given by the following equation: 
 

 

mout =
pLz
RT

2γ
γ −1

pa
p

⎛
⎝⎜

⎞
⎠⎟

2
γ
− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ +1( )
γ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (21) 

 
This equation should be corrected by a correction coefficient c0  to account for some losses due 

to the mathematical idealization of this model and can be found experimentally [5,18].  Therefore 
the mass flow rate equation can be written as: 

 

 

mout =
c0pLz
RT

2γ
γ −1

pa
p

⎛
⎝⎜

⎞
⎠⎟

2
γ
− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ +1( )
γ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

 (22) 

 
where L  is the perimeter length of the skirt shown in Figure (1).  Equations (1), (10) and (22) are 
solved numerically in the following section. 
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4 RESULTS AND DISCUSSION 

The governing Equations (1), (10) and (22) can be written in state space model representing a 
physical system as three first order coupled nonlinear differential equations.  The state space form 
of the governing equations is given below: 
 

 z1 = z2  (23) 
 

 
z2 =

A
M

p − pa( )− g  (24) 

and 
 

 

p = γ RT
A d + z1( ) min −

c0pLz1
RT

2γ
γ −1

pa
p

⎛
⎝⎜

⎞
⎠⎟

2
γ
− pa

p
⎛
⎝⎜

⎞
⎠⎟

γ +1( )
γ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− pAz2
RT

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (25) 

 
A computer code based on the Matlab software is developed to solve and integrate this stiff sys-

tem of first order differential equations (Equations (23)-(25)) using an implicit Runge Kutta method 
with acceptable accuracy as stated in the literature [23,24] that is suitable for stiff system of nonlin-
ear differential equations.  The implicit Runge-Kutta formula with a first stage that is described as 
a trapezoidal rule step and a backward differentiation formula of order two in the second step.  
Although, the accuracy of this solver is medium to low, we were able to have good results because 
we used a very small time step.  Also in our solution, we were not concern about the most accurate 
solution because we were interested in the overall trend of the heave dynamics behavior of the ACV 
in the whole time interval rather than the actual absolute values of the solution. The solution to the 
system of Equations (23)-(25) is performed using dimensionless controlled parameters defined as 
follows: 
 

L = L
d

 (26) 

 
 

M = M
ρad

3  (27) 

 
and 
 

 
min =

min

ρav0d
2  (28) 
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where L  is the dimensionless skirt length, M  is the dimensionless mass of the ACV,  min  is the 
dimensionless air mass flow rate and v0  is the initial velocity. 

Without loss of generality, the results in this paper are obtained using the following ranges for 
the control parameters: M = 70  to M = 180 , L = 3  to L = 4.5 , and  min = 25  to  min = 250 . 
Sample results are shown in Figures (2), (3), and (4) for some selected parameters.  Figure (2) 
shows a decaying time history for the heave when parameters M = 85 ,  min = 65  and L = 3 . The 
cushion pressure is also decays and reaches a steady state value as shown in Figure (3).  In both 
figures, the oscillations cease after about 15 seconds.  A good design for the ACV should reduce the 
oscillation history to a minimum.  This will be discussed in the next section. 

 
 
 

0 5 10 15 20 25 30
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t (sec.)

He
av

e (
m)

 
 
 

Figure 2   Time history of the heave for M = 70 ,  min
= 65  and L = 3  
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Figure 3   Cushion pressure versus time for M = 85 ,  min
= 65  and L = 3  

 
 
 

 
 

Figure 4   Spectrum of the heave dynamics and cushion pressure for M = 70 ,  min
= 65  and L = 3  
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It is evident from these figures that the self excited response has a distinct frequency component 
as shown in the frequency spectrum in Figure (4). The frequency component in Figure (4) repre-
sents the fundamental oscillation frequency which corresponds to the natural frequency of the sys-
tem which is equal to 1.525 Hz. Since the autonomous model in this study has self excited oscilla-
tions, therefore, the extra smaller peak corresponds to a frequency of 3.06 Hz, which is more clear in 
the pressure figure, is due to the nonlinearity of the system which is similar to super harmonic com-
ponents usually manifest in the spectrum for nonlinear systems. The oscillations in the response 
depend mainly on values of ACV control parameters. Therefore, in designing these vehicles a proper 
choice of the values of these parameters can enhance the damping of these oscillations.  
 
4.1 Parametric Study 

One of the objectives of this paper is to explore the influence of the control parameters on the tran-
sient response in order to improve the oscillatory behavior of ACV.  The transient response of the 
ACV is obtained by varying the control parameters: M , min  and L , one at a time. This has led 
to generating substantial amount of data, a summary of which is presented here. Furthermore, the 
optimum control parameters are determined. 

Since we are interested in minimum oscillation response, a parameter to measure the transient 
response is introduced. This parameter is called the settling time. The settling time Tss  is the time 
at which the oscillations start to cease.  To develop an equation to predict Tss  the equation of mo-
tion is integrated using Runge Kutta numerical scheme and the parameters such as the mass flow 
rate  min  is made to vary, while the skirt length L  and the vehicle mass M  are fixed. Figure (5) 
shows a sample of the results where the trend is linear between the settling time Tss  and the mass 
flow rate min . 

 
It should be noted that our numerical simulation reveals insignificant changes in the settling 

time Tss  when the vehicle mass M  is varied.  This is performed by fixing the vehicle skirt length 
L  and the cushion air mass flow rate  min . A sample from the results is shown in Figure (6).  Con-
sequently, the settling time Tss  is independent of mass M . 

Figure (7) shows a linear correlation between settling time Tss  and skirt length L  It is readily 
seen that the slope of the straight lines in Figure (7) depends on the mass flow rate min . Figure (8) 
shows the interception of the straight lines in Figure (7) with the y-axis versus the mass flow rate 
min . On the other hand, plotting the slope of the straight lines in Figure (7) versus min  one obtains 

the curve shown in Figure (9).  Combining the equations from Figures (5), (7), (8) and (9) one ob-
tains the following correlation which can be used to predict Tss  in terms of min , and L . 

 

 
Tss =

2
3π 5 min

2 − π
7
min +12

⎡
⎣⎢

⎤
⎦⎥
*L − min

2

100
+ π 2

4
min − 5(2)

π  (29) 
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This equation can be written in terms of the dimensionless quantities ( L , min ) as follow: 
 
 

 
Tss =

2
3π 5 min

2 v0
2ρa

2d 4 − π
7
minv0ρad

2 +12⎡
⎣⎢

⎤
⎦⎥
*Ld − min

2 v0
2ρa

2d 4

100
+ π 2

4
minv0ρad

2 − 5(2)π  (30) 

 
 
where Tss  is the normalized settling time.  By using equation (4.8), one can optimize the control 
parameters which are: the cushion air mass flow rate min , and the skirt length L . 

The objective function can be written as: 
 
 

U = Tss  (31) 
 
 
subjected to the constraints 
 
 

Lmin < L < Lmax
 
and  min > 0  (32) 

 
 
The optimization is performed such that U  is minimum. Using the gradient optimization method 
[25], the optimum value of the mass flow rate can be expressed as: 
 
 

 

min =

π
7
Ld − π 2

4
4
3π 5 Ld −

1
50

× 1
v0ρad

2  (33) 

 
 
And the optimum value of the skirt length L  reaches its maximum value in the interval considered 
as shown in Figure (7). 
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Figure 5   Settling time versus mass flow rate min  for a fixed M = 85 , and L = 3.5 . 

 
 

 
Figure 6   Settling time versus ACV mass M with fixed min  and L . 
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Figure 7   Settling time versus ACV Skirt length L  with fixed min  and M . 

 
 
 

 
Figure 8   The interception with the y-axis of the straight lines in Figure (7) is plotted in this figure versus min . 
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Figure 9   The slope of straight lines of the straight lines in Figure (7) is plotted in this figure versus min . 

 
4.2 Chaotic Behavior of the Model 

In this section the potential chaotic behavior of the ACV response and the cushion pressure is in-
vestigated.  The tools that are used to examine the chaotic behavior include the frequency spec-
trums and the Poincaré maps for different sampling periods for both the heave motion and cushion 
pressure. The Poincaré map is used to identify the chaotic status of the model based on certain 
sampling strategies. The sampling strategies which have been used in this paper are based on the 
fundamental frequency of the response.  A natural sampling rule is to choose tn = nT +τ 0 where tn  
is the time at the nth interval, τ 0  is the initial time, T is the period, and n  is the number of sam-
pling points [26,27].  The period T , which represents the reciprocal of the first fundamental fre-
quency, is obtained from heave spectrum.  

The relevant control parameters which have significant influence on the dynamics of the system 
are found to be the length ratio L  and mass flow rate ratio min . On the other hand, the weight of 

the ACV is found to be insignificant within the range of parameters used. Changing min  
and solv-

ing for heave response (z) and cushion pressure (p). Figure (10) shows the spectrum for z  at differ-
ent values of the length ratio L  for fixed values of min  and ACV weight M . The figure shows 
that fundamental frequency of the heave response is nearly independent of the value of the skirt 
length. There is no evidence of chaotic behavior within the range of the parameters used as con-
firmed by the Poincaré map in Figure (11).  

Figure (12) shows the spectrum of cushion pressure at different values of length ratio (L ) for 
fixed values of and min  

ACV weight M . It can be observed that as the length ratio increases the 
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spectrum tend to have more frequencies indicating higher harmonics and eventually becoming cha-
otic as confirmed by the Poincaré map in Figure (13). 
 

 
Figure 10   Heave spectrum for M = 85 ,  min

= 65  
 

 
Figure 11   Heave Poincaré maps for M = 85 ,  min

= 65  and L = 4.5  
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Figure 12   Cushion pressure spectrum for M = 85 ,  min

= 65  
 
 

 
Figure 13   Cushion pressure Poincaré maps for M = 85 ,  min

= 65  and L = 4.5  
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5 CONCLUSIONS 

A highly nonlinear model for the dynamic behavior of ACV is considered.   A parametric study to 
investigate the influence of the control parameters on the dynamic response is conducted.  The con-
trol parameters that influence the transient response are found to be:  the ACV skirt length and the 
cushion air mass flow rate.  A dimensionless equation is developed to predict the settling time of the 
response.  Based on the developed equation, the optimum values of the control parameters of the 
ACV are obtained.  This can guide the designers of such vehicles to select the proper values of these 
control parameters for better performance.  Furthermore, the chaotic behavior of the system is also 
investigated where the cushion pressure is found to behave chaotically when the ACV skirt length is 
increased. However, no chaotic response is observed for the heave motion. 
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